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Lipid metabolic signatures deviate in sepsis survivors compared
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Sepsis remains a major cause of death despite advances in medical care. Metabolic deregulation is an
important component of the survival process. Metabolomic analysis allows profiling of critical metabolic
functions with the potential to classify patient outcome. Our prospective longitudinal characterization of
33 septic and non-septic critically ill patients showed that deviations, independent of direction, in plasma
levels of lipid metabolites were associated with sepsis mortality. We identified a coupling of metabolic
signatures between liver and plasma of a rat sepsis model that allowed us to apply a human kinetic model
of mitochondrial beta-oxidation to reveal differing enzyme concentrations for medium/short-chain
hydroxyacyl-CoA dehydrogenase (elevated in survivors) and crotonase (elevated in non-survivors).
These data suggest a need to monitor cellular energy metabolism beyond the available biomarkers. A loss
of metabolic adaptation appears to be reflected by an inability to maintain cellular (fatty acid) metabo-
lism within a ‘‘corridor of safety”.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Infection is a commonplace and usually self-limiting condition
that improves either by natural host defense processes or with
iatrogenic assistance with antibiotics and source control. For rea-
sons still poorly understood, a proportion of infected patients
develop sepsis, i.e. organ dysfunction through a dysregulated host
response [1]. Such patients are at high risk of mortality, averaging
approximately a third in developed countries and likely higher in
resource-poor countries [2]. Indeed, sepsis represents one of the
major causes of death worldwide even in survivors, many develop
long-term or even permanent physical and/or cognitive disability
[3].
Sepsis can be interpreted as a pathogen-triggered imbalance of
host damage and repair processes. It is a complex condition that
can originate from a wide variety of pathogens and anatomical
sites of infection. The molecular basis underlying both susceptibil-
ity and prognosis remain poorly understood with many fundamen-
tal questions still unanswered. Susceptibility and outcome are
influenced by various factors including age [4], gender [5], co-
morbidity [6] and genetic predisposition [7–8]. The development
of individualized intervention strategies (precision medicine)
requires a thorough understanding of the molecular mechanisms
underlying multiple organ failure. Metabolic dysregulation, leading
to organ dysfunction and eventually to overt organ failure, is
increasingly recognized as an important component of this process
[9]. While mechanisms underlying the inflammatory response that
initially drives the pathogenesis of sepsis are fairly well under-
stood, downstream pathways including those driving metabolic
deregulation remain elusive [1].

Even though metabolomics is a relatively new approach for
studying infectious diseases, metabolite signals found in biological
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samples can be used as infection biomarkers [10–14]. Metabolo-
mics has also been used to successfully build classification models
of response to therapy [15], to predict mortality [16–18] and to
evaluate global differences between survivors and non-survivors
after hospitalization for community-acquired pneumonia (CAP)
and sepsis [19]. Metabolomic, proteomic and clinical data have
been combined to develop a multi-dimensional model that could
predict survival in septic patients with high accuracy [20]. How-
ever, direct comparison of findings from different metabolomic
studies is difficult due to biological (sample type used, e.g. plasma,
urine) and technical variations, with the consequent risk of intro-
ducing bias [21,22].

In this study we performed a detailed metabolomic
(188metabolites) and biochemical (30 biochemical parameters)
characterization in septic survivors and non-survivors commenc-
ing from their admission to intensive care. A critically ill control
group consisted of non-septic survivors and non-survivors. Com-
parison was also made against plasma and tissue samples taken
from an established rat fecal peritonitis model of sepsis [23–25]
that allows early prognostication [24,25]. This enabled us to not
only identify metabolic differences in septic patients related to sur-
vival, but to also reveal metabolic signatures and mechanisms
specific to septic non-survivors compared to other causes of death,
and to compare plasma and tissue metabolite levels.
2. Results

2.1. Patient characteristics of the study population

Thirty-three patients from the general intensive care unit (ICU)
of University College London Hospitals NHS Foundation Trust were
enrolled between January 2014 and April 2015. Cohort characteris-
tics are shown in Table 1 with more detail on demographics pro-
vided in Supplementary Table S1. Twenty patients were
diagnosed with sepsis whereas 13 patients had non-septic inflam-
matory or other non-infection related diagnoses causing organ
dysfunction. Plasma samples were collected on day 0 (day of ICU
admission) and on days 1, 2, 3, 5, 7, 14, 21 and 28 until death or
discharge from the ICU. In total, 149 samples were collected, aver-
aging 4–5 samples per patient and were subjected to metabolomic
and biochemical analyses. 188 metabolites were identified from
seven metabolite groups, including acylcarnitines, amino acids,
biogenic amines, lysophosphatidylcholines (lysoPC), phosphatidyl-
cholines (PC), sphingolipids (SM) and hexoses. Thirty biochemical
parameters were quantified in addition in samples taken only from
the septic patient group over days 0 to 3. An overview of the mea-
sured metabolites and biochemical parameters is shown in Supple-
mentary Tables S2 and S3.

For subsequent analyses, patients were categorized into four
groups: patients surviving diagnosed sepsis (Septic-S), patients
not surviving diagnosed sepsis (Septic-NS), patients surviving any
non-sepsis diagnosis (non-Septic-S) and patients not surviving
any non-sepsis diagnosis in the ICU (non-Septic-NS). To determine
whether metabolites can distinguish septic from non-septic causes
of illness or can provide early evidences for patient survival fate,
statistical, machine learning and an adaptation of a ‘survival corri-
dor’ based on surviving patients analyses were carried out and are
described next.
2.2. Higher variance in the metabolic profiles of septic non-survivors

Eight of the 20 septic patients died. A principal component anal-
ysis (PCA) biplot was performed to evaluate potential differences in
biochemical characteristics between septic survivors (Septic-S) and
non-survivors (Septic-NS). The first two principal components of
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the biochemical profile distances show a separation of Septic-S
and -NS (PERMANOVA, q = 0.0015, Fig. 1A). Levels of low-density
lipoprotein (LDL) cholesterol, high density lipoprotein (HDL)
cholesterol, aspartate aminotransferase (AST), alanine aminotrans-
ferase (ALT) and troponin T (TnT) had the largest influence on sep-
aration, with survivors having higher HDL and LDL cholesterol and
lower AST, ALT and TnT values compared to Septic-NS.

When studying the metabolomic signatures of Septic-S and -NS
patients, we also included data from the 13 patients who served in
our study as non-septic (non-Septic-S and non-Septic-NS) controls.
As shown in Fig. 1B, the metabolomic profiles form a ‘horseshoe
shape’ where individual samples from each group are interspersed
but the group centres are ordered such that Septic-S and Septic-NS
patient samples tend to locate towards opposite tips. Levels of car-
nosine, aspartate, putrescine, C3-DC (C4-OH) and PC aa C36:0 were
largely responsible for the opposite placing of Septic-S and Septic-
NS patient samples within the PCA (Fig. 1B). The global metabolo-
mic characteristics of Septic-NS patients differed significantly from
Septic-S (PERMANOVA, q = 0.0011) and non-Septic patients (PER-
MANOVA, q = 0.015), revealing a unique signature of Septic-NS
patients. The most pronounced differences between Septic-S and
Septic-NS patient samples were observed in the sphingolipid,
lysophoshphatidylcholine and phosphatidylcholine metabolite
groups (Supplementary Fig. S1A–F). There was significantly higher
variance in the metabolomic profiles of Septic-NS compared to
Septic-S patients (t-test, q = 5e�4, Fig. 1C) and also in non-Septic-
S (t-test, q = 8e�5, Fig. 1C), non-Septic-NS (t-test, q = 0.033,
Fig. 1C) and both non-Septic groups combined (t-test, q = 9e�5,
Fig. 1C), suggesting a highly individualized metabolomic signature
in non-survivor septic patients.

To further study how death from sepsis differs metabolically
compared to non-septic causes, we examined differences between
Septic-NS and non-Septic-NS. Distinct signatures were not found in
global metabolomic characteristics of Septic-NS vs non-Septic-NS
(PERMANOVA, q > 0.05, Fig. 1B). However, differences were
observed in metabolic subgroups such as amino acids, phos-
phatidylcholines and sphingolipids (PERMANOVA, q = 0.041,
q = 0.046 and q = 0.046, respectively, Supplementary Fig. S1),
and in single metabolites (described below in detail). In contrast to
septic patients, the metabolomic profile of non-Septic-NS patients
varied similarly to that of non-Septic-S patients (t-test, q > 0.05,
Fig. 1C). This also suggests that Septic-NS patients may constitute
a rather unique group characterized by a highly variable response
to infection.

2.3. Acylcarnithine and sphingolipid concentrations associate with
sepsis survival

To further elucidate specific metabolic and biochemical pro-
cesses linked to sepsis survival, we performed ANOVA comparing
Septic-S vs -NS groups. In total, 59 metabolites and 11 biochemical
variables differed statistically significant (q value < 0.05) at days 0–
3 (Fig. 2A, Supplementary Table S4). The association of different
metabolite groups with survival can be clearly visualized in the
analysis. Among the significantly different metabolites, 11 of 15
assayed sphingolipids were higher in Septic-S, as were 4 of 11
lysoPCs and 28 of 76 phosphatidylcholines. However, of the 17 bio-
genic amines measured, only putrescine was significantly different
(higher in Septic-NS). The differing acylcarnitines comprised
mostly of short-chain acylcarnitines and were generally higher in
Septic-NS patients. This trend was also observed for amino acids
(higher in Septic-NS) but the converse was seen in lipids (lysoPC,
PC and SM, higher in Septic-S).

Acylcarnitines are reversibly produced from their acyl-CoA
counterpart by the enzymes carnitine palmitoyltransferase-1 and
-2 (CPT1 and CPT2) for transport across the mitochondrial matrix.



Table 1
Patient cohort description.

Septic-S Septic-NS non-Septic-S non-Septic-NS

n = 12 8 9 4
Age – yrd 68 ± 16 68 ± 13 53 ± 18 50 ± 19
Weight – kg 72.3 ± 19 78 ± 6 77 ± 8 79 ± 20
SOFA scorea, b 6 ± 1 9 ± 3 7 ± 2 10 ± 1
APACHE II scorea 14 ± 4 21 ± 5 16 ± 4 19 ± 3
Length of ICU Stay – dd 7 ± 8 7 ± 10 17 ± 13 13 ± 11
Max. Noradrenaline dose at Day 0 – mg/kg/minc,d 0.40 ± 0.29 0.57 ± 0.29 0.06 ± 0.08 0.18 ± 0.13
Male sex – n (%)d 9 (75) 7 (88) 2 (22) 3 (75)
Co-morbidities – n (%) Diabetesd 5 (42) 3 (38) 0 (0) 0 (0)

Heart Failure 0 (0) 2 (25) 3 (33) 1 (25)
Hypertension 7 (58) 3 (38) 2 (22) 1 (25)
IHD 0 (0) 1 (13) 3 (33) 1 (25)
CKD 2 (17) 1 (13) 0 (0) 0 (0)
COPDd 4 (33) 3 (38) 0 (0) 0 (0)
Active cancer 1 (8) 0 (0) 2 (22) 0 (0)

Medication use prior to submission – n (%) ß-blockersa 7 (58) 0 (0.0) 6 (67) 1 (25)
Insulin 3 (25) 1 (13) 0 (0) 0 (0)
Steroids 0 (0) 1 (13) 0 (0) 0 (0)
Statin 2 (17) 3 (38) 4 (44) 1 (25)

Social history – n (%) Tobacco use 4 (33) 1 (13) 3 (33) 1 (25)
Alcohol abuse 0 (0) 0 (0) 1 (11) 0 (0)
Illicit drug use 0 (0) 0 (0) 1 (11) 1 (25)

Type of admission – n (%) Elective 0 (0.0) 0 (0.0) 3 (33) 1 (25)
Emergencyd 12 (100) 8 (100) 6 (67) 3 (75)

Admission source – n (%) Emergency departmentd 5 (42) 3 (38) 6 (67) 2 (50)
Inpatient ward 3 (25) 2 (25) 3 (33) 1 (25)
Theatres 4 (33) 1 (13) 0 (0) 1 (25)
Other hospital 0 (0) 2 (25) 0 (0) 0 (0)

Sepsis type - n (%) Intra-abdominal 5 (42) 3 (38) – –
Community-acquired 7 (58) 5 (63) – –

Other critical illness - n (%) Femoral fracture – – 2 0
Cardiac arrest – – 1 1
Seizures – – 2 0
G-I bleed – – 1 2
TTP – – 0 1
Pulmonary embolus – – 2 0
Myeloma-related AKI – – 1 0

Superscript characters show significant differences between patient groups by Student’s t-test (continuous variables) or Fisher’s exact test (discrete variables) without
multiple hypothesis correction:
a: Septic-S vs Septic-NS; b: non-Septic-S vs non-Septic-NS; c: Septic-NS vs non-Septic-NS; d: Septic-(S + NS) vs non-Septic-(S + NS).
IHD = ischemic heart disease; CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disease; TTP = thrombotic thrombo-cytopenic purpura; AKI = acute
kidney injury; G-I = gastrointestinal.
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Therefore, we mapped the acylcarnitines of Septic-S vs -NS patients
to their corresponding acyl-CoAs in a KEGG pathway map of lipid
beta-oxidation (Supplementary Fig. S2). An increase in concentra-
tion difference with decreasing chain length was seen in the
acyl-CoA metabolites as well as their downstream enoyl-CoA and
hydroxyacyl-CoA molecules. C4-carnitine (butyryl-/isobutyrylcarni
tine), a known biomarker for an inborn error of mitochondrial fatty
acid oxidation [26], showed the highest concentration in Septic-NS
(log2FC = 1.4 compared to Septic-S). Only aspartate, putrescine and
the sphingolipid SM C22:3 had higher absolute fold changes (log2-
FC = 2.0, log2FC = 2.2 and log2FC = �1.5, respectively, compared to
Septic-S at day 0).

The same general pattern of differences observed between
Septic-S and -NS patients was also seen between non-Septic-S
and -NS patients (Supplementary Fig. S3, Supplementary
Table S4). Of note, there were no significant differences seen in
lysoPCs and sphingolipids in the non-Septic groups, suggesting a
possible relevance to sepsis survival. Since lysoPCs and sphin-
golipids are both produced from phosphatidylcholines, it is reason-
able to expect that they change in tandem with
phosphatidylcholine concentrations, whereas no change could
indicate processes specific to infection or sepsis.

Considering individual metabolite profiles, sphingolipid SM
C22:3 showed one of the largest concentration differences
between Septic-S and -NS patients and also differed significantly
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between Septic-NS and non-Septic-NS patients (lower in Septic-
NS, log2FC = �1.4, Supplementary Fig. S4, S5). This again suggests
a unique metabolic process in Septic-NS patients compared to
other causes of death. Similarly, lysoPC a C28:1, PC ae C32:2 and
PC ae C42:1, and most of the short chain acylcarnitines also dif-
fered significantly between Septic-S and -NS patients (Fig. 2A, Sup-
plementary Fig. S4) as well as between Septic-NS and non-Septic-
NS patients (Supplementary Fig. S5). Both lysoPC a C28:1 (log2-
FC = �0.42) and short chain acylcarnitines in Septic-NS patients
were significantly lower compared to non-Septic-NS patients.
From the biochemical parameters, albumin, LDL, HDL and total
cholesterol were significantly lower in Septic-NS compared to
Septic-S patients (Fig. 2A, Supplementary Fig. S6, Supplementary
Table S4).

2.4. Metabolomic signatures accurately predict sepsis survival

The observed differences in Septic-S and -NS patients led us to
investigate whether metabolomic and biochemical profiling at
day 0 could be used to accurately predict survival in septic
patients. There was a perfect and near-perfect classification using
Random Forest [27–28] and linear Support Vector Machine
(SVM) [29–30] combined with leave pair out cross validation (cf.
Material and Methods) on the two best features (validation AUC
of 1.000 and 0.977, respectively, Fig. 2B). The Random



Fig. 1. Septic-NS (non-survivor) patients have a distinct metabolic signature and are more diverse than other patient groups. (A) Samples are labelled by patient number and
day. Biochemical parameters are treated as feature vectors and the pairwise Canberra distance between feature vectors is used as an input for principal component analysis
(PCA). Septic-S (survivors) differ markedly from Septic-NS. (non-survivors). Q values were calculated with a balanced bootstrapped PERMANOVA (FDR corrected together
with all metabolite groups and the biochemical parameter set) as the mean of 1000 repeats. Arrows are proportionally scaled for esthetic appearance. (B) Metabolite
concentrations are treated as feature vectors and the pairwise Canberra distance between feature vectors is used as an input for PCA. The non-septic group is generally not
discernible from Septic-S; both differ markedly from Septic-NS. Q values where calculated as above. (C) Beta diversity of septic and non-septic patients as a measure of group
spread and variance. Sorted by median spread the groups have the order non-Septic-S < Septic-S < non-Septic-NS < Septic-NS. Significance was assessed by FDR corrected t-
tests between all groups. Q values not shown did not reach statistical significance.
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Forest-based classification identified C4-carnitine and lysoPC a
C28:1 as the most important features, while the linear SVM-
based classification identified lysoPC a C28:1 and C28:0. The per-
formance of the model for classifying non-Septic-S vs -NS patients
was moderate to low with two features and even with up to six
features did not exceed an AUC of 0.83 for Random Forest and
0.81 for SVM (Supplementary Table S5). This suggests that at least
some of the features are not general markers for survival but speci-
fic for survival in septic patients. Although the cross-validation
variant we used for validation is mathematically proven to
approach the true AUC [31], the predictive power of our model
remains to be confirmed in an external validation cohort to show
its clinical relevance.

2.5. Deviations from a safety corridor defined by metabolomic profiles
increase risk of mortality

Due to the large variability observed in Septic-NS patients we
hypothesized that critical-for-survival metabolites could have
been missed in the statistical comparison between Septic-S vs. -
NS patients. Therefore we adopted the notion that, like glucose
levels [32], an increased variability of metabolism could indicate
an inappropriate host response in the critically ill. In other words,
the concentration of a metabolite or a group of metabolites that
deviate beyond a certain threshold from a survivor’s average range
may signal metabolic dysregulation and hence an increased risk of
adverse outcome.

To evaluate whether there is merit in this ‘‘safety corridor” con-
cept, we defined the corridor as follows: for each metabolite mea-
sured in both Septic-S and non-Septic-S patients the minimum and
maximum concentrations across all samples in these survival
groups are determined and define the metabolite specific safety
corridor. We restrict this analysis to the 125 metabolites with
non-significant statistical differences between Septic-S and -NS
patients. Metabolite concentrations from compared cohorts (e.g.
non-surviving patients) falling outside its respective corridor range
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are considered deviations and are considered harmful. In fact, the
number of deviations in Septic-NS patients was substantial, sug-
gesting that important metabolites were potentially missed in
our initial statistical analysis. This also confirms our above findings
for a highly dysregulated metabolism in Septic-NS patients.

The dysregulation was not limited to specific components of
metabolism as deviations occurred in 110 of the 125 measured
metabolites, and in all metabolite groups (Supplementary
Table S4). Spurious deviations caused by the small sample size
might have an impact however the ‘‘safety corridor” concept
appears to work similarly well when examining metabolomic data
collected on septic shock patients by Ferrario et al. [16]. In fact, 65
metabolites deviated among non-surviving septic patients in both
our study and that of Ferrario et al., including 3 of 4 sphingolipids, 5
of 7 lysoPCs and 2 of 3 (acyl-)carnitines, while there was little over-
lap in significantly differing metabolites between the two studies
(Supplementary Table S6).

Some of the deviations in our patients were more common than
others. Of the 125 metabolites that did not differ significantly
between Septic-S and -NS patients (Supplementary Table S6) 41
deviated from the safety corridor in at least 4 of 12 NS (both septic
and non-septic) patients (Fig. 3A). From these 41 metabolites, the
acylcarnitine C18:1-OH and phosphatidylcholines PC ae C38:0, -
C38:5, -C38:6 and -C42:0 were specific to Septic-NS and did not
cross the safety corridor in any of the non-Septic-NS patients (sim-
ulation test, uncorrected p = 0.0039). There was only one metabo-
lite group, the phosphatidylcholines, where all Septic-NS patients
left the corridor. Looking at the individual metabolites 7 of 8
Septic-NS patients crossed the safety corridor for the phosphatidyl-
choline PC ae C42:3 (simulation test, q = 0.013) and 6 of 8 did so for
PC ae C40:2 (simulation test, q = 0.013). Interestingly, there were
two subsets of only two metabolites – PC ae C42:3 and C14, and
PC ae C42:3 and C3:1 - where all eight Septic-NS patients crossed
the safety corridor for at least one of the metabolites (simulation
test, p < 0.001). For one metabolite, lysoPC a C24:0, there was a
clear separation of three Septic-NS patient time courses from all



Fig. 2. Statistical and machine learning analysis independently find C4 acylcarnitine and lysoPCs discriminative for survival from sepsis. (A) All metabolites and clinical
parameters that differed significantly between Septic-S and Septic-NS, either overall on days 0–3 or at any specific day by ANOVA based on untransformed concentration
values after FDR correction. The heatmap shows data between the 5th and 95th percentiles for each measurement. Grey spots mark unmeasured values. Metabolites in bold
face differ also between Septic-NS and non-Septic-NS. (B/C) ROC curve and AUC values for test and validation sets after the two best features were selected by Tournament
Leave Pair Out-Cross Validation-Recursive Feature Elimination (TLPOCV-RFE) using Random Forests (B) or linear Support Vector Machines (C).
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Fig. 3. Deviations from a corridor of safety are abundant in lipid species even in the absence of statistical differences. Time courses of NS patients at days 0–3 where
concentrations are outside the Septic- and non-Septic-NS minimum to maximum range at any day (A) in at least 4 patients and (B) for lysoPC a C 24:0. The scale in (A) is
pseudo-logarithmic. Metabolites that differ significantly between the septic groups were excluded.
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other patients where the concentrations were notably above rather
than below that of the survivor patients; this suggests the exis-
tence of a high-risk Septic-NS subgroup (Fig. 3B).

2.6. Data-driven beta-oxidation kinetic modelling identifies differing
enzyme concentrations for Septic-NS patients

We previously demonstrated that our long-term, fluid-
resuscitated fecal peritonitis rat model of sepsis can be used to pre-
dict long term survival with high accuracy as early as 3–6 h after
administration of the infectious insult [24,25]. Surviving animals
show clear signs of clinical improvement at the study endpoint.
Since acquiring systematically human organ data is challenging,
3683
especially with respect to living patients, but to investigate poten-
tial contributions of different organ sites to differing metabolite
concentrations across different sepsis cohorts, we repeated the
analyses performed on patient blood samples using samples taken
from rat heart, liver and plasma at 6 h (early phase of sepsis), 24 h
(established phase) and 72 h (recovery phase) (Supplementary
Table S7) instead. Although no rat that died of induced sepsis could
be kept alive until 72 h, several short and medium chain acylcar-
nitine concentrations showed the same relative difference between
Septic-S and Septic-NS rats in liver and plasma already until 24 h.
This indicates that plasma metabolite levels resemble to some
extent liver metabolite status. Metabolites of the heart instead
show this resemblance to a much lesser extent (17 out of 18
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metabolites were more similar between liver and plasma than
between heart and plasma at 24 h as shown by a respective lower
p values derived from a t-test of ratio of means [33], Fig. 4A, Sup-
plementary Table S8). Since rat plasma metabolite levels were
indicative for liver metabolite status, and because the main
(acyl-)carnitine transporter in human and rodent liver, organic
cation transporter novel 2, favours acylcarnitine import from
plasma [34], we parameterized a kinetic computational model of
mitochondrial fatty-acid beta-oxidation with data from Septic-
(NS, S) for days 0 to 3 to infer liver mitochondrial status from
human plasma samples. We coupled the output of two separate
versions (Septic-NS and Septic-S) of this model and fitted it to
the ratio of metabolite levels for Septic-NS to the overall metabo-
lite concentrations of Septic-NS and Septic-S (Septic-NS/(Septic-
NS + Septic-S)). Computing a metabolite ratio yielded relative
metabolite differences between Septic-NS and Septic-S which we
assume to correlate between liver and plasma and allowed us to
ignore absolute metabolite concentrations.

By investigating fitted parameters our model predicts increased
enzyme concentrations for carnitine palmitoyltransferase 2 (CPT2)
andmedium-chain acyl-CoA dehydrogenase (MCAD) in Septic-S for
days 0 to 3 (Fig. 4B). In line with these findings hepatic mRNA
expression of these two enzymes was decreased in septic com-
pared to non-septic mice [35–36]. In addition, we predicted sub-
stantially differing enzyme concentrations for medium/short-
chain hydroxyacyl-CoA dehydrogenase (MSCHAD, elevated in
Septic-S) and crotonase (CROT, elevated in Septic-NS), for which
we could not find existing evidence within the literature. MSCHAD
is responsible for NADH and ketoacyl-CoA production in the model,
indicating reduced NADH availability in Septic-NS. In the kinetic
model CROT produces hydroxyacyl-CoA of different lengths, a pre-
requisite to deliver NADH or acetyl-CoA for further important
metabolic functions. Of note, our model predicts elevated enzyme
concentrations for CROT in Septic-NS, potentially counteracting
NADH and downstream acetyl-CoA deficiency, or diverting enoyl-
CoAs from the alternative degradation route via the mitochondrial
trifunctional protein that does not utilize short chain acyl-CoAs. In
line with our enzyme concentration predictions, steady state reac-
tion fluxes (Fig. 4C) show higher fluxes through sink reactions for
acetyl-CoA, NADH, and FADH2 in Septic-S than in Septic-NS on days
1 and 2, which potentially impacts further on metabolic energy
functionality (Fig. 4D).
3. Discussion

In this study we characterized and integrated biochemical and
metabolomic variables in septic and non-septic cohorts and delin-
eated differences in septic non-survivors compared to other
patient groups. Although our total cohort was relatively small,
we confirmed that many of the previous findings comparing early
host responses in sepsis survivors and non-survivors are relatively
robust. There was greater variability in the metabolomic profile of
sepsis non-survivors compared to survivors using all time points
(up to 28 days) hinting that negative survival fate is accompanied
by dysregulated multiple metabolite concentrations. Instead of
individual metabolite pertubations, this rather points to substan-
tially impeded cellular function. This is in line with the greater
metabolomic variance in septic patients who died within the first
24 h of ICU admission [20]. Examining individual metabolites
and metabolic groups, concentrations of putrescine, amino acids
and acylcarnitines (specifically C4-carnitine) were higher in non-
survivors while lysoPCs, PCs and SMs were lower, confirming pre-
vious studies [16,18,20]. In addition, Random Forest and Support
Vector Machine analysis provided very good models with excep-
tionally high predictive accuracy to distinguish septic survivors
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from non-survivors using lysoPC a C28:1, C28:0 and C4-carnitine,
which may be of particular importance for delineating survival
risks. Of note, lysoPC a C28:1 and C28:0 have not been included
as important features in previous predictive models [18,20]. Thus,
metabolomics reflect a promising avenue for ‘‘prognostic enrich-
ment” in personalized critical care and should be studied in more
depth including e.g. larger scaled patient studies.

Our predictive models had lower discriminative power when
classifying non-septic survivors and non-survivors, suggesting a
specific signature of metabolic features unique to septic non-
survivors. While the levels of several lysoPCs and sphingolipids dif-
fered significantly between sepsis survivors and non-survivors, this
was not seen in the respective non-septic groups. Sphingolipid SM
C22:3 shows an exceptionally large concentration difference
between sepsis survivors and non-survivors. LysoPC a C28:1, a
high-ranked featured metabolite in our predictive models across
different machine learning algorithms, also differed significantly
in abundance between septic and non-septic non-survivors, sug-
gesting possible unique metabolic processes in those dying from
sepsis.

Furthermore, due to the large variability in metabolomic profil-
ing of sepsis non-survivors, we hypothesized that we may have
overlooked critical-for-survival biological processes within our ini-
tial statistical analyses. Therefore, we adopted the notion of a
‘‘safety corridor” where deviations from a range of concentration
values for specific metabolites could have an important impact
on patient outcome. Our data, as well as an analysis of a dataset
in similar patients [16], suggest that septic non-survivors are out-
side the safety corridor for three sphingolipids (SM C16:1, SM
C24:1, SM (OH) C22:1) and five lysoPCs (a C16:1, C18:0, C18:2,
C20:3 and C20:4). Septic non-survivors, but none of the non-
septic non-survivors, also crossed the safety corridor for seven
phosphatidylcholines. To the best of our knowledge, none of these
phosphatidylcholines have been previously reported to be associ-
ated with clinical outcomes in sepsis. We postulate that deviations
of these phosphatidylcholines from normal levels could lead to a
metabolic dysregulation in their highly-interconnected lysoPCs
and sphingolipids, ultimately contributing towards outcome. Of
note, for the safety corridor analysis we included only metabolites
for which statistical significant differences between survivors and
non-survivors could not be determined given the relatively small
sample count in our study. Though this approach allowed us to
investigate our data from a different angle and revealed additional
more subtle signals, it also asks for further confirmation in addi-
tional, ideally larger scaled patient cohorts including also surviving
and non-surviving patients with sepsis as defined in our study.

Since a primary function of the liver is enhancing energy sub-
strate availability through oxidation of fatty acids, the idea to test
lipid metabolism in patients at risk using our identified deviating
lipid metabolite concentrations is appealing. Accessing the liver
directly is however challenging in humans whereas metabolite
levels in plasma, a much more accessible media, could serve as a
proxy for liver metabolism. Using a long-term rodent model of sep-
sis we indeed found that plasma metabolites resemble liver
metabolites substantially better than heart-associated metabolites
(Fig. 4A). This led us to the idea to parameterize a kinetic model of
beta-oxidation with patient data where we predicted substantially
deviating concentrations for enzymes involved in producing
energy relevant metabolites, such as acetyl-CoA, NADH, and
FADH2. These metabolites serve as important energy donors; we
previously reported that mitochondrial respiratory enzymes utiliz-
ing these substrates were significantly reduced in skeletal muscle
sampled from eventual non-survivor septic patients [37]. The
decreased metabolite levels suggest perturbed Krebs’ cycle activity
in bioenergetically-active tissues such as liver and muscle and
reflect down-regulation of key enzymes such as carnitine



Fig. 4. Acylcarnitine concentrations that correlate between plasma and liver predict consistent regulation of beta oxidation. Several acylcarnitines show the same relative
change between rat Septic-S and Septic-NS in both liver and plasma; this was used in the fitting of a kinetic model of patient mitochondrial lipid beta-oxidation. (A) The
relative concentration change matches for carnitine, short-chain and short/medium-chain acylcarnitines (with the exception of C4 acylcarnitine, which is an intermediate not
just in beta oxidation but also in the degradation of branched chain amino acids) at both 6 h and 24 h. Error bars show the 95% confidence interval of the ratio. Only
acylcarnitines present in the kinetic model of beta-oxidation are shown. We used all (acyl-)carnitine ratios to fit the model. (B) The kinetic model fitted to patient plasma
concentration ratios shows regulation of the enzyme concentrations of CPT2, MCAD, CROT and MSCHAD. (C) Production of Acetyl-CoA, NADH and FADH2 is reduced in Septic-
NS vs Septic-S. (D) The regulation of enzymes of mitochondrial beta-oxidation is consistent with their arrangement in the pathway. Red enzymes are downregulated, green
upregulated in Septic-NS compared to Septic-S. Red arrows show reduced flux in Septic-NS. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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palmitoyltransferase or medium chain acyl-CoA-dehydrogenase at
the site of infection or in remote organs. Indeed, we observed sim-
ilar changes in acylcarnitines and glycerophospholipids in liver and
lung homogenates in models of pneumococcal disease [38]. These
metabolite levels in plasma or MSCHAD or CROT enzyme concen-
trations in septic patients may be biomarkers of liver
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mitochondrial activity and hence show potential to contribute to
the accuracy of risk assessment in septic patients.

Our study has limitations in terms of the number of patients
enrolled, however the cost of the large number of biochemical
and metabolomic tests performed on multiple samples per patient
precluded enrolment of a much larger cohort. Hence, a certain care



Fig. 5. The metabolic safety corridor concept. Metabolite concentrations falling
outside a corridor of safety are associated with an increased risk of mortality.
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is necessary when following up on our results, which should
include confirmation in larger study cohorts. Machine learning
can be used to derive biological phenotypes from routine data col-
lected on septic patients. For example, Seymour et al. identified
four clinical phenotypes that correlated with host-response pat-
terns and clinical outcomes; subsequent simulations suggested
these phenotypes could predict treatment effects [39]. Of note,
and as reflective of routine clinical practice, metabolism barely fea-
tured in this analysis and was essentially limited to monitoring
blood glucose, lactate, and blood urea nitrogen levels. However, a
loss of metabolic homeostasis, most notably lipid and lipoprotein
metabolism, is a commonplace event in critical illness [40]. Some
overlap between these two distinct cohorts was however evident
as the delta-phenotype described by Seymour et al [39], character-
ized by a greater degree of liver dysfunction and hyperlactatemia,
and a poorer prognosis mirrors the conventional blood chemistry
profile in our current study in those septic patients who ultimately
died. As such, we extend this clinical delta-phenotype identifying
metabolic derangements to the concept of metabolic ‘instability’
regarding key pathways, most notably mitochondrial and peroxi-
somal handling of medium and long-chain fatty acids. Fluctuations
of these pathways outside the ‘‘corridor of safety” predict a poor
outcome.

In conclusion, our study confirms and substantially extends the
concept of a central role for (energy) metabolism to facilitate sur-
vival in sepsis (Fig. 4D). While this concept is increasingly
accepted, several landmark studies targeting metabolism through
enhancing oxygen availability [41,42] or nutritional support [43]
have failed to yield clear benefit. Our study provides compelling
evidence for a need to monitor these critical cellular functions
beyond the currently available yet highly restricted portfolio of
molecules, most notably glucose, urea and lactate. Furthermore, a
loss of metabolic adaptation to sepsis appears to be reflected by
an instability of cellular metabolism of fatty acids as characterized
by falling outside a ‘‘corridor of safety” (Fig. 5).

4. Materials and methods

4.1. Patients

Patients enrolled participated in the STudying Responses of the
Stress System in critical illness (STRESS) study. The study was
approved by the NRES Committee East of England – Norfolk, REC
reference 11/EE/0180. Written consent was given by the patient,
if mentally competent, or by their next-of-kin with retrospective
consent gained from surviving patients after they regained mental
capacity. All patients admitted to the intensive care unit (ICU) were
screened on a daily basis to assess those meeting entry and exclu-
sion criteria.

Inclusion criteria

� Multi-organ failure (at least 2 organ systems involved)
� Initial SOFA score >3
� Predicted length of ICU stay >3 days

Exclusion criteria

� >24 h hospital admission prior to ICU admission
� Paediatric patients (age <18 years)
� Pregnant patients
� Severe psychiatric illness (patients at risk of suicide, those with
schizophrenia, or those prescribed >1 anti-depressant
medication)

� Patients who have used cortisol altering drugs within the pre-
ceding 6 weeks prior to admission (e.g. corticosteroids)
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� Cirrhosis (Child Pugh B or C classification)
� Severe brain injury (e.g. trauma, stroke, prolonged cardiac
arrest)

Following ICU admission and enrolment into the study, clinical
management was at the discretion of the treating clinicians. No
treatment interventions were undertaken, and patients therefore
received ‘usual’ ICU care. The patient sample size cohort character-
istics can be found in Table 1.
4.2. Patients – blood sampling protocol

Blood samples were withdrawn from pre-inserted arterial lines
within 6 h of ICU admission (day 0), and then repeated on days 1, 2,
3, 5 and 7 and weekly thereafter until day 28. A blood sample was
also collected on the day of ICU discharge. Other than admission
blood samples, all remaining samples were collected between
08:00 and 09:00 h each morning. In patients who did not have a
patent arterial line, blood was instead aspirated from a central
venous catheter (if present), or by venepuncture. Each blood sam-
ple consisted of 20 ml whole blood collected into previously ster-
ilized collection vials and commercially available blood collection
tubes (BCT). These consisted of one 5 ml BCT containing clot acti-
vator and gel for serum separation (BD Vacutainer Gold, BD Diag-
nostics, Franklin Lakes, New Jersey, USA) and one 4 ml BCT
containing 4.2 mg spray-dried K2EDTA vial (BD Vacutainer Laven-
der). Additional 2.2 ml blood samples were collected into four ster-
ile Eppendorf tubes; two plain tubes were used for serum samples
(and allowed to clot for 30 min) and two tubes containing 2.2 mg
EDTA di-potassium salt (Sigma- Aldrich, St Louis, MO, USA) for
EDTA-plasma samples. An additional 1 ml blood sample was drawn
into a chilled sterile Eppendorf tube containing 500 KIU/ml apro-
tinin (Trasylol, Bayer, Newbury, Berks, UK) and 1 mg EDTA to mea-
sure vasopressin. An additional 1 ml blood sample was drawn into
a sterile Eppendorf tube containing 1 ml of the serine protease
inhibitor AEBSF (Sigma-Aldrich) for measurement of unstable hor-
mones. Hydrochloric acid (Sigma-Aldrich) was added to the AEBSF
sample to a final concentration of 0.05 M post-centrifugation.

All samples except that for vasopressin were stored on ice
immediately after collection and subsequently centrifuged at
6500 g for 10 min. The plasma or serum supernatants were then
decanted into 200 lL aliquots, snap- frozen in liquid nitrogen
and stored at �80 �C.



W. Khaliq, P. Großmann, S. Neugebauer et al. Computational and Structural Biotechnology Journal 18 (2020) 3678–3691
4.3. Patients – biochemical measurements and assays

For the measurement of biochemical parameters a range of
instruments and techniques was employed. Urea, creatinine, ALT,
AST, ALP, albumin, total cholesterol, HDL, LDL, triglycerides, TSH,
free T3 and T4 were analyzed in clinical chemistry system
(AU5800 analyzer, Beckman Coulter, Brea, California, USA). BNP,
ACTH, glucagon, adrenaline and noradrenaline levels were mea-
sured by competitive ELISA (EELH0598, EELH0137, EELH2237,
EELH0045 and EELH0047 respectively, Elabscience), as well as
aldosterone (ADI-900-173, Enzo Life Sciences), TNT by electro-
chemiluminescence immunoassy (Roche Diagnostics, Basel,
Switzerland), Prolactin, growth hormone, IL6, IL10 and Leptin by
sandwich ELISA (EELH0141, EELR0029, Elabscience, OptEIA Sets
IL-6 & IL-10, BD Biosciences Pharmingen, San Diego, CA, USA, and
KHC2281, Invitrogen, respectively).

For vasopressin measurements samples were centrifuged at
1600g for 15 min at 4 �C and then frozen at �80 �C. After thawing
twice the volume of ice-cold acetone was added to the sample,
mixed, and then centrifuged at 12,000g for 20 min. The super-
natant was transferred to a new tube. 5x the total volume of ice-
cold petroleum ether was added and the solution then centrifuged
at 10,000g for a further 10 min. The top layer of ether was dis-
carded. The remaining aqueous layer was transferred to a glass
tube and dried down with gaseous nitrogen. The samples were
then reconstituted with assay buffer (Tris-buffered saline, TBS)
and analyzed with competitive ELISA (ADI-900-017A, Enzo Life
Sciences, Exeter, Devon, UK).

For testosterone measurements frozen serum samples were
thawed. 1 ml of diethyl ether (Sigma-Aldrich) was added to 1 ml of
serum sample. The tube was left in a fume hood and layers were
allowed to separate, following which the top organic layered was
siphoned off into a clean tube. This procedure was repeated three
times. The diethyl ether was then evaporated under a stream of gas-
eous nitrogen. The extracted testosterone was dissolved in 250 lL of
TBS. The reconstituted samples were analyzed with competitive
ELISA (ab108666, Abcam). The same method was applied for estra-
diol. DHEA and cortisol were extracted using the same method and
quantified using competitive ELISA (ADI-900-093, Enzo Life Sciences,
and ab108665, Abcam, Cambridge, UK, respectively).

4.4. Rat sepsis model

Animal experiments were conducted using a long-term fluid-
resuscitated rat fecal peritonitis model of sepsis. The study was
undertaken following local ethics committee approval and a pro-
ject licence granted by the UK Home Office (PPL70/7029: Organ
dysfunction in critical illness states). Male Wistar rats (RGD
Cat#13508588, RRID:RGD_13508588) (Charles River, Margate,
Kent, UK) weighing between 325 and 375 g were housed in cages
of four for a week prior to experimentation. Animals were sacri-
ficed at either 6, 24 or 72 h with blood, liver and heart tissue sam-
pled. These timepoints correspond to infection, established sepsis
and recovery phases, respectively in this model; mortality gener-
ally occurs between 18 and 40 h with surviving animals showing
clinical and biochemical signs of recovery at the study endpoint
(72 h) [23–25].

All rats were assessed regularly using a validated clinical sever-
ity scoring system. A score � 4 on two consecutive readings was
deemed to be an indicator of excessive animal discomfort; due to
welfare reasons such animals were sacrificed.

4.5. Rat model – Blood sampling protocol

Rats underwent instrumentation and echocardiography under
brief general anaesthesia using isoflurane (Baxter Healthcare, Thet-
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ford, Norfolk, UK). An anaesthetic vaporiser (Vet-Tech Solutions,
Congleton, Cheshire, UK) and air pump (TetraTec APS400, Tetra
GmbH, Melle, Germany) were used to administer the anaesthetic.
Rats were placed in a plastic induction chamber and anaesthesia
induced using 5% isoflurane. Maintenance anaesthesia was
achieved using 2% isoflurane with animals spontaneously breath-
ing through a nose cone. Rats were then positioned supine on a
heated mat with continuous monitoring of core temperature via
a rectal thermometer (TES 1319, TES Electrical Electronic Corp, Tai-
pei, Taiwan). Body temperature was maintained between 36.0 and
37.5 �C while under anaesthesia.

A chemical depilatory cream was used to remove hair from the
neck and chest (Nair, Church and Dwight, Folkestone, Kent, UK).
Preoperative skin preparation was completed using a commer-
cially available mix of 2% chlorhexidine gluconate and 70% iso-
propyl alcohol (ChloraPrep, CareFusion, San Diego, CA, USA). A
sterile skin drape was used and all surgical procedures performed
with strict aseptic technique. A 2 cm vertical incision in the centre
of the neck was used to obtain access to the right internal jugular
vein and the left common carotid artery. Both vessels were cannu-
lated with 0.96 mm outer diameter PVC tubing (Biocorp Ltd, Hunt-
ingdale, NSW, Australia) and secured in place with two 3–0 silk
sutures. This allowed continuous blood pressure monitoring and
blood sampling through the arterial line, and fluid resuscitation
through the venous line. Both lines were tunnelled subcutaneously
to the nape of the neck and attached to a dual channel swivel and
button tether system (InsTech Solomon, Plymouth Meeting, PA,
USA) which was secured to the skin using four 2–0 silk sutures.
The skin incision site was sutured using 3–0 silk sutures. To pro-
vide analgesia rats were given a subcutaneous injection of
0.05 mg/kg buprenorphine (Vetergesic, Reckitt Benckiser, York,
UK) prior to recovery.

Following recovery from anaesthesia, animals were individually
housed in metabolic cages with the swivel-tether system attached
to a balancing arm. This allowed the rats unfettered movement in
their cages with access to food and water ad libitum. Room tem-
perature was kept at 21.1 ± 1.1 �C, humidity between 40 and
70%, and a 12-hour light–dark cycle was maintained.

Both venous and arterial lines were flushed continuously to
maintain patency with 0.1 ml/h of 0.9% saline (Baxter Healthcare,
Thetford, Norfolk, UK). The arterial line was connected to a pres-
sure transducer (SensoNOR SP844, Memscap, Skoppum, Norway)
and blood pressure recorded continuously onto a Powerlab system
(AD Instruments, Chalgrove, Oxon, UK).

4.6. Fecal peritonitis

Stool samples were obtained from six healthy non-vegetarian
human volunteers and pooled together. Samples were collected
in styrofoam containers, weighed and stored on ice. Collected fae-
cal material was continuously fumigated with nitrogen in order to
maintain an anaerobic environment. The collected material was
diluted 1:1 with a suspension of thioglycolate (14.5 g/500 ml dis-
tilled water) and catalase (0.19 mg/100 ml) to optimize bacterial
growth and inactivate reactive oxygen species. For cryoconserva-
tion 10% glycerine was added and the suspension homogenized
under anaerobic conditions. The resulting material was divided
into 0.5 ml aliquots and frozen at �80 �C. Prior to use each aliquot
was thawed and diluted 1:7 with 0.9% saline to form faecal slurry.
Sepsis was induced in the rats by intraperitoneal (i.p.) injection of
faecal slurry using a 19-gauge needle injected in the right lower
quadrant of the abdomen. This was performed prior to recovery
from anaesthesia, but after instrumentation. Sham operated con-
trols received no i.p. placebo injection to avoid inadvertent bowel
perforation. An initial pilot study ascertained the dose of fecal
slurry producing a 24 h mortality rate of approximately 40%. This
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mortality rate was selected as it reflects the mortality rate of
human fecal peritonitis. It would also allow sufficient group sizes
for comparisons between survivors and non-survivors for at least
24 h.

4.7. Fluid regimen

Fluid resuscitation (10 ml/kg/h) was initiated at two hours post-
injection of faecal slurry. A 50:50 mix of Hartmann’s solution (a
crystalloid solution closely isotonic to blood, containing sodium,
chloride, potassium and calcium ions, and lactate) and 5% glucose
were infused via the indwelling venous catheter. This fluid infusion
rate was reduced to 5 ml/kg/h at 48 h. An identical fluid regimen
was used for control animals. Glucose was added to avoid
hypoglycemia.

4.8. Echocardiography

All rats underwent baseline transthoracic echocardiography
(TTE) prior to insertion of vascular catheters. TTE was also per-
formed at 6 h after induction of sepsis and a final examination at
the end-point of the experiment. TTE was performed using a Vivid
7 Dimension device (GE Healthcare, Bedford, Beds, UK) and a
10 MHz sector transducer (Vivid 10S, GE Healthcare). All variables
were recorded under a brief period of 1.2% isoflurane anaesthesia.
Stroke Volume and Cardiac Output used for prediction of Sepsis
outcome was calculated as described elsewhere [24].

4.9. Rat model – biochemical measurements and assays

For arterial blood gas measurements we collected a 0.2 ml base-
line blood sample from the arterial line into a heparinized capillary
tube. Subsequent samples were collected at 6, 24 and 72 h. A 0.4 ml
fluid bolus of 50:50 Hartmann’s and 5% glucose was administered
to the animal after each sampling. The arterial blood was used to
measure pH, PaO2, PaCO2, bicarbonate, base excess, total haemo-
globin, sodium, potassium, ionized calcium, chloride and lactate
(ABL-700, Radiometer, Copenhagen, Denmark). Rat troponin levels
were measured by sandwich ELISA (EELR0151, Elabscience
Biotechnology Co, Beijing, China). BNP levels were measured by
competitive ELISA in rat samples (RAB0386, Sigma-Aldrich). Mea-
surement of cystatin C was performed using a sandwich ELISA
technique (EELR0304, Elabscience).

Markers of liver dysfunction were measured in rat samples by
the biochemistry laboratory in the Royal Free Hospital, as men-
tioned earlier for patient samples. These markers included mea-
surement of liver transaminases, alkaline phosphatase, bilirubin
and albumin. To assess the anterior pituitary hormone, ACTH, mea-
surement in serum samples was undertaken using a competitive
ELISA technique (EELR0048, Elabscience). TSH was measured in
rat samples using a sandwich ELISA (EELR0976, Elabscience). Rat
growth hormone was analysed using a solid phase sandwich ELISA
(Rat GH EIA Kit, Invitrogen Corporation, Camarillo, California, USA).
Prolactin measurement was also performed using a sandwich
ELISA method (EELR0052, Elabscience). Vasopressin and oxytocin
were extracted is in patient samples. For determination of rat oxy-
tocin levels, a competitive ELISA kit was used (CSB-E14197R, Cus-
abio Biotech, Maryland, USA). Levels of free T3 and T4 in rat samples
were measured using competitive ELISA kits (EELR1097 and
EELR0390, Elabscience). Aldosterone levels were measured in EDTA
plasma samples using competitive ELISA kits (ADI-900-173, Enzo
Life Sciences). For measurement of rat levels of corticosterone (or
cortisol) we followed the same procedure as for patient samples.
Rat corticosterone levels were measured using a competitive ELISA
kit (ADI-900-097, Enzo Life Sciences). Progesterone levels were
determined using a competitive ELISA technique (CSB-E07282r,
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Cusabio). The procedure for testosterone measurement is the same
as in patients. Rat testosterone levels were measured using a com-
petitive ELISA kit (ADI-900-065, Enzo Life Sciences), 17b-estradiol
measurements also involved an extraction procedure - identical
to that described for testosterone. Measurement in rat samples
was undertaken using a competitive ELISA method (ADI-900-008,
Enzo Life Sciences). Similarly, DHEA also required hormone extrac-
tion from blood samples (again using the same technique). DHEA
levels were measured using competitive ELISA kits (ADI-900-093,
Enzo Life Sciences). For ghrelin measurements blood samples were
drawn into pre-chilled tubes containing AEBSF to a final concentra-
tion of 1 mg/mL. These samples were centrifuged at 3000 g for
15 min at 4 �C. Serum was then transferred to separate tubes
and acidified with HCl (Sigma-Aldrich) to a final concentration of
0.05 M. Samples were then snap frozen in liquid nitrogen and
stored at �80 �C for later analysis by ELISA. Ghrelin was measured
in rat samples using commercially available sandwich ELISA kits
(EMD Millipore). Leptin was measured in rat and human samples
using a sandwich ELISA method (KRC2281 and KHC2281, Invitro-
gen). Epinephrine measurement in EDTA plasma samples was per-
formed using competitive ELISA kits (EELR0045, Elabscience). For
determining levels of norepinephrine, a similar kit was used
(EELR0047, Elabscience) Measurement of the cytokines IL-6 and
IL-10 was undertaken using sandwich ELISA kits (OptEIA Sets IL-
6 & IL-10, BD Biosciences Pharmingen, San Diego, CA, USA). Mea-
surement of both complement C3a and C5a in rat samples was per-
formed using sandwich ELISA (EELR0255 and EELR0257,
Elabscience). Glucose and lactate measurements were performed
using arterial blood samples that were analysed in a commercially
available blood gas machine (ABL-700, Radiometer, Copenhagen,
Denmark). Insulin levels were measured in EDTA plasma samples
using sandwich ELISA methods (EZRMI-13K and EZHI-14K, EMD
Millipore). For measurement of glucagon competitive ELISA meth-
ods were used for both rat and patient studies (EELR0425,
Elabscience).

Measurement of ketone bodies (total, 3-hydroxybutyrate and
aceto-acetone) was performed using a cyclic enzymatic method
(Wako Chemicals GmbH, Neuss, Germany). Samples were mea-
sured on a 96-well microtitre plate in triplicate. To each sample,
a buffer mixture was added (containing phosphate buffer pH7.0
and acetoacetate decarboxylase), resulting in acetoacetone break-
down to acetone. Subsequent addition of thionicotinamide adenine
dinucleotide (Thio-NAD) and the enzyme 3-hydroxybutyrate dehy-
drogenase (3-HBDH) resulted in oxidation of 3-HB. Since the orig-
inal acetoacetone in the sample had been removed, only 3-HB was
assayed by measuring the rate of Thio-NADH production
spectrophotometrically.

For measuring glycerol and free fatty acids coupled enzymatic
reactions were used in commercially available kits (Cayman Chem-
ical Company, Michigan, USA). The glycerol assay involved a series
of enzymatic chemical reactions that resulted in glycerol phospho-
rylation, and subsequent oxidation, ultimately producing hydrogen
peroxide. The hydrogen peroxide then reacted with 4-
aminoantipyrine (4-AAP) and N-ethyl-N-(3-sulfopropyl)-m-
anisidine (ESPA) resulting in production of a brilliant purple pro-
duct, which could be measured in the wells of a microtitre plate
using a plate reader set at 540 nm. A standard curve using glycerol
reference standards was used to calculate sample glycerol
concentrations.

Free fatty acids (FFA) were measured in a fluorometric assay
that involved a series of coupled enzymatic reactions (Cayman
Chemical Company, Michigan, USA). Acyl CoA synthetase first
catalysed FFA acylation of coenzyme A. The acyl CoA produced
was oxidised by acyl CoA oxidase and generated hydrogen perox-
ide. Hydrogen peroxide reacted with horseradish peroxidase to
generate the highly fluorescent product resorufin. Resorufin fluo-
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rescence was measured using a fluorometric plate reader, with an
excitation wavelength of 530–540 nm and an emission wavelength
of 585–595 nm. A standard curve using FFA reference standards
was used to calculate sample FFA concentrations.

HDL cholesterol, LDL cholesterol and triglycerides were mea-
sured on an industrial clinical chemistry system (AU5800 analyzer,
Beckman Coulter, Brea, California, USA).

4.10. Metabolomic measurements

For targeted metabolomics of patient and rat samples, in brief,
188 metabolites (acylcarnitines, amino acids, biogenic amines,
glycerophospholipids, sphingolipids, and sugars) were quantified
in plasma using the AbsoluteIDQTM kit p180 (Biocrates Life Science
AG, Innsbruck, Austria) according to the manufacturer‘s protocol
on an API4000 liquid chromatography tandem mass spectrometry
(LC-MS/MS) system (AB Sciex, Framingam, MA) equipped with an
electrospray ionization source, a CTC PAL autosampler (CTC Ana-
lytics AG, Switzerland), and the Analyst 1.6.2 software (AB Sciex).
Further treatment details are described elsewhere [44]. The MetIQ
software package, which is an integral part of the AbsoluteIDQTM kit
(Biocrates Life Science AG, Innsbruck, Austria), was used for evalu-
ation of calibration curves, quality controls and samples. For statis-
tical analysis concentrations were exported. Using
nonphysiological or similar standards some of the metabolites,
especially glycerophospholipids, were determined only
semiquantitatively.

4.11. Quantification and statistical analysis

Dimensionality reduction was done with PCA based on the sam-
ple distance matrix. We chose the Canberra distance as the dis-
tance metric to deal with the skewness common within
metabolomics data [45]. The significance of group differences in
the resulting PCA biplots and patient centroids was calculated
using PERMANOVA with the vegan package with euclidean dis-
tance on the reduced data points. The bias from group imbalance
was circumvented by averaging p-values over at least 1000 repeats
of random sampling with equal proportions.

For patients, statistical analysis of biochemical parameter and
metabolite time courses at days 0–3 was performed using repeated
measures two-way mixed effects type-III ANOVA [46] with the cat-
egorical effects day, survival and their interaction. We controlled
for multiple hypotheses testing using FDR correction for each
metabolite. We reported metabolites and biochemical parameters
when the q value for the survival effect or its interaction with
day was < 0.05. To further find those days at which significant dif-
ferences occurred we used Tukey HSD from the multcomp package
[47]. For rat samples, statistical analysis of biochemical parameter
and metabolite time courses at times 6 h and 24 h was done using
repeated two-way mixed effects type-III ANOVA [46] with the cat-
egorical effects timepoint, survival and their interaction. We con-
trolled for multiple hypotheses testing using FDR correction for
each metabolite. We report metabolites and biochemical parame-
ters when the q value for the survival effect or its interaction with
timepoint was below 0.05. To further find the time points at which
significant differences occur we used Tukey HSD from the mult-
comp package [47].

Survival prediction was done with Random Forests and linear
support vector machines (SVMs) from the ranger [28] and e1073
[48] packages, respectively. Tournament Leave Pair Out Cross Val-
idation (TLPO-CV) procedure [31] together with recursive feature
elimination in an inner TLPO-CV loop was used to most effectively
use given samples for feature selection and validation. Briefly, for
each sample pair in the outer TLPO-CV loop, TLPO-CV was per-
formed on all sample pairs that do not use the samples from the
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outer sample pair and the variable importance was averaged across
all inner sample pairs. The least important variables were removed
stepwise until two variables remained. The classification perfor-
mance obtained in the inner TLPO-CV loop was then validated in
the outer TLPO-CV loop on sample pairs not used in the inner
TLPO-CV loops.

Augmented KEGG pathway maps [49] were created with the
Pathview package [50].

Significance tests of the number of deviations from the corridor
of safety for patients and for metabolites were done by simulation
tests as follows. All measurement values were replaced by random
lognormal values from the same distribution and the number of
deviations counted. This was repeated 1000 times and the fraction
of occurrence of deviation counts calculated. P values were then
calculated as the sum of fractional occurrences for deviations as
extreme or more extreme and assigned to each metabolite accord-
ing to their true deviation count. Q values were calculated from the
p values of all metabolites as the FDR.

Kinetic metabolic modelling was done by combining COPASI
4.25 (COPASI, RRID:SCR_014260) [51] and the COPASI R Connector
version 0.5. The parameter fit was set up in COPASI with a five-fold
increase and decrease from the preset Vmax values [52] as upper
and lower bounds for Vmax parameters, and a two-fold increase
and decrease as upper and lower bounds for the initial concentra-
tions to support the physiological relevance of the model. For each
day we fitted the ratio of Septic-S concentration to total concentra-
tions of Septic-S and Septic-NS on the actual day and the next day.
Every consecutive day reused the fitting outcome of the previous
day. The fitting itself was done by first applying an evolutionary
strategy and, secondly, the Hooke-Jeeves algorithm. To deduce
enzyme concentrations from model simulations we allowed the
model to fit maximum velocity parameters (Vmax) which are a pro-
duct of total enzyme concentration and the fixed velocity constant
of a single enzyme molecule. Hence, higher fitted Vmax values indi-
cate increased enzyme concentrations as enzymatic maximum
turnover rates are limited. We deduced reaction fluxes and concen-
trations from steady state analysis. To ensure robustness we
repeated the parameter fitting 100 times with random start values.
5. Data and code availability

The published article includes all datasets generated and anal-
ysed during this study. The complete code used to analyse the data
generated during this study is available at github (https://github.
com/SchSascha/KhaliqGrossmann2020_sepsis_metabolomics).
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