
sensors

Article

A GPU-Parallel Image Coregistration Algorithm for InSar
Processing at the Edge

Diego Romano 1,* and Marco Lapegna 2

����������
�������

Citation: Romano, D.; Lapegna, M.

A GPU-Parallel Image Coregistration

Algorithm for InSar Processing at the

Edge. Sensors 2021, 21, 5916. https://

doi.org/10.3390/s21175916

Academic Editor: Benoit Vozel

Received: 1 July 2021

Accepted: 25 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute for High Performance Computing and Networking (ICAR), CNR, 80131 Naples, Italy
2 Department of Mathematics and Applications, University of Naples Federico II, 80126 Naples, Italy;

marco.lapegna@unina.it
* Correspondence: diego.romano@cnr.it; Tel.: +39-0816139518

Abstract: Image Coregistration for InSAR processing is a time-consuming procedure that is usually
processed in batch mode. With the availability of low-energy GPU accelerators, processing at the
edge is now a promising perspective. Starting from the individuation of the most computationally
intensive kernels from existing algorithms, we decomposed the cross-correlation problem from a
multilevel point of view, intending to design and implement an efficient GPU-parallel algorithm for
multiple settings, including the edge computing one. We analyzed the accuracy and performance of
the proposed algorithm—also considering power efficiency—and its applicability to the identified
settings. Results show that a significant speedup of InSAR processing is possible by exploiting GPU
computing in different scenarios with no loss of accuracy, also enabling onboard processing using
SoC hardware.

Keywords: InSAR; remote sensing; onboard processing; cross-correlation; GPU-parallel; computation
offloading; edge computing; CUDA

1. Introduction

The InSAR technique requires the alignment of two SAR images (called primary and
secondary) of the same area, captured by spatially separated antennas on the same platform
or by a single antenna with near-repeat ground-tracks, to measure phase difference for
ground-elevation estimation. Possible applications are in topographic mapping, environ-
mental monitoring, and planetary exploration [1]. Coregistration of images is a necessary
step to increases the coherence of the interferogram and improves the quality of the phase
unwrapping procedure [2]. In the case of space-borne platforms, a multi-temporal acquisi-
tion is the most common modality, requiring efficient and precise coregistration of single
look complex data [3,4]. Two approaches are common: one based on fringe contrast [5],
and the other on spectral cross-correlation [3,6]. With modern computers growing in com-
putational power, the second approach has become preferential in many applications since
its applicability in automatic coregistration. A common algorithm consists of using spectral
cross-correlation on corresponding small patches of the two equally subdivided images,
producing pixel offsets for each pair, followed by a fitting function (e.g., Least Mean Square)
to obtain coefficients of the transformation equations [7]. This algorithm can be applied on
complex (interferometric phase information) or magnitude-only data, named respectively
coherent or incoherent cross-correlation [8]. Both present issues: coherent cross-correlation
requires preliminary removal of systematic (non-noise) phase differences, while incoherent
cross-correlation needs the oversampling by a factor of two in range direction [9].

On the contrary of optical images, a coregistration with pixel-level accuracy is not
adequate for InSAR processing on space-borne platforms, as the resolution of satellite
images is not better than a few meters [10]. The phase coregistration must have higher
accuracy to obtain a high-quality interference fringe pattern; therefore, a sub-pixel level
processing is necessary. Roughly one-tenth pixel is a widely accepted accuracy value,

Sensors 2021, 21, 5916. https://doi.org/10.3390/s21175916 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2640-157X
https://orcid.org/0000-0001-9953-1319
https://doi.org/10.3390/s21175916
https://doi.org/10.3390/s21175916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175916
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175916?type=check_update&version=1

Sensors 2021, 21, 5916 2 of 24

but in literature, some authors consider up-scaling to one-hundredth pixel [11]. One of the
most used approaches in spectral cross-correlation consists of two steps: a coarse cross-
correlation with pixel-level accuracy to search for coarse image offsets used in secondary
image shifting; a fine co-registration with sub-pixel accuracy, to search for sub-pixel tie
points used for fitting transformation equations. The second step is usually implemented
by up-sampling the area of the coarse cross-correlation peaks and looking for sub-pixel
peaks [3] or by over-sampling the patches from the two images and looking for the optimal
offset to maximize the cross-correlation of the pairs [12]. Both approaches show promising
results, and they mainly differ in computational effort and memory footprint.

During the last ten years, a new envisioning of distributed architectures has emerged.
After the disruptive introduction of Cloud computing, which gave new access to HPC
resources for Scientific Computing, we observed a higher growth of available computing
resources than connectivity. Since transfer bandwidth can get quickly saturated by the
amount of data produced by the sensors, the idea of computation offloading found new
spaces in the definition of architectures and paradigms. Fog computing [13] defines a
model for the deployment of distributed applications and services residing between end-
devices and central servers. Edge computing [14] refers to the technologies enabling the
computation at the proximity of data sources. In the literature, authors defined many
terms to describe similar concepts, and a recent comprehensive survey of relevant concepts
and terms is available in [15]. In our view, as described in [13,14] , applications in fog
computing run in a multi-layered architecture with dynamic reconfigurations, while in
edge computing, specific applications run in fixed logic locations. Therefore, we adopted
the term edge for this work when discussing both the remote sensor and the user side.

Thanks to the introduction of edge GPU accelerators [16], opportunities for high-
performance applications at the edge are growing in number. In the context of aerospace,
in [17] a possible adoption of onboard GPUs to process SAR data is introduced. In [18] the
authors explore the idea of using GPUs on Low Earth Orbit (LEO) satellites for several
possible applications, putting in evidence the opportunities to process data for Earth
imagery, weather observations, and remote sensing directly in space. As shown in [19], LEO
satellites can even employ COTS like NVIDIA Tegra K1. The authors of [20] introduce the
concept of Orbital Edge Computing, which could lead to orbital systems for visual inference
overcoming the limits of streaming downlink architectures. In general, aerospace platforms
performing sensing and imagery can produce multi-Gbps of data, but transmission capacity
to ground stations limits their acquisition time. Moving processing time onboard could
decrease the bandwidth cost for transmitting data and increase the operation time of
sensors. All the previous considerations motivate the effort to introduce high-performance
edge computing algorithms for remote sensing data.

In this work, we present a GPU-parallel image coregistration algorithm for InSar
processing based on incoherent cross-correlation in the frequency domain. Starting from
an open-source InSAR processing system widely available to the SAR community, namely
GMTSAR [21], we designed an efficient GPU-parallel algorithm that minimizes memory
transfers, and by exploiting peculiarities of the chosen problem decomposition to fit in
several hardware configurations, minimizes algorithmic overhead [22].

We used CUDA architecture [23] to implement the presented GPU-parallel algorithm
on four different NVIDIA GPUs introducing several scenarios. We compared the results
with the reference sequential GMTSAR implementation and another GPU implementa-
tion in the literature that exploits OpenCL and follows the same sequential GMTSAR
algorithm [24]. We validated the quality of the proposed algorithm through such com-
parisons, showing excellent accuracy for several sensors and significant improvements
in performance.

This work contributes to evince the opportunity to use GPU on edge resources for
onboard InSAR processing by designing an efficient GPU-parallel algorithm for image
coregistration. By moving the processing onboard, sensor uptime can increase while
reducing downlink bandwidth usage. Nevertheless, thanks to a dynamically configurable

Sensors 2021, 21, 5916 3 of 24

problem decomposition, our GPU-parallel algorithm can process data in two additional
settings: near the user on her workstation or in the cloud on HPC resources. A detailed
performance analysis shows that our GMTSAR component for cross-correlation on GPU
can contribute to the InSAR scientific community by speeding up the analysis of SAR
images from several missions.

The paper has the following organization: in Section 2, we present the preliminary
design approaches and the detailed parallelization steps to implement the GPU-parallel
algorithm for cross-correlation; in Section 3, we analyze the results of our CUDA imple-
mentation from several points of view, namely accuracy, parallel performance, and energy
efficiency; finally, in Section 4 we discuss the outcome of our research, composing four
possible application settings.

2. Towards a GPU-Parallel Algorithm

As previously introduced, the design of our GPU-parallel algorithm starts from the
analysis of GMTSAR, an open-source InSAR Processing System rich in tools for interferom-
etry on data from several SAR sensors and missions. In GMTSAR, image coregistration
processes two Single Look Complex (SLC) files previously obtained by proper focusing of
raw data. The algorithm splits into two codes:

• xcorr, a C program implementing incoherent spectral cross-correlation (Actually, xcorr
implements also time correlation, but to the best of our knowledge, no available script
uses this feature as main coregistration tool), which computes local sub-pixel offsets
for each pair of corresponding patches within the SLC images;

• fitoffset.csh, a C shell script implementing least-square fitting of local offsets through
trend2d tool from GMT [25], producing the transforming coefficients.

The most significant computational load of GMTSAR coregistration lies in the cross-
correlation step, which is also the most promising for effective problem decomposition.
We will focus on this part and develop a parallel strategy starting from the pseudo-code
description of sequential Algorithm 1.

The main body of xcorr consists in an initial equal partitioning of the two SLC im-
ages, as in Figure 1, applying an initial offset on the secondary image if this is the case,
followed by two nested cycles to cross-correlate each patch in the primary image with the
corresponding patch in the secondary image.

Preliminarily, interpolation on range direction and conversion in amplitude, with mean
subtraction, precede the patch correlation steps, as we can classify the algorithm as an inco-
herent cross-correlation. Then, a frequency correlation with pixel accuracy follows, as de-
scribed in function do_freq_correlation. Finally, in do_highres_correlation, a subset
of correlation data is interpolated to obtain sub-pixel accuracy.

2.1. Decomposition

The first step in designing an efficient GPU-parallel algorithm is to decompose the
computational problem into smaller sub-problems, which are eventually solved in paral-
lel [26]. In order to correctly identify the most suitable decomposition in the context of
the application, a mapping of possible decompositions onto the available computational
resources is a fundamental step to ensure high efficiency in the resulting algorithm.

Looking at the image subdivision in the sequential Algorithm 1, and considering a
MIMD computing architectureMP with P processing units, natural coarse-grain decom-
position of the problem consists in assigning to each unit the computation of the offset for
a single pair of patches, both at pixel and sub-pixel level.

If we denote with (i, j) the same 2D integer indexing for the partitioning on Ip and
Is, where 0 6 i < m in azimuth and 0 6 j < n in range direction, and if m · n 6 P, we can
represent the decomposition as:

d1 :
(
Cp(i, j), Cs(i, j)

)
→ p(i, j)

Sensors 2021, 21, 5916 4 of 24

where p(i, j) ∈ MP. In this optimistic hypothesis, each p(i, j) can execute on a differ-
ent patch pair –concurrently with other units– the operations described on lines 6–9 in
Algorithm 1. The gain in terms of execution time would be the maximum for the chosen
partitioning, i.e., speed-up Sp ≈ m · n.

Realistically, m · n > P and p(i, j) = p(i′, j′) for some (i, j), (i′, j′) pairs. Hence, if P is
divisor of m · n then Sp ≈ P, which is optimal with respect toMP.

Note that most of the computations consist of direct numerical methods (FFT, Hadamard
products, normalized time correlation, searching an unsorted array). By fixing the dimensions
of all patches to size k × l, with k = M/m and l = N/n, we can perform the computa-
tions mentioned above on a SIMD architecture, i.e., that can execute the same operations
synchronously on several data elements from patches containing the same quantity of data.
We can set this hypothesis as true in the xcorr method. Since GPUs use a SIMT execution
model and admit a little divergence, we can adopt decomposition d1 at a high level, where
p(i, j) are mapped onto the Streaming Multiprocessors (SM) units [22]. Usually, the number
of SMs available on a GPU is much less than m · n, and it can only be incidentally a divisor of
the total number of patches.

Algorithm 1: GMTSAR xcorr algorithm.

1 Main
Input: Ip,Is: M× N primay and secondary SLC images

m, n: number of patches in azimuth and range directions
Output: Offsets per patch

2 initialization:
3 subdivide Ip and Is in m× n patches

Ip =
⋃

Cp(i, j) , Is =
⋃

Cs(i, j) i = 1, . . . , m , j = 1, . . . , n;

4 for i←1 to m do
5 for j←1 to n do
6 FFT interpolate (i f actor× Cp(i, j)),Cs(i, j) on range direction;
7 convert patches components in amplitude, and center (mean subtract);
8 do_freq_correlation(Cp(i, j),Cs(i, j),Ac(i, j), m_corr,o f f set);
9 do_highres_correlation(Ac(i, j), o f f set, sub_o f f set);

10 Function do_freq_correlation(Cp, Cs, Ac , m_corr, o f f set):
Input: Cp, Cs
Output: Ac , m_corr, o f f set

11 calculate Hadamard conjugate product Cc = Cp ◦ Cs in frequency domain (2D
FFT);

12 convert Ccto amplitude Ac in time domain;
13 find maximum in Ac to set o f f set;
14 calculate normalized time correlation m_corr on subsets (correlation windows)

of aligned Cp, Cs;
15 normalize Ac to interval [0, m_corr];

16 Function do_highres_correlation(Ac , o f f set, sub_o f f set):
Input: Ac , o f f set
Output: sub_o f f set

17 copy values from a neighbourhood of o f f set location in Ac to complex Ch;
18 FFT interpolate (h f actor× Ch in 2D;
19 find maximum in real part of Ch in time domain to set sub_o f f set;

Each SM is provided with several Streaming Processors (SP, also called CUDA cores
on NVIDIA architectures), exposing a possible low-level (fine-grain) decomposition:

d2(i, j) :
(
Ep(u, v), Es(u, v)

)
→ t(u, v)

Sensors 2021, 21, 5916 5 of 24

where, for each patch pair
(
Cp(i, j), Cs(i, j)

)
with index (i, j), we can assign the oper-

ations needed for a pair of elements
(
Ep(u, v), Es(u, v)

)
to an execution thread t(u, v),

with Ep(u, v) ∈ Cp(i, j), Es(u, v) ∈ Cs(i, j), and 0 6 u < k, 0 6 v < l. In other words, each
thread works on a single piece of data. On GPUs, we can map threads t(u, v) onto the SPs
through the GPU execution configuration in terms of threads organized in blocks within
a grid.

n

m

(i,j)

(0,0) (0,1) (0,2) (0,3)

(1,0)

(2,0)

(3,0)

Figure 1. Partitioning of a SLC image into patches.

2.2. Data Structures

In the general context of high-performance parallel computing, one of the primary
overhead sources lies in memory access to data structures (e.g., [27]). Such overhead is
an even more critical problem in GPU computing, where data reside both on the host
(motherboard with CPU) and the device (GPU). An accurate design of arrays and other
structures is essential to deliver efficient software.

Sensors 2021, 21, 5916 6 of 24

Let analyze the memory accesses requested by the computational kernels in xcorr.
The kernel with the highest time complexity is the Fast Fourier Transform, which for
NVIDIA GPUs is available on the library CUFFT. Its main component is efficient when
used on batches of arrays of length equal to a power of 2, as it better exploits the underlying
algorithm on the employed parallel architecture. In our case, we can use this hypothesis
on the array length since it is easily achieved by setting proper patch dimension or by
zero padding.

Line 6 of Algorithm 1 requires the execution of an FFT batch of 1D-arrays along range
direction, for each Cp(i, j) and Cs(i, j). In CUFFT, if a 1D-array represents a matrix (e.g.,
in row-major order), by setting a proper stride in memory addressing, the FFTs for every
row of the matrix can be efficiently calculated concurrently within a parallel batch. In the
context of our algorithm, a single FFT batch run can transform all the range lines in a patch.

Decomposition d1 assigns each patch pair to an SM, allowing the processing of several
patches concurrently on the GPU. Therefore, we can configure an FFT batch to process
range lines taken from several patches to be executed by CUFFT with the best performance
on the available hardware. This batch requires a reorganization of input images, typically
formatted in M × N matrices arranged in row-major 1D-arrays, as strips of patches in
(m · n · k)× l row-major 1D-arrays, as depicted in Figure 2. The new array can be formatted
during memory copy from host to device, concatenating as many patches as the available
device memory.

(:,0) (:,1) (:,2) (:,3) (:,4) (:,n)

(0,:)

(1,:)

(2,:)

(m,:)

(0,:)

(1,:)

(0,0)

(0,1)

(0,2)

(0,n)

(1,0)

(1,1)

(1,2)

(1,n)

(a)

(b)

Figure 2. Reorganization of an input image (a) as a strip of patches (b).

At this point, we can introduce a new low level decomposition, similar to d2, but with
a different indexing:

d3 :
(
Ep(r, s), Es(r, s)

)
→ t(r, s)

Sensors 2021, 21, 5916 7 of 24

where we can assign the operations needed for a pair of elements
(
Ep(r, s), Es(r, s)

)
in the

strip of patches, to an execution thread t(r, s), without considering patch indexing.
Hence, we can easily use the above array structure also for the computations on lines 7,

11, 14 of Algorithm 1 and storing the resulting Ac(i, j) and consequential macro-operations
on lines 12, 13, 15, 17. Some additional difficulties arise when transforming Ch(i, j) on line
18, also memorized as a strip of patches, because FFT interpolation in 2D requires two
batches: one in the range direction (as on line 6) and one in the azimuth direction. For the
latter, the batching mechanism of CUFFT, which does not directly support column-wise
batches, requires two further matrix transpositions.

2.3. GPU Kernels

We present a sketch of the main procedure from the GPU-parallel algorithm in
Algorithm 2. Using decomposition d1 and the data structures described above, we can
assign to the GPU the operations within the for cycle.

Algorithm 2: GPU-parallel main algorithm.

1 Main
Input: Ip,Is: M× N primay and secondary SLC images

m, n: number of patches in azimuth and range directions
Output: Offsets per patch

2 initialization:
3 subdivide Ip and Is in m× n patches

Ip =
⋃

Cp(i, j) , Is =
⋃

Cs(i, j) i = 1, . . . , m , j = 1, . . . , n;

4 for i←1 to m do on GPU
5 copy strips of patches Cp(i, :),Cs(i, :) to device memory;
6 FFT interpolate (i f actor× Cp(i, :)),Cs(i, :) on range direction;
7 convert patches components in amplitude, and center (mean subtract) per

strip;
8 do_freq_correlation_strip(Cp(i, :),Cs(i, :),Ac(i, :), m_corr(i),o f f set(i));

9 do_highres_correlation_strip(Ac(i, :), o f f set(i), sub_o f f set(i));
10 copy o f f set(i) and sub_o f f set(i) to host;

Let us create patch strips concatenating one patch row per strip, using data copy from
host to device memory for data formatting described in Section 2.2. The next steps are
detailed as follows:

Line 6 The first macro-operation on GPU is the FFT interpolation on range direction. It
consists in:

6.1 preliminary transformation in frequency domain along rows, exploiting
CUFFT;

6.2 zero-padding in the middle of each row to extend its length by i f actor (e.g.,
2× the original length);

6.3 transformation back in time domain, also implemented with CUFFT;
6.4 final point-wise scaling to compensate the amplitude loss induced by inter-

polation (see [28] for more details).

With the idea of taking advantage of both high bandwidth memory and its CUDA
advanced copying tools, we can implement zero padding by splitting the input
data into two vertical blocks copied on a zeroed larger workspace array (see
Figure 3). Then, we can efficiently implement the final point-wise scaling us-
ing low-level decomposition d3 on the entire strip length. The device memory
footprint for completing the first step, supposing to execute FFT in place, is
(k · n)× (l · i f actor).

Sensors 2021, 21, 5916 8 of 24

Line 7 The following step consist in three sub-steps:

7.1 point-wise conversion to amplitude, decomposed by d3;
7.2 computation of the mean value per patch, decomposed by d1;
7.3 point-wise subtraction per patch, decomposed by a modified d2.

The first conversion can be designed as the previously described scaling kernel,
copying result in a work area for the following sub-step. Then, by adopting a
good strategy for GPU-parallel reduction available in the CUDA Samples, we can
conveniently split the k · n rows of the strip into a number of threads divisor of n,
and compute each mean value per patch. For this operation, an additional array
of n elements is necessary to store the results. Finally, a point-wise subtraction is
necessary to implement patch centering, subtracting the same mean value from
every point in the same patch. Thus, to optimize memory accesses, decomposition
d2 will be configured to assign every Ep(u, v) ∈ Cp(i, j), ∀j < n to the same t(u, v).
In other words, each t(u, v) will compute n subtractions accessing all n mean
values stored in a fast shared memory (see Figure 4). The same will be applied
to Es(u, v). The additional memory footprint for this step is n locations to store
mean values.

l l⋅ifactor

Figure 3. Splitting of input data into two vertical blocks copied on a zeroed larger array. i f actor is
the interpolation factor.

Algorithm 3 presents the procedure to process on GPU each pair (Cp, Cs) of patch
strips to obtain coarse offsets (at pixel level) from spectral cross-correlation. A secondary
output, needed for the following high-resolution correlation at sub-pixel accuracy, is patch
strip Ac containing normalized values of correlation matrices.

Steps in Algorithm 3 are detailed as follows:

Sensors 2021, 21, 5916 9 of 24

Algorithm 3: GPU-parallel algorithm for frequency cross-correlation.

1 Function do_freq_correlation_strip(Cp, Cs, Ac , m_corr, o f f set):
Input: Cp and Cs as strips of patches
Output: Ac as strip of patches, m_corr and o f f set as strips (one element per

patch)
2 calculate Hadamard conjugate product Cc = Cp ◦ Cs in frequency domain (2D

FFT) per patch within strip;
3 convert Cc to amplitude Ac in time domain, per strip;
4 find maximum in Ac to set o f f set per patch within strip;
5 calculate normalized time correlation m_corr on subsets (correlation windows)

of aligned Cp, Cs, per patch within strip;
6 normalize Ac to interval [0, m_corr], per patch within strip;

l

n

k·n

v

u

(a)

(b)

(c)
Figure 4. Graphical representation of d2 configuration for patch centering on line 7 of Algorithm 2.
(a) is the vector with mean values per patch, stored in a fast shared memory; (b) are threads t(u, v), one
per patch element; (c) is the strip of patches to be centered by subtracting corresponding mean values.

Line 2 The calculation of Hadamard conjugate product Cc = Cp ◦Cs in frequency domain
consists in:

2.1 preliminary transformation in frequency domain of both Cp and Cs, per patch,
exploiting 2D CUFFT;

2.2 point-wise conjugate product;
2.3 transformation back in time domain of resulting Cc, also implemented with

2D CUFFT.

We can configure the 2D FFTs straightforwardly using the data structure from
Section 2.2 for strip-aligned patches. Then, we can decompose the point-wise
product using d3, including computation of local complex conjugate. The addi-
tional memory footprint needed for this step, supposing to execute FFT in place,
corresponds to the storage memory for Cc which is (k · n)× l.

Sensors 2021, 21, 5916 10 of 24

Line 3 We can implement the conversion as Line 7.1 in Algorithm 2.

Line 4 This reduction step can be decomposed and implemented as Line 7.2 in Algorithm 2.

Line 5 This step consists in computing the normalized cross-correlation in time domain:

m_corr(i, j) =
∑u ∑v Ep(u, v) · Es(u, v)√

∑u ∑v Ep(u, v)2 ·∑u ∑v Es(u, v)2

where Cp(i, j) is aligned to Cs(i, j) by o f f set(i, j), Cc
p ⊂ Cp and Cc

s ⊂ Cs are the cor-
relation windows, and Ep(u, v) ∈ Cc

p(i, j), Es(u, v) ∈ Cc
s(i, j) with 0 6 u < kc < k,

0 6 v < lc < l.

More in details:

5.1 align Cp(i, j) and Cs(i, j), per patch within strip, and store correlation win-
dows in Cc

p(i, j) and Cc
s(i, j);

5.2 point-wise products of
c(u, v) = Ep(u, v) · Es(u, v)
a(u, v) = Ep(u, v) · Ep(u, v)
b(u, v) = Es(u, v) · Es(u, v)
per strip;

5.3 computation of the three sums, per patch within strip;
5.4 computation of m_corr(i, j) per patch within strip.

The alignment in sub-step 5.1 can be implemented through data copy from host to
device with proper offset. Since products in 5.2 are similar to point-wise operators
in Line 3, we can use the same decomposition d3. The sum is a reduction, and sub-
step 5.3 can use the same decomposition as Line 4. Finally, sub-step 5.4 consists
of n ≈ 20 products, and we can implement them sequentially. The additional
memory footprint for this step corresponds to the two arrays for the strips of
aligned patches, which consists of (kc · n)× lc elements each, where kc × lc is the
size of the correlation window.

Line 6 The normalization can follow the same strategy as Line 7.3 in Algorithm 2.

In Algorithm 4, we can find the steps to compute sub-pixel offsets.

Algorithm 4: GPU-parallel algorithm for high-resolution correlation.

1 Function do_highres_correlation_strip(Ac , o f f set, sub_o f f set):
Input: Ac as strip of patches, o f f set as strip (one element per patch)
Output: sub_o f f set as strip

2 copy values from neighbourhoods of o f f set locations for each patch within Ac
strip to complex patches within Ch strip;

3 FFT interpolate (h f actor× Ch in 2D, per patch within strip;
4 find maximum in real part of Ch in time domain to set sub_o f f set, per patch

within strip;

In details:

Line 2 We can implement the copy of correlation values from Ac to Ch adopting d3,
assigning the floating-point values to the real part of the complex array. This step
is necessary to reorganize data for FFT interpolation in 2D. We choose data from
Ac in neighborhoods of pixel-level offsets from Algorithm 3 and then incorporate
them in an array with the same patch strip structure as described in Section 2.2.
Additional memory footprint for this step correspond to the size of a complex array
with (kh · n)× lh elements, where kh × lh are the dimension of the neighbourhood
around each o f f set per patch.

Sensors 2021, 21, 5916 11 of 24

Line 3 This step can be implemented similarly to Line 6 of Algorithm 2, but with addi-
tional matrix transpose:

3.1 preliminary transformation in frequency domain along row, exploiting CUFFT;
3.2 zero-padding in the middle of each row to extend its length by h f actor (e.g.,

16× the original length);
3.3 transformation back in time domain, also implemented with CUFFT;
3.4 matrix transpose, to arrange data for the subsequent processing along columns

of Ch;
3.5 as 3.1;
3.6 as 3.2;
3.7 as 3.3;
3.8 matrix transpose, to re-arrange data back to the original ordering.

The newly introduced matrix transpose follows a good GPU-parallel strategy
available in the CUDA Samples involving shared memory tiles. We can imagine
the strip of patches as a single matrix with kh · n rows. The additional memory
footprint for this step consist in three temporary strips of patches: the first to
interpolate along rows with (kh · n)× (lh · h f actor) elements; the second, with (lh ·
h f actor)× (kh · n) elements, to transpose the matrix; the third to interpolate along
the other direction with (lh · h f actor) × ((kh · h f actor) · n) elements. Final 2D
interpolated data will need another array of ((kh · h f actor) · n) × (lh · h f actor)
complex elements.

Line 4 This reduction step can be implemented as Line 4 of Algorithm 3, working on the
real part of the array Ch.

3. CUDA Implementation: Results

This section presents the accuracy, parallel performance, and energy efficiency of the
GPU-parallel cross-correlation algorithm implemented in CUDA. We introduce four different
hardware configurations, which we consider significant for the following three scenarios:

• Edge Computing near the sensor, with a System-on-Chip usable onboard a SAR platform;
• Edge Computing near the user, with two different workstation configurations;
• Component for a Cloud Computing application, with a typical GPU Computing

configuration.

The hardware configurations for the three cases are as follows:

Jetson Nano This is a small computing board (69× 45 mm) consisting of a stripped-down
version of Tegra X1 (System-on-Chip). It integrates an NVIDIA Maxwell GPU
with 128 CUDA cores on one Multiprocessor running at 921 MHz, sharing
a 4 GB 64-bit LPDDR4 memory chip with a 4-core CPU ARM Cortex A57
running at 1.43 GHz. We used a development kit configuration for testing,
which has a slot for an additional microSD card containing OS Ubuntu
18.04 LTS, software, and data;

Q RTX 6000 A workstation configuration: a graphic card NVIDIA Quadro RTX 6000 with
4608 CUDA cores on 72 Multiprocessors running at 1.77 GHz with a global
memory of 22 GBytes, and 10-core CPU Intel Xeon Gold 5215 running at
2.5 GHz, OS CentOS Linux 7 (Core);

GTX 1050 Ti Another workstation configuration: a graphic card NVIDIA GeForce GTX
1050 Ti with 768 CUDA cores on 6 Multiprocessors running at 1.42 GHz with
a global memory of 4 GBytes, and 4-core CPU Intel Core i7-7700 running at
3.6 GHz, OS Linux Ubuntu 20.04.2 LTS;

Tesla V100 This is our data center configuration: the single node has an NVIDIA Tesla
V100-SXM2-32GB with 5120 CUDA cores on 80 Multiprocessors running at
1.53 GHz with a global memory of 32GBytes, and a 16-core CPU Intel Xeon
Gold 5218 running at 2.30GHz, OS CentOS Linux 7 (Core).

Sensors 2021, 21, 5916 12 of 24

Using data from GMTSAR samples [29], we tested our GPU-parallel algorithm on
ALOS, ALOS-2, Envisat, ERS, COSMO-SkyMed, RADARSAT-2, and TerraSAR-X images.

3.1. Accuracy

We compare the output of our xcorr-gpu with the original xcorr, using the same input
files and arguments, and we evaluate differences in calculated offsets both per patch and
globally, i.e., after the final fitting step.

Following the correspondent shell script to process each dataset, the arguments for
the subdivisions are as reported in Table 1.

Table 1. Datasets from the GMTSAR repository used for testing. For each dataset: the number of
patches along range direction and along azimuth; search dimensions in elements on x and y direction,
per patch; the number of bins in range direction and the number of lines along azimuth, in the SLC
files to correlate.

Dataset Rng Ptchs Az Ptchs Xsearch Ysearch Range Bins Az Lines

ALOS-1 L1.0
(std format CEOS) 20 50 128 128 11,304 9216

ALOS-1 L1.0
(ERSDAC format) 20 50 128 128 5652 9216

ALOS-1 L1.0
(ionospheric correct.) 20 50 128 128 5652 9216

ALOS-2 L1.1 20 50 128 128 9072 23,264

ALOS-2 L1.1 ScanSAR 32 128 32 256 4668 146,512

Envisat 20 50 128 128 5191 30,316

ERS 20 50 128 128 6144 2800

COSMOS-SkyMed 20 50 128 128 26,400 6400

RADARSAT-2 20 50 128 128 3416 5744

TerraSAR-X 20 50 128 128 18,880 27,748

The output of xcorr consists of five columns, reporting on each line per patch: x
and y coordinates of the central pixel in the primary image, estimated x and y offsets,
and calculated correlation (normalized in the time domain). We consider this output as the
reference to calculate errors introduced by our GPU-parallel version.

As each column represent a vector, to fairly approach the comparison we need to
measure the size or norm of it. Let us call x a column vector, we consider

‖x‖2 =
√

∑
i
|xi|2 , ‖x‖∞ = max

i
|xi|

respectively the two-norm and the infinity-norm of x. If x̂ is an approximation calculated
by xcorr-gpu, we will refer to

ηp =
‖x̂− x‖p

‖x‖p

as the relative error in x̂ using p-norm, where p is 2 or ∞, and assuming ‖x‖p 6= 0.
In Table 2, we report measured relative errors, using both two-norm and infinity-

norm. For y offset, in half cases, we obtained exactly the same values as from the original
software. The other cases are accurate to 4 decimal digits or more. A similar situation is
for correlation values, where ALOS-1 (ERSDAC format) and ERS present not errors, while
for the other datasets, we have the accuracy to 4 decimal digits or more. About x offset,
three dataset present no error, and the other cases are accurate to 3 decimal digits or more,
except for ALOS-2 L1.1 ScanSAR which presents a η∞ = 0.130407286 and η2 = 0.025773552.
η∞ represents the maximum error per vector component, i.e., on 4096 correlated patches,
some have a relative error of such magnitude, but we have no information on how it

Sensors 2021, 21, 5916 13 of 24

is related to the final coregistration output. η2 suggests that the error is not present in
many components, but we must evaluate the final fitting output to have an insight into
such inaccuracy.

Table 2. Accuracy of xcorr-gpu. Vectorial relative error ×10−4 for x and y offsets, and correlation with
both two-norm and infinity-norm.

×10−4 η2(x) η∞(x) η2(y) η∞(y) η2(corr) η∞(corr)

ALOS1-std 3.6336 78.7273 0.0000 0.0000 0.1302 1.2789

ALOS1-ERSDAC 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ALOS1-iono 1.7430 4.8203 0.1606 2.4173 0.0661 1.0841

ALOS2-L1.1 0.2232 6.8359 0.0617 1.9505 0.1113 1.4019

ALOS2-SCAN 257.7355 1304.0729 0.4136 2.0613 0.0674 1.1977

ENVI 0.9211 6.3563 0.0000 0.0000 0.1456 1.1952

ERS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CSK 0.0000 0.0000 0.0000 0.0000 0.1918 1.5716

RS2 1.1243 5.6046 2.1927 4.8602 0.0721 1.3222

TSX 0.1877 2.7850 0.1501 2.4639 0.1526 1.1884

In Figure 5, we can visualize the magnitude of relative error on the output least square
fitting implemented by fitoffset.csh in the GMTSAR package, when cross-correlation is
calculated using xcorr-gpu, with respect to the original xcorr software. The eight values in
the output are:

• rshift—range shift to align secondary image to primary image (in pixels);
• sub_int_r—decimal part of rshift;
• stretch_r—range stretch versus range;
• a_stretch_r—range stretch versus azimuth;
• ashift—azimuth shift to align secondary image to primary image (in pixels);
• sub_int_a—decimal part of ashift;
• stretch_a—azimuth stretch versus range;
• a_stretch_a—azimuth stretch versus azimuth.

rsh
ift

su
b_
int
_r

str
etc
h_
r

a_
str
etc
h_
r

as
hif
t

su
b_
int
_a

str
etc
h_
a

a_
str
etc
h_
a

0.000001

0.00001

0.0001

0.001

ALOS1-std

ALOS1-ERSDAC

ALOS1-iono

ALOS2-L1.1

ALOS2-SCAN

ENVI

ERS

CSK

RS2

TSX

Figure 5. Histogram of relative error (in logarithmic scale) on output values from fitoffset.csh, when
cross-correlation is calculated with xcorr-gpu.

Sensors 2021, 21, 5916 14 of 24

As we can see, co-registration of images for most datasets is identical using the original
GMTSAR software or our GPU-parallel version. Even with the ALOS-2 L1.1 ScanSAR
dataset, we do not report any differences despite the above reported pointwise inaccuracies:
on such a long vector (4096 elements), the least square fitting has canceled the effects of
marked relative errors. The highest relative error is on the 4th digit of sub-pixel range shift
and azimuth stretch versus range for ALOS-1 L1.0 (ionospheric correction) and ALOS-2
L1.1 datasets.

Investigating the algorithmic steps of the GPU-parallel version, we identified in the
FFT execution the source of such minimal accuracy differences. Moreover, changing the
version of CUFFT on different hardware architecture, no notable changes got our attention.
While changing the FFT library for GMTSAR showed slight differences in the output,
but nothing valuable for further discussion.

For completeness, we made the same evaluation using the pre-existent parallel
OpenCL software xcorr2-cl [24], comparing accuracy with our xcorr-gpu. This software
uses ArrayFire [30] in the stack for several functions (namely FFT). As shown in Table 3,
for three datasets, ALOS-1 L1.0 (ionospheric correction), ALOS-2 L1.1, and TerraSAR-X, we
got unusable cross-correlation output running xcorr2-cl, with two-norm and infinity-norm
relative errors higher than 1, that is greater than the modulus of the expected output. In the
latter two cases, fitoffset.csh failed to run and produce an output. For this reason, we do not
report any figures about those datasets.

Table 3. Accuracy of xcorr-cl. Vectorial relative error ×10−4 for x and y offsets, and correlation with
both two-norm and infinity-norm.

×10−4 η2(x) η∞(x) η2(y) η∞(y) η2(corr) η∞(corr)

ALOS1-std 11.0006 95.7281 232.7862 2920.3151 6.0454 48.5996

ALOS1-ERSDAC 8.1439 55.1633 10.5945 20.0301 1.7251 8.8869

ALOS1-iono 12,130.5023 9285.8254 520.7860 4685.8129 382.4748 4410.2342

ALOS2-L1.1 8952.9820 13,965.4362 2455.0701 4007.3684 8722.5570 9318.6598

ALOS2-SCAN 350.1252 1363.5214 92.0581 480.5890 2.6375 45.5144

ENVI 46.2160 310.2654 129.1276 488.1701 16.3460 56.1731

ERS 9.0660 35.9363 1.0588 9.2563 2.1657 6.9196

CSK 11.1924 145.2376 5.8288 78.5701 1.7991 1.5716

RS2 20.7378 90.3963 29.0177 38.5728 0.7959 1.3222

TSX 8340.4977 10,780.5088 6546.1723 9227.6133 9145.9832 9347.5936

In Figure 6, we present a comparison of average η2 on x and y offsets, and calculated
correlation, considering all datasets except the three mentioned above, for xcorr-gpu and
xcorr2-cl. We found that our software produces results with better accuracy of two orders
of magnitude on two vectors. On the other hand, x offsets are accurate to three decimal
digits for both pieces of software, with ours having a better accuracy on average. Figure 7
leads to similar reasoning, exacerbating the average errors for xcorr2-cl on y offsets.

Finally, Figure 8 presents the magnitude of relative error on the output least square
fitting implemented by fitoffset.csh in the GMTSAR package, when cross-correlation is
calculated using xcorr2-cl, with respect to the original xcorr software. Again, we eliminated
the three datasets mentioned above because the output of cross-correlation was unusable.
The only parameters estimated exactly are the range and azimuth shifts with pixel precision;
all the others present errors with different magnitude per case, in some cases severely
impacting on the coregistration.

Sensors 2021, 21, 5916 15 of 24

x offset y offset correlation
0.000001

0.00001

0.0001

0.001

0.01

0.1

xcorr-gpu

xcorr2-cl

Figure 6. Comparison of average η2 on selected datasets for xcorr-gpu and xcorr2-cl, in logarith-
mic scale.

x offset y offset correlation
0.00001

0.0001

0.001

0.01

0.1

1

xcorr-gpu

xcorr2-cl

Figure 7. Comparison of average η∞ on selected datasets for xcorr-gpu and xcorr2-cl, in logarith-
mic scale.

rsh
ift

su
b_
int
_r

str
etc
h_
r

a_
str
etc
h_
r

as
hif
t

su
b_
int
_a

str
etc
h_
a

a_
str
etc
h_
a

0.00001

0.0001

0.001

0.01

0.1

ALOS1-std

ALOS1-ERSDAC

ALOS2-SCAN

ENVI

ERS

CSK

RS2

Figure 8. Histogram of relative error (in logarithmic scale) on output values from fitoffset.csh, when
cross-correlation is calculated with xcorr2-cl.

Sensors 2021, 21, 5916 16 of 24

Looking for sources of inaccuracy in xcorr-cl, we analyzed the algorithm as described
in [24] and the code available on GitHub repository at https://github.com/cuihaoleo/
gmtsar_optimize (Last accessed on 31 August 2021). The algorithmic steps follow those
of original xcorr in GMTSAR, as outlined in Algorithm 1 , with a trivial problem decom-
position. Indeed, its GPU parallelism depends on the modules available in ArrayFire,
and it is limited to data parallelism within interpolation and correlation steps per patch
couples. So probably, the numerical inaccuracy resides in the implementation details.
For example, the authors implemented SLC data loading from scratch, resulting in possible
misalignments among range lines or overlooking other scaling factors when changing the
sensor. From this point of view, we had a conservative approach by untouching pre-existent
host-side code for consolidated sequential processing and explicitly implementing data
movements to and from device memory. Another example of misalignment is evident in
the high-resolution correlation step: the original GMTSAR code had a possible memory
violation when building the search window around a peak close to the border. The authors
corrected the fault in recent versions, avoiding loading elements with an index less than
zero and leaving whatever was already in memory in those window locations. We choose a
more neutral approach by zero-padding those memory locations, while the xcorr-cl authors
choose to move the search window significantly far from the border, with a consequent
misaligned peak search.

3.2. Parallel Performance

To evaluate parallel performance, we run xcorr-gpu on the four hardware configura-
tions reported above and measured total execution time, inclusive of I/O, for ten executions,
averaging for realistic figures.

To measure the performance gain of our GPU-parallel algorithm, with respect to the
sequential software, we run xcorr on the same hardware configurations, except Jetson Nano,
where the sequential time would be too long to be of interest in an onboard setting. The
average execution time for each dataset is then divided by the average GPU-parallel time
to obtain a Speed-Up measure.

Since GMTSAR is based on Generic Mapping Tools [31], the performance of xcorr is
susceptible to the FFT used. GMT has three options: FFTW (The Fastest Fourier Transform
in the West) [32], Kiss FFT [33], and Brenner FFT [34]. The user can choose which version to
use or leave it to the automatic decision of GMT. We noticed that on our hardware platforms,
GMT automatically chose FFTW, that on the other hand, took the longest execution times.
Brenner FFT was the fastest, showing an accuracy equal to FFTW. Kiss FFT, in our testing,
was in the mid-range but giving some results with a slightly different accuracy on less than
0.1% of the computed results. We verified that the execution time of xcorr for the same
dataset with the same FFT algorithm does not significantly change among our different
hardware configurations. For a broader perspective, we report the execution times with
FFTW and Brenner FFT on GTX 1050 Ti and with Kiss FFT on Tesla V100 and RTX 3070.

In Table 4, we list the execution times of the three xcorr, xcorr-gpu, xcorr2-cl on V100
hardware configuration, with relative speed-ups for our GPU-parallel version and xcorr2-cl.
For the latter, we removed times and speed-up for three datasets which did not produce
a usable results (see Section 3.1). Speed-ups are significant, where our xcorr-gpu has an
extra average gain of 1.40 with respect to xcorr2-cl. We had enough memory to store up
to 50 or more patch rows on GPU global memory with this hardware configuration. Such
storage enables the total usage of available CUDA cores and generally better performance
thanks to data locality on the device. We can think to speed up interferometric analysis of a
massive load of data with batch processing on a cluster in this setting.

https://github.com/cuihaoleo/ gmtsar_optimize
https://github.com/cuihaoleo/ gmtsar_optimize

Sensors 2021, 21, 5916 17 of 24

Table 4. Execution times and Speed-Up for xcorr, xcorr-gpu, xcorr2-cl on V100 hardware configuration.

V100
xcorr (KISS) xcorr-gpu xcorr2-cl

Secs Secs Speed-Up Secs Speed-Up

ALOS1-std 135.069 3.511 38.470 4.149 32.555

ALOS1-ERSDAC 134.997 2.537 53.211 3.644 37.046

ALOS1-iono 157.726 2.874 54.880

ALOS2-L1.1 134.679 3.083 43.684

ALOS2-SCAN 256.437 5.874 43.656 9.078 28.248

ENVI 134.073 2.469 54.303 3.361 39.891

ERS 135.272 2.668 50.702 3.786 35.730

CSK 138.973 5.601 24.812 6.394 21.735

RS2 136.484 2.194 62.208 3.714 36.749

TSX 136.579 4.517 30.237

In Table 5, we list the execution times of the three xcorr, xcorr-gpu, xcorr2-cl on Q RTX
6000 hardware configuration, with relative speed-ups for our GPU-parallel version and
xcorr2-cl. As before, we removed times and speed-up relative to three datasets for xcorr2-cl,
which did not produce usable results. Also in this case, speed-ups are significant, where
our xcorr-gpu has an extra average gain of 1.47 with respect to xcorr2-cl. This hardware
configuration has enough memory to store up to 50 or more patch rows on GPU global
memory, like the V100 case, with all the performance advantages cited above. Nevertheless,
we can imagine speeding up interactive interferometric analysis on a high-end workstation
when a fast comparison of different acquisitions is the critical point.

Table 5. Execution times and Speed-Up for xcorr, xcorr-gpu, xcorr2-cl on Q RTX 6000 hardware config-
uration.

Q RTX 6000
xcorr (KISS) xcorr-gpu xcorr2-cl

Secs Secs Speed-Up Secs Speed-Up

ALOS1-std 154.501 3.701 41.746 4.394 35.162

ALOS1-ERSDAC 155.801 2.427 64.195 3.669 42.464

ALOS1-iono 161.377 3.007 53.667

ALOS2-L1.1 154.458 3.076 50.214

ALOS2-SCAN 292.804 6.152 47.595 9.632 30.399

ENVI 155.429 2.349 66.168 3.651 42.572

ERS 155.089 2.414 64.246 3.849 40.293

CSK 157.835 5.676 27.807 6.366 24.793

RS2 153.147 2.017 75.928 3.565 42.958

TSX 156.963 4.562 34.407

On the GTX 1050 Ti hardware configuration, we measured the execution time of xcorr
using both FFTW and Brenner FFT. Moreover, we isolated the time spent for operations in
Supervisor mode. Operations like memory allocation, access to the filesystem, and others
that need to run in the Linux kernel space, are counted in this amount. Usually, switching
from User to Supervisor mode and back introduce a significant kernel overhead. As shown
in Table 6, Brenner FFT spends very little time in Supervisor mode, and the overall execution
time is considerably shorter than using FFTW. Hence, a link between more intense usage
of Supervision mode and longer execution time seems clear, and it resides in the usage of

Sensors 2021, 21, 5916 18 of 24

FFTW that supposedly allocates and deallocates local arrays at the library level, which is
transparent to GMT programmers. Brenner FFT is directly encoded in GMT source and
probably is optimized for looped and small aligned executions of FFT, as implemented
in xcorr.

Table 6. Execution times for xcorr using FFTW and Brenner FFT on GTX 1050 Ti hardware configura-
tion. Figures are expressed in seconds, and the sys column presents the fraction of the total spent in
Supervisor mode, also in seconds.

GTX 1050 Ti
xcorr (FFTW) xcorr (Brenner)

Total sys Total sys

ALOS1-std 254.346 38.941 82.857 0.288

ALOS1-ERSDAC 253.54 38.969 83.219 0.145

ALOS1-iono 254.172 38.407 83.215 0.168

ALOS2-L1.1 255.199 38.490 83.479 0.197

ALOS2-SCAN 1905.077 48.473 161.231 0.6

ENVI 254.147 38.349 83.184 0.168

ERS 254.104 39.050 83.555 0.216

CSK 254.59 39.368 86.213 0.528

RS2 251.816 38.297 82.89 0.112

TSX 255.77 38.135 85.507 0.325

Table 7 presents the execution time on GTX 1050 Ti hardware for xcorr-gpu and xcorr2-
cl, also reporting timings in Supervisor mode. In this case, corresponding to a slightly
shorter time in Supervision mode, we observed a longer overall execution time for xcorr2-cl.
Some source of other proportional overhead is present, supposedly due to the usage of
ArrayFire library and to a better definition of multilevel problem decompositions fitting
our xcorr-gpu algorithm. We notice the enormous difference in terms of speed-up when
referencing FFTW or Brenner FFT in the ALOS-2 L1.1 ScanSAR case. The software must
operate on 4096 patches for this cross-correlation, amplifying inefficiencies within the
original sequential algorithm when using FFTW. In general, speed-ups with respect to
Brenner FFT lie in a limited range, e.g., (12.323, 28.232) for xcorr-gpu and (6.492, 18.946) for
xcorr2-cl, where the first has an extra average gain of 1.64 on the second.

Table 7. Execution times and Speed-Up for xcorr-gpu, xcorr2-cl on GTX 1050 Ti hardware configuration.
Figures in total and sys columns are expressed in seconds, where sys represent the time spent in
Supervisor mode. S-Up columns represent speed-ups expressed with respect to xcorr execution times
using both FFTW and Brenner FFT.

GTX 1050 Ti
xcorr-gpu xcorr2-cl

Total sys S-Up
FFTW

S-Up
Brenner Total sys S-Up

FFTW
S-Up
Brenner

ALOS1-std 4.259 0.414 59.720 19.455 7.011 0.313 36.278 11.818

ALOS1-ERSDAC 3.308 0.334 76.644 25.157 5.133 0.225 49.394 16.213

ALOS1-iono 3.271 0.381 77.705 25.440

ALOS2-L1.1 3.854 0.352 66.217 21.660

ALOS2-SCAN 9.367 0.901 203.382 17.213 16.326 0.673 116.690 9.876

ENVI 3.179 0.351 79.946 26.167 4.961 0.217 51.229 16.768

ERS 3.367 0.329 75.469 24.816 5.272 0.229 48.199 15.849

CSK 6.996 0.908 36.391 12.323 13.274 2.116 19.180 6.495

RS2 2.936 0.26 85.768 28.232 4.375 0.213 57.558 18.946

TSX 5.681 0.709 45.022 15.051

Sensors 2021, 21, 5916 19 of 24

Jetson Nano offers an interesting power management mechanism to optimize power
efficiency. Two preset modes of power budget are available:

5W with 2 online CPU cores with a maximal frequency of 918 MHz, and GPU maximal
frequency set to 640 MHz;

10W with 4 online CPU cores with a maximal frequency of 1479 MHz and GPU maximal
frequency set to 921.6 MHz.

For this hardware configuration, which is relevant in the Edge Computing setting, we
do not report the sequential execution time, as it would be too long for our end. At the
same time, we cannot compare our GPU-parallel software with xcorr2-cl, as Tegra SoC does
not support OpenCL, and that software cannot run on such architecture. Table 8 presents
the execution times for the different datasets. Since the GPU in the system has only one
Streaming Multiprocessor, the total execution time is sensibly longer than those observed
on the other hardware configurations. However, it is considerably shorter than the original
xcorr on commodity processors, and for most cases also when using 5 Watts power mode.

Table 8. Execution times for xcorr-gpu with power mode set on 5 Watts and 10 Watts on Jetson Nano
hardware configuration. Figures are expressed in seconds, and the sys column presents the fraction
of the total spent in Supervisor mode, also in seconds.

Jetson Nano
xcorr-gpu 10 W xcorr-gpu 5 W

Total sys Total sys

ALOS1-std 48.912 14.332 56.569 18.18

ALOS1-ERSDAC 30.068 11.996 40.091 14.856

ALOS1-iono 30.206 12.176 41.937 15.756

ALOS2-L1.1 34.412 12.316 47.454 15.492

ALOS2-SCAN 110.219 37.368 132.804 51.24

ENVI 29.159 11.828 38.612 14.568

ERS 30.671 12.236 40.372 14.728

CSK 77.725 17.076 92.772 21.176

RS2 26.936 11.86 35.33 14.568

TSX 65.208 15.624 76.576 20.668

An interesting result is a visible link (see Figure 9) between the execution time (and
its relative in Supervisor Mode) and the number of bins in the range direction. Even if
most of the cross-correlations have the same parameters, and therefore the same work
data size, those presenting longer-range lines seem to impact the performance of Jetson
Nano indirectly. The number of lines in the azimuth direction does not seem to impact
in the same way—the ALOS-2 ScanSAR dataset is processed on 4096 patches instead of
1000 in the other datasets. Analyzing the code execution through the NVIDIA profiler, we
found out that memory allocation and copy between host and device introduce a consistent
overhead and severely impact performance. From the test, this fact is particularly valid
when extracting and aligning patches to build data structures described in Section 2.2.
The reason resides in the Jetson Nano memory structure, where both the CPU and the
GPU share SoC DRAM memory, each with different accessing and caching behaviors.
Having our Jetson Nano CUDA Capability 5.3, pinned memory is not I/O coherent, and its
CPU access time is higher because it is not cached on the CPU [35]. Since our code uses
pinned memory for better performance on the other hardware configurations, we will
consider future portability redesign to improve performance on Jetson boards with lower
CUDA Capability.

Sensors 2021, 21, 5916 20 of 24

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

ALO
S1

-st
d

ALO
S1

-ER
SD

AC

ALO
S1

-io
no

ALO
S2

-L1
.1

ALO
S2

-SC
AN

EN
VI

ER
S

CSK RS2 TSX
0

20

40

60

80

100

120

140

Nu
m

be
r

of
 e

le
m

en
ts

Se
co

nd
s az lines

range bins

Jetson 10W

Jetson 5W

Figure 9. Graphical representation of the execution times for considered datasets on Jetson Nano
hardware configuration. Lines represent the values reported in Table 8, bars represent the number of
bins in range direction and the number of lines in azimuth direction as reported in Table 1.

3.3. Energy Efficiency

Thanks to tools available for NVIDIA hardware, we were able to measure the power
consumption of our xcorr-gpu software on V100 and Jetson Nano configurations. By sam-
pling a milliwatt meter, we estimate the energy consumed by the GPU during the execution
of the software.

In Figure 10, energy consumed per dataset processing superimposes the time taken.
Since Joules = Watt · seconds, energy-consuming naturally follows execution time. Some
visible differences are due to overhead present in the execution flow. Considering that the
TDP (Thermal Design Power) of our V100 is 300 watts, our software stands well behind
such limit, offering high-performance rates with limited energy requests.

0 100 200 300 400 500 600 700

0 1 2 3 4 5 6 7

ALOS1-std
ALOS1-ERSDAC

ALOS1-iono
ALOS2-L1.1

ALOS2-SCAN
ENVI

ERS
CSK
RS2
TSX

Joules

Seconds

Execution time Energy consumed

Figure 10. Graphical representation of the execution times for considered datasets on V100 hardware
configuration, and relative joules of energy consumed.

Sensors 2021, 21, 5916 21 of 24

When analyzing the Jetson Nano case, we need to separate the two cases for 5- and
10-watt power modes, remembering that such watts refer to the entire SoC and not the GPU
alone. In Figure 11, we can notice that when running on 5-watt power mode, our software
does absorb less than 0.5 watts per second on average. Moreover, energy consumption is
more leveled than the V100 case, remarking that longer execution times are mainly due to
not energy-consuming overhead. When looking at the 10-watt power mode (Figure 12),
energy consumption seems even more leveled, with an average absorption of less than 1 W
per second.

0 10 20 30 40 50 60 70 80

0 20 40 60 80 100 120 140 160

TSX
RS2
CSK
ERS

ENVI
ALOS2-SCAN

ALOS2-L1.1
ALOS1-iono

ALOS1-ERSDAC
ALOS1-std

Joules

Seconds

Execution time Energy consumed

Figure 11. Graphical representation of the execution times for considered datasets on Jetson Nano
hardware configuration set on 5-watt power mode, and relative joules of energy consumed.

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120

TSX
RS2
CSK
ERS

ENVI
ALOS2-SCAN

ALOS2-L1.1
ALOS1-iono

ALOS1-ERSDAC
ALOS1-std

Joules

Seconds

Execution time Energy consumed

Figure 12. Graphical representation of the execution times for considered datasets on Jetson Nano
hardware configuration set on 10-watt power mode, and relative joules of energy consumed.

Sensors 2021, 21, 5916 22 of 24

4. Discussion

Cross-correlation is the most time-consuming kernel when co-registering two SAR
images. Such procedure is mainly used during InSAR processing and is currently done
offline in ground stations.

Thanks to the consolidation of paradigms like cloud, fog, or edge computing, we
can now conceive InSAR processing: near the final user, on workstations provided with
modern GPUs; near the sensor, on GPU accelerated SoC; or in the cloud by exploiting
hardware resources like HPC clusters provided with special-purpose GPUs for GPGPU.

When processing large datasets with proper references, InSAR coregistration can be
easily distributed on several computing units by coupling pairs of images that can be
processed concurrently. Currently, GPUs in HPC clusters work as computing accelerators.
For this reason, we can speed up the entire process by implementing a proper GPU-parallel
algorithm, as we did and tested on the V100 hardware configuration. If the power supply
is an issue, we also tested our software for energy consumption, showing that absorption
stays well below the TDP of the accelerator even in the most demanding cases. Tests
validated the use of our GPU-parallel algorithm as a component for an InSAR cloud
computing application.

A typical scenario in the scientific community involves using personal workstations
for InSAR workflow, with lengthy processing for interferogram production. For this case,
we imagined exploiting the graphic card often already available on the computer to speed
up the coregistration step. We tested our GPU-parallel algorithm on two hardware settings
typical for workstations and personal computers, one with a professional Quadro RTX
6000 card and the other with a gaming level GTX 1050 Ti. For both cases, we registered
important speed-ups that can seriously impact the time-consuming supervised procedure.
We can frame this setting as an edge computing case near the user.

As a final perspective, we used our cross-correlation software on an innovative edge
computing System-on-Chip, namely the Jetson Nano, to test the opportunity of moving
SAR data processing onboard. In this case, we can imagine having several pipelined
software processors delivering final results with acceptable latency, providing operational
intelligence in real-time. If we consider the acquisition time of data strips and the low
energy consumption for this specific processing step, the idea seems reasonable. It could
provide an innovative setting for better usage of remote sensors, often underused for
critical data transfer to the ground station.

For this work, we analyzed an existing Open Source software, namely GMTSAR,
and designed from problem decomposition to CUDA software implementation a GPU-
parallel algorithm which demonstrated an accuracy equivalent to the preexisting one
on all the available sample datasets. We also compared, both on accuracy and parallel
performance, our software to another GPU-parallel component based on OpenCL, designed
to substitute the cross-correlating software of GMTSAR and implementing an accelerated
version of the original sequential algorithm. Results show that our software delivers correct
results in a shorter time than the OpenCL one, which also fails in cross-correlating three
different datasets. We observed that the inefficiency of OpenCL software is mainly due
to a trivial problem decomposition that did not exploit the numerosity of CUDA cores
available on considered GPUs. On the other hand, the reported inaccuracy resides in some
misalignments of the search windows with input data. We suspect for both cases that ease
of programming with ArrayFire high-level library may have introduced some overlooking.
As a final consideration, OpenCL is not available on Jetson Nano, making the OpenCL
software unsuitable for the onboard scenario.

As future work, we plan to improve the algorithm to implement it on heterogeneous
multicore CPU / GPU architectures, as done in [36], and to optimize the portable design
of memory accesses to avoid unwanted overhead on Jetson boards with low CUDA capa-
bilities. Moreover, thanks to the introduction of Volta architecture on the recent Nvidia
Tegra series, the availability of tensor cores opens up to new algorithmic designs [37] .
Those devices deliver half-precision GEMM (General Matrix Multiply) in one clock cycle,

Sensors 2021, 21, 5916 23 of 24

consuming low-energy in edge context. We plan to exploit such characteristics for also
other onboard processing of sensor data.

Author Contributions: Conceptualization, D.R.; Data curation, D.R.; Formal analysis, M.L.; Investi-
gation, D.R.; Methodology, D.R. and M.L.; Software, D.R.; Writing—original draft, D.R. and M.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The source code of the software presented in this study is openly
available in GitHub and Zenodo at https://doi.org/10.5281/zenodo.5142645 (Last accessed on 31
August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, Q.; Vesecky, J.F.; Zebker, H.A. New approaches in interferometric SAR data processing. IEEE Trans. Geosci. Remote Sens. 1992,

30, 560–567. [CrossRef]
2. Scheiber, R.; Moreira, A. Coregistration of interferometric SAR images using spectral diversity. IEEE Trans. Geosci. Remote Sens.

2000, 38, 2179–2191. [CrossRef]
3. Li, F.; Goldstein, R. Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans. Geosci. Remote

Sens. 1990, 28, 88–97. [CrossRef]
4. Liao, M.; Lin, H.; Zhang, Z. Automatic Registration of INSAR Data Based on Least-Square Matching and Multi-Step Strategy.

Photogramm. Eng. Remote Sens. 2004, 70, 1139–1144. [CrossRef]
5. Gabriel, A.K.; Goldstein, R.M. Crossed orbit interferometry: Theory and experimental results from SIR-B. Int. J. Remote Sens.

1988, 9, 857–872. [CrossRef]
6. Anuta, P. Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques.

IEEE Trans. Geosci. Electron. 1970, 8, 353–368. [CrossRef]
7. Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F.; Massonnet, D.; Lichtenegger, J. InSAR Principles: Guidelines for SAR

Interferometry Processing and Interpretation (TM-19); ESA Publications: Noordwijk, The Netherlands, 2007.
8. Jiang, H.; Feng, G.; Wang, T.; Bürgmann, R. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS

data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake. Geophys. Res. Lett. 2017,
44, 1758–1767. [CrossRef]

9. Bamler, R.; Eineder, M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband
and delta-k SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 151–155. [CrossRef]

10. Michel, R.; Avouac, J.P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers
Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [CrossRef]

11. Li, Z.; Bethel, J. Image coregistration in SAR interferometry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 433–438.
12. Rufino, G.; Moccia, A.; Esposito, S. DEM generation by means of ERS tandem data. IEEE Trans. Geosci. Remote Sens. 1998,

36, 1905–1912. [CrossRef]
13. Iorga, M.; Feldman, L.; Barton, R.; Martin, M.J.; Goren, N.; Mahmoudi, C. Fog Computing Conceptual Model; Number NIST SP

500-325; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018.
14. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [CrossRef]
15. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
16. Jo, J.; Jeong, S.; Kang, P. Benchmarking GPU-Accelerated Edge Devices. In Proceedings of the 2020 IEEE International Conference

on Big Data and Smart Computing (BigComp), Busan, Korea, 19–22 February 2020; pp. 117–120.
17. Romano, D.; Mele, V.; Lapegna, M. The Challenge of Onboard SAR Processing: A GPU Opportunity. In International Conference

on Computational Science; Springer: Cham, Switzerland, 2020; pp. 46–59.
18. Bhattacherjee, D.; Kassing, S.; Licciardello, M.; Singla, A. In-orbit Computing: An Outlandish thought Experiment? In Proceedings

of the 19th ACM Workshop on Hot Topics in Networks, ACM, Virtual Event USA, November 4–6, 2020; pp. 197–204.
19. Wang, H.; Chen, Q.; Chen, L.; Hiemstra, D.M.; Kirischian, V. Single Event Upset Characterization of the Tegra K1 Mobile Processor

Using Proton Irradiation. In Proceedings of the 2017 IEEE Radiation Effects Data Workshop (REDW), New Orleans, LA, USA,
17–21 July 2017; pp. 1–4.

20. Denby, B.; Lucia, B. Orbital Edge Computing: Machine Inference in Space. IEEE Comput. Archit. Lett. 2019, 18, 59–62. [CrossRef]
21. Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. Open radar interferometry software for mapping surface Deformation. Eos

Trans. Am. Geophys. Union 2011, 92, 234–234. [CrossRef]
22. Romano, D.; Lapegna, M.; Mele, V.; Laccetti, G. Designing a GPU-parallel algorithm for raw SAR data compression: A focus on

parallel performance estimation. Future Gener. Comput. Syst. 2020, 112, 695–708. [CrossRef]

https://doi.org/10.5281/zenodo.5142645
http://doi.org/10.1109/36.142934
http://dx.doi.org/10.1109/36.868876
http://dx.doi.org/10.1109/36.45749
http://dx.doi.org/10.14358/PERS.70.10.1139
http://dx.doi.org/10.1080/01431168808954901
http://dx.doi.org/10.1109/TGE.1970.271435
http://dx.doi.org/10.1002/2016GL072253
http://dx.doi.org/10.1109/LGRS.2004.843203
http://dx.doi.org/10.1029/1999GL900138
http://dx.doi.org/10.1109/36.729362
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1016/j.sysarc.2019.02.009
http://dx.doi.org/10.1109/LCA.2019.2907539
http://dx.doi.org/10.1029/2011EO280002
http://dx.doi.org/10.1016/j.future.2020.06.027

Sensors 2021, 21, 5916 24 of 24

23. Luebke, D. CUDA: Scalable parallel programming for high-performance scientific computing. In Proceedings of the 2008 5th
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, 14–17 May 2008; pp. 836–838.

24. Cui, H.; Zha, X. Parallel Image Registration Implementations for GMTSAR Package. Seismol. Res. Lett. 2018, 89, 1129–1136.
[CrossRef]

25. Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. Am.
Geophys. Union 2013, 94, 409–410. [CrossRef]

26. D’Amore, L.; Mele, V.; Romano, D.; Laccetti, G. Multilevel algebraic approach for performance analysis of parallel algorithms.
Comput. Inform. 2019, 38, 817–850. [CrossRef]

27. Laccetti, G.; Lapegna, M.; Mele, V.; Romano, D.; Szustak, L. Performance enhancement of a dynamic K-means algorithm through
a parallel adaptive strategy on multicore CPUs. J. Parallel Distrib. Comput. 2020, 145, 34–41. [CrossRef]

28. Lyons, R. Understanding Digital Signal Processing; Prentice Hall/PTR: Upper Saddle River, NJ, USA, 2004.
29. GMTSAR Samples. Available online: https://topex.ucsd.edu/gmtsar/downloads/ (accessed on 31 August 2021).
30. ArrayFire Documentation. Available online: https://arrayfire.org/docs/index.htm (accessed on 31 August 2021).
31. The Generic Mapping Tools Documentation. Available online: https://docs.generic-mapping-tools.org/latest/ (accessed on 31

August 2021).
32. Frigo, M.; Johnson, S. FFTW: An adaptive software architecture for the FFT. In Proceedings of the 1998 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.98CH36181), Seattle, WA, USA, 15 May 1998;
Volume 3, pp. 1381–1384.

33. Borgerding, M. Kiss FFT. 2021. Available online: https://github.com/mborgerding/kissfft (accessed on 31 August 2021).
34. Brenner, N.M. Three FORTRAN Programs that Perform the Cooley-Tukey Fourier Transform. 1967. Available online: https:

//apps.dtic.mil/sti/citations/AD0657019 (accessed on 31 August 2021).
35. CUDA for Tegra. Available online: http://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html (accessed on 31 August

2021).
36. Laccetti, G.; Lapegna, M.; Mele, V.; Montella, R. An adaptive algorithm for high-dimensional integrals on heterogeneous

CPU-GPU systems. Concurr. Comput. Pract. Exp. 2019, 31, e4945. [CrossRef]
37. Pilipović, R.; Risojević, V.; Božič, J.; Bulić, P.; Lotrič, U. An Approximate GEMM Unit for Energy-Efficient Object Detection.

Sensors 2021, 21, 4195. [CrossRef] [PubMed]

http://dx.doi.org/10.1785/0220170171
http://dx.doi.org/10.1002/2013EO450001
http://dx.doi.org/10.31577/cai_2019_4_817
http://dx.doi.org/10.1016/j.jpdc.2020.06.010
https://topex.ucsd.edu/gmtsar/downloads/
https://arrayfire.org/docs/index.htm
https://docs.generic-mapping-tools.org/latest/
https://github.com/mborgerding/kissfft
https://apps.dtic.mil/sti/citations/AD0657019
https://apps.dtic.mil/sti/citations/AD0657019
http://docs.nvidia.com/cuda/cuda-for-tegra-appnote/index.html
http://dx.doi.org/10.1002/cpe.4945
http://dx.doi.org/10.3390/s21124195
http://www.ncbi.nlm.nih.gov/pubmed/34207295

	Introduction
	Towards a GPU-Parallel Algorithm
	Decomposition
	Data Structures
	GPU Kernels

	CUDA Implementation: Results
	Accuracy
	Parallel Performance
	Energy Efficiency

	Discussion
	References

