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Abstract

Objective

To search for biomarkers to differentiate primary focal segmental glomerulosclerosis

(FSGS) and minimal change disease (MCD).

Methods

We isolated glomeruli from kidney biopsies of 6 patients with adult-onset steroid sensiti-

veFSGS and 5 patients with MCD, and compared the profiles of glomerular transcriptomes

between the two groups of patients using microarray analysis.

Results

Analysis of differential expressed genes (DEGs) revealed that up-regulated DEGs in FSGS

patients compared with MCD patients were primarily involved in spermatogenesis, gamete

generation, regulation of muscle contraction, response to unfolded protein, cell proliferation

and skeletal system development. The down-regulated DEGs were primarily related to met-

abolic process, intracellular transport, oxidation/reduction andestablishment of intracellular

localization. We validated the expression of the top 6 up-regulated and top 6 down-regu-

lated DEGs using real-time PCR. Membrane metallo-endopeptidase (MME) is a down-regu-

lated gene that was previously identified as a key gene for kidney development.

Immunostaining confirmed that the protein expression of MME decreased significantly in

FSGS kidneys compared with MCD kidneys.
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Conclusions

This report was the first study to examine transcriptomes in Chinese patients with various

glomerular diseases. Expressions of MME both in RNA and protein level decreased

significantly in glomeruli of FSGS kidneys compared with MCD kidneys. Our data sug-

gested that MME might play a role in the normal physiological function of podocytes

and a decrease in MME expression might be related to podocyte injury. We also

identified genes and pathways specific for FSGS versus MCD, and our data could help

identify potential new biomarkers for the differential diagnosis between these two

diseases.

Introduction
Both minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are com-
mon causes of nephrotic syndrome in adults and children[1]. The primary treatment strategies
of MCD and FSGS include corticosteroids and immunosuppressants[2].Patients with MCD
usually achieve complete remission with corticosteroid therapy, but the majority of patients
with FSGS manifest as corticosteroid-dependent or resistant[3].Differences in the treatment
responses and prognoses support the importance of a diagnostic marker to differentiate
between these two diseases.

The diagnosis of FSGS is based on kidney biopsies that show focal and segmental areas of
glomerular sclerosis and tuft collapse[4].However, histological diagnosis has limitations
because it does not reflect the underlying molecular mechanisms. Additionally, most kidney
biopsies are performed in patients with advanced disease.

FSGS is a glomerular disease that is primarily caused by podocyte injury. Therefore, it is
important to analyze the transcriptome in isolated glomeruli instead of kidney cortices. The
profiling of gene expression in glomeruli could aid the identification of differentially
expressed genes between glomerular diseases and define specific molecular subclasses of dis-
eases. Gene expression profiles were reported in glomeruli isolated from biopsy samples of
patients with diabetic nephropathy,[5] lupus nephritis,[6] obesity-associated glomerulopathy,
[7] and FSGS. Three microarray studies were performed on FSGS patients. Schwab[8] studied
the transcriptome characters of childhood-onset FSGS, which might be different from adult
FSGS patients. Hodgin[9] used mRNA extracted from formalin-fixed, paraffin-embedded
renal specimens, which were not suitable for transcriptome analysis because the RNA integrity
and quantity might be injured during the sample preparation. Other studies involved compar-
atively smaller numbers of patients, making themselves less reliable. For instance, only 4
female FSGS patients were recruited for microarray analysis in Bennett’s study.Glomeruli iso-
lated for the current study were collected from kidney biopsies of 6 FSGS patients and 5 MCD
patients. Total RNA was extracted from isolated glomeruli for gene expression profiling tests.
Transcriptomic data were analyzed and validated using quantitative PCR and immunohis-
tochemistry to identify differential expressed genes (DEGs) between FSGS and MCD groups.
DEGs were further analyzed to determine the potential cellular and biological processes
involved in these diseases.
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Materials and Methods

Ethics Statement
The Institutional Review Board of Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine approved this study, which was performed according to the Principles in the Helsinki
Declaration II. Written informed consent was obtained from each patient.

All renal biopsies were performed by percutaneous technique using standard ultrasound
imaging instruments (Diagnostic ultrasound system Aplio Model SSA-770A; Toshiba Medical
Systems Corporation, Japan) and a 15 cm and a 12 cm long needle with penetration depth ran-
ged from 3.5 to 5.5 cm and sample notch from 3.5 to 4 cm kidney tissues were originally col-
lected for pathological diagnosis including standard procedures of light, immunofluorescence
and electron microscopy.

After the above process, additional kidney tissues were archived and were cut into slices less
than 0.5 cm thick using a scalpel, placed into a Rnase free freezing tube, then stored in liquid
nitrogen.

Patients
All of the patients who were recruited in this study were admitted and followed up in the
Nephrology Department in Ruijin Hospital, Shanghai Jiao Tong University School of Medi-
cine. We prospectively collected kidney biopsies from patients with newly diagnosed nephrotic
syndrome (defined as 24 hour urinary protein> 3.5 g/d, serum albumin< 30g/L, referred to
2012 Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guideline on
glomerulonephritis) when receiving renal biopsy. Subsequently, patients with nephrotic syn-
drome were selected who were responded to prednisone treatment (1mg/kg/d) within 6–8
weeks dated from the recruitment.

The inclusion criteria of patient selection and procedures of glomerulus isolation were pre-
sented in Fig 1A and 1B respectively, an informed consent was signed by the patient. The fol-
lowing exclusion criteria were used: 1) Obesity(BMI< 30); 2) HIV-associated nephropathy; 3)
Infection; 4) Reflux nephropathy; 5) Autoimmune diseases; 6) Malignant cancers; 7) Alcohol-
ism or long-term smoker (more than 3 months); or 8) Patients had a family history of kidney
diseases or extrarenal manifestations, including hearing loss and eye problems that are sugges-
tive of hereditary kidney diseases, such as Alport's syndrome (AS), thin basement membrane
disease (TBMD) or Fabry disease. The diagnosis and differentiation of CKD stage were deter-
mined according to the criteria of the National Kidney Foundation (NKF). The glomerular fil-
tration rate (GFR) was estimated using the equation from the study ‘‘Modification of Diet in
Renal Disease” (MDRD)[10].

We recruited MCD patients as the control group. To avoid the bias originated from
response to steroid therapy, in the current study, we only recruited patients with steroid-sensi-
tive nephrotic syndrome both in FSGS and MCD groups.

Clinical characteristics were recorded for all patients at baseline and during follow-up. Two
senior pathologists reviewed all renal biopsy slides. A semiquantitative scoring method was
adopted to evaluate pathological lesions. A percentage of focal and global glomerulosclerosis was
recorded, and a score of 0 (0%), 1 (<25%), 2 (25–50%) or 3 (>50%) was assigned to each slide to
reflect the severity of tubular atrophy, interstitial fibrosis, and inflammatory cell infiltration[11].

Glomerulus Isolation and RNA Extraction
Cortical regions in kidney specimens were selected using a scalpel, and tissues were placed on
an ice bath under an inverted microscope. Pink-colored, spherical-shaped glomeruli were
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detected under an eyepiece, and isolated for RNA extraction. Procedures of glomerulus isola-
tion were presented as a flowchart (Fig 1B).

Total RNA of isolated glomeruli was prepared using the Ambion RNAqueous1-Micro Kit
(Ambion, AM1931, USA) according to the manufacturer’s protocol. All of the RNA samples

Fig 1. Inclusion criteria and experimental workflow. A, Inclusion criteria of patient selection; B,
Experimental workflow of glomerulus isolation.

doi:10.1371/journal.pone.0140453.g001
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were analyzed using a Bioanalyzer (2100 RNA Quality Control, Agilent Technologies) to verify
sample purity. RNA concentrations were determined, using a NanoDrop 2000 (Thermo, Wil-
mington, USA) at an absorbance of 260 nm, and quality control standards were A260/
A280 = 1.8–2.1. Only RNA samples with RNA integrity (RIN) values> 7.0 and an RNA
concentration> 30 ng/μl were used for microarray analysis. For each kidney sample, about
20–50 glomeruli were isolated, and more than 500 ng qualified RNA was obtained.

Microarray Hybridization
Total RNA was converted into cDNA, which was fragmented, labeled, and hybridized onto
gene chips (Microarray Gene 1.0, Affymetrix, Santa Clara, CA) according to Affymetrix stan-
dard protocols. Affymetrix1 Expression Console Software (version 1.2.1) was used for micro-
array analyses.

Expression data of all probesets detected by microarray analysis have been deposited in
Gene Expression omnibus, GPL6244GSE, GSE69814.

Analysis of Microarray Data
Robust Multichip Average (RMA) was used with the default configuration for background
adjustment and normalization[12]. LIMMA was used using a q-value< 5% for the identifica-
tion of differentially expressed genes in microarray experiments in R[13].The threshold was set
to P<0.005 for LIMMA and fold-change> 1.5. PCA analysis was performed to assess sample
correlations using the expression data of all detected genes. Functional analyses (Gene Ontol-
ogy, Pathway analysis) of DEGs were performed using the online tool Enrichr program[14].

Validation with Real-time PCR
Twelve gene transcripts, including the top 6 up-regulated genes (SNORA38B, RN5S451,
RN5S421, LOC728419, SNORA14A, and SNORA7B) and top 6 down-regulated genes
(CALB1, GSTA1, MME, AK4, ANGPTL3, and PLG) in FSGS compared with MCD were cho-
sen for validation. The mRNA expression levels of these genes was confirmed using real-time
PCR from fourteen additional RNA samples from patients with histologically diagnosed FSGS
or MCD who manifested with newly diagnosed nephrotic syndrome without previously using
glucocorticoids or immunosuppressants. These patients were distinct from the patients we
selected for microarray analysis. The clinical parameter, treatment strategy and outcome of
patients were presented in Tables A-D in S1 File. First-strand cDNA was prepared from total
RNA samples (0.5 μg) using the SuperScriptTM III First-Strand Synthesis Kit (Invitrogen), and
cDNA (1 μl) was amplified in triplicate using the SYBR GreenER qPCR Supermix in an ABI
PRISM 7900 HT (Applied Biosystems, Foster City, CA). Primers were designed using Primer-
Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/, last accessed February 11, 2015) and
synthesized by Sigma. Light cycler analysis software was used to determine crossing points
using the second derivative method. Data were normalized to the housekeeping gene GAPDH,
and results are presented as fold-changes between different groups using the Pfaffl method
[15].

Immunohistochemistry
Archival corresponding patient biopsy specimens were collected from Ruijin Hospital under a
procedure approved by its Institutional Review Board. 14 additional biopsy samples have been
used for the MME immunostaining, including 7 samples obtained from FSGS patients, 7 sam-
ples fromMCD patients. Specimens were baked for 20 minutes at 55–60°C in an oven and
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processed as follows. Formalin-fixed and paraffin-embedded specimens were deparaffinized,
and H2O2 was used to inactivate endogenous peroxidase. Specimens were blocked in 2% goat
serum diluted in phosphate-buffered saline (PBS) for 1 hour at room temperature and incu-
bated in a 1:50-diluted mouse anti-MME antibody (Thermo, Grand Island, NY) at 4°C over-
night. Subsequently, specimens were washed three times with PBS and incubated in a
1:1000-diluted secondary antibody (goat anti mouse IgG, Thermo, Grand Island, NY) for 2
hours at room temperature. Positive staining was revealed using peroxidase-labeled streptavi-
din and a diaminobenzidine substrate[16]. For determination of immunohistochemistry stain-
ing, stained sections were imaged using the Image Analysis System (AxioVision 4, Carl Zeiss,
Germany). The positively stained cells in the glomeruli were counted from six randomized
selected areas of kidney sections for each patient, and expressed as the number of positively
stained cells per square millimeter of glomerular cross-section, then the difference was ana-
lyzed by one-way ANOVA followed by Bonferroni correction. A P value less than 0.05 was
considered statistically significant.

Statistical analysis
Distributions for categorical variables are described as frequencies and percentages, and pro-
portions between groups were compared using a χ2 test. Distributions for normally distributed
quantitative variables are described as the arithmetic means and standard deviations (or medi-
ans and ranges for non-normally distributed variables). Student's t-test or Mann-Whitney U
test was used to compare the continued variables based on their distributions. In immunohisto-
chemical analysis, the difference among varied groups was analyzed by one-way ANOVA fol-
lowed by Bonferroni’s post hoc test. A P—value less than 0.05 was considered statistically
significant.

Results

Clinical Parameters
The clinical parameter and outcome of patients enrolled in the microarray analysis were
recorded (Tables E-H in S1 File). Patients receive 1mg/kg/d prednisone treatment after diagno-
sis, accroding to 2012 Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice
guideline on glomerulonephritis (GN).The mean follow-up time was 13.67±12.51 months for
the FSGS group and 12.8±7.40 months for the MCD group (p> 0.05). Eleven patients with
nephrotic syndrome (FSGS, n = 6; MCD, n = 5) were enrolled in our experiment. Four FSGS
patients (F1, F2, F4, F5) and 4 MCD patients (M1, M2, M3, M5) were at CKD1 (72.73%). One
MCD patient (M4) was at CKD2 (9.09%), and two FSGS patients (F3, F6) were at CKD3
(18.18%). No significant differences in baseline clinical parameters were found between the
two groups, except a higher systolic blood pressure in the FSGS patients (Table 1).

Microarray Analysis
We isolated glomeruli from archived kidney tissue, the process of isolating glomeruli under an
inverted microscope was presented in Fig 2. We verified the expression ratio of NPHS1,
SLC9A3R1 in glomeruli and tubulointerstitial. NPHS1 is a podocyte marker, which made it a
glomerular marker, and the expression ratio of NPHS1 in glomeruli versus tubulointerstitial
was 70.14, Fig 3A; SLC9A3R1 is a tubular epithelium marker, and the expression ratio of
SLC9A3R1 in tubulointerstitial versus glomeruli was 69.42, Fig 3B. Therefore, we isolated glo-
meruli without contamination of tubulointerstitial.
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We performed microarray analysis of glomerular gene expression from FSGS and MCD
patients and identified DEGs between these two groups. We performed PCA analyses to iden-
tify sample correlations using the raw data obtained from microarray studies (Fig 4). Compari-
sons of the gene expression profiles between FSGS and MCD patients revealed several patterns
of disease-specific changes between the two diseases (Fig 5). Gene ontology and pathway analy-
ses were also performed in the DEGs.

Among DEGs, 272 genes were up-regulated in FSGS compared with MCD. These genes are
involved in spermatogenesis, gamete generation, regulation of muscle contraction, response to
unfolded protein, cell proliferation and skeletal system development. A total of 2331 genes
were down-regulated, and these genes are related to metabolic process, intracellular transport,
oxidation reduction, establishment of localization in cell bodies (Fig 6). The large number of
genes were deposited in the supplemental material. (Tables I–L in S2 File, Table M in S3 File).

Table 1. Clinical Parameters of Patients with FSGS andMCD.

FSGS MCD P value

Number 6 5

Male/Female 4/2 3/2 0.699

Follow up, months 9(4.05–23.28) 13(3.62–21.98) 0.699

Height, cm 167.11±7.88 163.2±9.73 0.428

Weight, kg 66.5±15.80 55.5±9.66 0.186

BMI 23.78±5.36 20.76±2.46 0.261

SBP, mmHg 128(122.30–163.03) 118(98.23–132.17) 0.042*

DBP, mmHg 85(77.22–96.55) 74(61.56–92.04) 0.18

Age of onset 31.78±15.31 22.2±7.69 0.22

Serum creatinine, μmol/L 91±49.16 70.8±19.8 0.403

Uric acid, μmol/L 349.67±112.01 337.6±89.24 0.84

eGFR, ml/min per 1.73 m2 99.92(69.34–128.13) 121.74(71.16–179.5) 0.364

Serum total protein, g/L 40.78±8.53 34.6±7.40 0.2

Serum albumin, g/L 17.67±7.76 12.4±5.32 0.205

24 hr UprV, g 10.93(5.95–17.31) 5.99(0.46–12.76) 0.378

ACR, mg/mmol 625.10(431.68–1171.24) 473.1(236.08–655.56) 0.206

Hemoglobin, g/L 139.40±16.89 147.40±12.36 0.418

Hct 0.41±0.05 0.43±0.03 0.431

Fast blood glucose, mmol/L 4.08±0.78 4.25±0.64 0.718

2 hour post-meal blood glucose, mmol/L 5.52±1.03 5.12±1.07 0.56

TC, mmol/L 9.20±2.38 10.20±2.12 0.481

TG, mmol/L 2.59±0.93 3.41±1.25 0.271

HDL, mmol/L 1.33±0.46 1.47±0.44 0.644

LDL, mmol/L 6.69±1.95 7.36±1.99 0.606

Lp(a), mmol/L 0.73±0.38 0.73±0.37 0.983

focal glomerulosclerosis,% 10.29 (6.25–28.80) 0 0.023*

global glomerulosclerosis,% 19±12.7 1±0.6 0.205

adhesion of capillary loop,% 6(2–13) 0 0.024*

Tubulointerstitial tissue lesion score 4.33±4.16 2.17±0.98 0.238

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; GFR: glomerular filtration rate; Alb: albumin; 24 hr UprV: protein

amount of 24 hours urine; ACR: albumin-creatinine ratio; Hct: Hematocrit; TC: total cholesterol; TG: triglycerides; HDL: high density lipoprotein; LDL: low

density lipoprotein; Lp(a): Lipoprotein (a).

*P< 0.05, FSGS versus MCD patients.

doi:10.1371/journal.pone.0140453.t001
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Validation of Gene Expression using Real-time PCR
We chose the top 6 up-regulated genes (SNORA38B, RN5S451, RN5S421, LOC728419,
SNORA14A, and SNORA7B) and the top 6 down-regulated genes (CALB1, GSTA1, MME,
AK4, ANGPTL3, and PLG) in FSGS compared with those in MCD for further validation. Vali-
dation was conducted using real-time PCR in an independent cohort composed of 7 FSGS
patients and 7 MCD patients. Primer sequences were listed in Table 2. We confirmed that the
changes in gene expression in FSGS patients were consistent with the microarray results (Fig
7). Schmid et al[17] have described glomerular podocin/synaptopodin mRNA expression as a
potential marker to differentiate between MCD and FSGS, as well as steroid resistent and ste-
roid sensitive cases. Hence, we validated the ratio glomerular podocin/synaptopodin mRNA,
and found the ratio of podocin relative to synaptopodin mRNA allowed a clear separation
between MCD and FSGS with no overlap (MCD mean ratio, 8.39 ±0.38; FSGS mean ratio, 1.56
±0.18; P< 0.01. Fig 8).

Immunostaining of MME
MME plays an important role in glomerular diseases. Therefore, we selected MME to further
validate the expression differences between FSGS and MCD at the protein level using immu-
nostaining. Validation was conducted in an independent cohort composed of 7 FSGS patients
and 7 MCD patients. These patients came from the group where the real-time PCR samples
were obtained. Protein levels of MME were markedly reduced in kidneys of patients with FSGS
compared with patients with MCD (Fig 9). Previous studies suggested that MME was down-
regulated in diabetic nephropathy (DN)[18]. Therefore, we also examined MME expression in
DN and found that MME expression was decreased in kidneys of patients with DN compared
with that in patients with MCD. These findings suggested that MME could be used as a marker
to differentiate FSGS fromMCD.

Fig 2. Glomerulus isolation. A, Cortex of kidney biopsy; B, Glomerulus isolation under an inverted
microscope; C, Isolated glomerulus; D, 5 isolated glomerulus were pulled together.

doi:10.1371/journal.pone.0140453.g002
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Discussion
We revealed differences in the transcriptional profile between FSGS and MCD using high
throughput gene expression profiling of isolated glomeruli from patients with biopsy-proven
idiopathic FSGS and MCD. Hodgin et al reported that genes that participated in cell motility,
migration, differentiation and morphogenesis were up-regulated in FSGS patients, while podo-
cyte specific genes were significantly down-regulated in FSGS group compared with normal
and MCD groups. We found podocyte specific genes (SYNPO, NPHS1) were down-regulated
in glomeruli of FSGS patients compared with those of MCD patients, which is consistent with
findings from Hodgin et al. Bennett et al[19] reported that genes implicated in kidney fibrosis,
the TGF-β signaling pathway, transcription factors that drive chondrogenesis and fibrosis,
were up-regulated in FSGS patients. We discovered genes that participated in TGF- β signaling
and kidney fibrosis were up-regulated in glomeruli of FSGS patients as opposed to those of
MCD patients, which was congruent with findings from Bennett et al. Schwab concluded that
genes involved in cell cycle and proliferation, immune responses, TGF- β superfamily signaling,

Fig 3. Comparision of expression ratio of NPHS1, SLC9A3R1 in glomerulus versus tubulointerstitial
using real-time PCR. A, Comparision of expression ratio of NPHS1 in isolated glomerulus versus
tubulointerstitial; B, Comparision of expression ratio of SLC9A3R1 in tubulointerstitial versus glomerulus
(Difference was analysed by Student's t-test, ** indicated P < 0.01).

doi:10.1371/journal.pone.0140453.g003
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and RNA processing or splicing were up-regulated in kidneys of FSGS patients. We found
genes involved in cell cycle and cell proliferation were up-regulated in glomeruli of FSGS
patients in contrast to those of MCD patients, which was in line with resultsfrom Schwab et al.
However, only Bennett and Hodgin’s studies used mRNA obtained from glomeruli. Schwab
using the mRNA obtained from biopsied kidney.

We identified previously unreported up-regulated genes involved in gamete generation, reg-
ulation of muscle contraction, response to unfolded protein, cell proliferation in FSGS patients,
and down-regulated genes that were mostly related to intracellular transport, oxidation reduc-
tion and establishment of localization. Many of these pathways are involved in kidney diseases
[20] (Table N in S3 File).

Our data suggested that pathways that were activated in FSGS were quite different from
those in MCD. For example, inflammation and fibrosis pathways were more activated in FSGS,
and cell cytoskeleton-related pathways were suppressed in FSGS compared with MCD. A sig-
nificant portion of these genes were identified previously in the pathogenesis of kidney dis-
eases. Podocyte injury played a central role in the pathogenesis of FSGS[21].Several DEGs,
such as MME and ANGPTL3, were important for podocyte morphology and function.

MME was involved in kidney development, and it is abundantly expressed in the kidney
[22], particularly in podocytes[23]. Expression of MME at mRNA levels was significantly
down-regulated in kidneys of patients with diabetic nephropathy (DN) [24]. MME appeared to
have excessive activity induced by hyperglycemia, hypertension, and hyperlipidemia related to
diabetes[25]. Inhibition of angiotensin-converting enzyme (ACE) is among one of the most
effective treatments for hypertension and end-organ damage associated with diabetic nephrop-
athy. Angiotensin-converting enzyme (ACE) inhibitor attenuated Ang II-induced extracellular

Fig 4. 3D snapshot of PCA analysis of sample distribution based on the transcriptomes. The FSGS
group was separated from the MCD group. Moreover, FSGS patients were far fromMCD patients, which
indicated dramatic transcriptomic changes in FSGS patients compared with MCD patients. F1 ~ F6 (green
sphere) indicated FSGS patients; M1 ~ M5 (red sphere) indicated MCD patients.

doi:10.1371/journal.pone.0140453.g004

Transcriptome Profiles of FSGS and MCD

PLOSONE | DOI:10.1371/journal.pone.0140453 November 4, 2015 10 / 17



matrix synthesis more efficiently in the absence of NEP[26]. And MME had a genetic linkage
region for DN. MME was also a podocytic antigen that was responsible for human membra-
nous nephropathy (MN). Alloimmunization against MME should be considered as a leading
cause of membranous glomerulopathy early in life[27]. Absence of MME gene product in the
mother resulted in the development of membranous nephropathy in the fetus because mater-
nal anti-MME antibodies bound to MME on fetal podocytes[28]. The fetal podocytes undergo-
ing apoptosis and nephron loss could lead to chronic renal failure in early adulthood.

Notably, our data demonstrated that MME might play a protective role in the normal physi-
ological function of podocytes and a decrease in MME expression might cause podocyte injury,
which leads to FSGS. However, there was no report about the role of MME in FSGS, and fur-
ther studies were required to validate our results.

Among the top genes identified in our study, SNORA38B, SNORA14A and SNORA7B
were small nucleolar RNA that function as ribonucleoprotein (RNP) enzymes in the processing
of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). The actions of these enzymes
were related to mRNA splicing, genome integrity maintenance, and protein synthesis[29].
RN5S451 and RN5S421 were 5S rRNAs, which were major components of the fully functional
ribosome that was responsible for protein synthesis[30]. LOC728419 (ubiquitin carboxyl-ter-
minal hydrolase 17-like) was involved in ubiquitin-dependent apoptotic process[31].CALB1
(calbindin 1) primarily functions in metanephric ureteric bud development[32]. GSTA1 (gluta-
thione S-transferase alpha 1) was a key enzyme in glutathione and xenobiotic metabolic pro-
cesses and the generation of oxidative products[33]. AK4 (adenylate kinase 4) was responsible

Fig 5. The Heat Map of gene expression profiles between FSGS and MCD patients. A total of 272 genes
were up-regulated; A total of 2331 genes were down-regulated. Red indicated high expression. Green
indicated low expression. Black indicated no significant difference between FSGS and MCD patients. F1 ~ F6
indicated FSGS patients. M1 ~ M6 indicated MCD patients.

doi:10.1371/journal.pone.0140453.g005
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Fig 6. Pathway of genes up-regulated and down-regulated in FSGS patients compared with MCD patients analyzed by using Enrichr GO Biological
Process program. A: Pathway of genes up-regulated; B: Pathway of genes down-regulated.

doi:10.1371/journal.pone.0140453.g006

Table 2. Primer Sequences.

Gene Forward Reverse

SNORA38B CCTCCTACAAAGGCATGTCTAT TTCTATGTGGGATGGTTGATCTT

RN5S451 GCCTGCTGCCATAGTACTCTG CACGTATTCCTACCCAACTTTCTC

RN5S421 CCTTGGCAGGCACTGGT AGCCTCCAGCTCCCAGTCT

LOC728419 CAGCTCAGAGTGTCCAGCAA AGTTAACGTCTTGGAGGCCG

SNORA14A TGCATTCTTAAACCCTCTTGG AGATGTTGCAGGTATGAAATAAGA

SNORA7B GACCTCCTGGGATCGCAT CACTGTCGCAGAGTGTCTTCC

CALB1 GCTGAGCTTTTGCTCACTCC ACTTCCGTCAGCGTCGAAAT

GSTA1 TGATCCTCCTTCTGCCCGTA ACCAGATGAATGTCAGCCCG

MME TCTGCTGAGGGGTCACGATT AGGACCGAGAGGCTGATCTC

AK4 CTTTGAGTCACCCCCGCTT GCCGCCCCTTCATCCTTAAC

ANGPTL3 CAATGTCCCCAATGCAATCCC CCAGCCTCCTGAATAACCCT

PLG TGGGGAGAAACCCAAGGTACT CACAGAGTTCGGTGGATTGGA

GAPDH GGTGAAGGTCGGAGTCAAC CAAATGAGCCCCAGCCTTC

doi:10.1371/journal.pone.0140453.t002
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for cell proliferation, differentiation and cytoskeleton formation[34]. AK4 catalyzed the revers-
ible transfer of adenosine triphosphate (ATP) or guanosine triphosphate (GTP) to adenosine
monophosphate (AMP), and it played a key role in high-energy phosphoryl transfer and con-
sumption of ATP and GTP[35]. AK4 was also an essential enzyme in energy metabolism in the
cytosol, mitochondria and nucleus. ANGPTL3 (angiopoietin-like 3) was responsible for angio-
genesis, glycerol, fatty acid metabolic processes, cell matrix adhesion, and integrin-mediated
signaling pathways, and a role for ANGPTL3 in podocyte injury and glomerular disease was
shown recently. Deletion of ANGPTL3 or interfering with the ANGPTL3-integrin β3 interac-
tion might be benefit for podocyte protection and attenuates proteinuria[36]. PLG (plasmino-
gen) was an enzyme that degraded fibrin clots and participates in apoptotic processes. Future
studies were required to determine the function of these genes in FSGS and whether these
genes might serve as biomarkers for the differential diagnosis of FSGS and MCD.

Fig 7. Validation of the top 6 genes up-regulated and the top 6 genes down-regulated in FSGS patients
compared with MCD patients using real-time PCR in glomerular transcriptomes. (Student's t-test or
Mann-Whitney U test was used to compare the continued variables based on their distributions.**P < 0.01,
FSGS patients compared with MCD patients). A, Validation of the top 6 genes up-regulated; B, Validation of
the top 6 genes down-regulated.

doi:10.1371/journal.pone.0140453.g007
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Limitations of our study included the relatively small sample size and the absence of normal
kidney specimens as a control group. The nephrectomy samples might not be a good control as
the ischemic changes between biopsy and nephrectomy samples were quite different. There-
fore, we compared samples between FSGS and MCD patients. Future studies, such as the

Fig 8. Validation of podocin/synaptopodin mRNA expression ratio in isolated glomeruli between MCD
and FSGS patients using real-time PCR in glomerular transcriptomes. (Student's t-test was used to
compare the the podocin/synaptopodin mRNA expression ratios.** P < 0.01, FSGS patients compared with
MCD patients).

doi:10.1371/journal.pone.0140453.g008

Fig 9. Immunohistochemical staining of MME in kidney biopsies from patients with FSGS, MCD and
DN. Representative pictures from individual patients were shown. A:Kidney biopsies from patients with
FSGS. B:Kidney biopsies from patients with MCD. C:Kidney biopsies from patients with DN. D:Kidney
biopsies from uninvolved portions of a kidney at the time of nephrectomy for renal clear cell carcinoma, as the
control. E: Histogram. *P < 0.01, FSGS patients compared with MCD patients, #P < 0.01, DN patients
compared with MCD patients.

doi:10.1371/journal.pone.0140453.g009
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studies proposed in NEPTUNE, were required to determine gene expression profiles in a large
patient population to validate our findings. In addition, our study has limited power to detect
baseline characteristic differences between patients with MCD and FSGS. However, our study
is the first transcriptomic analysis based on glomeruli between FSGS and MCD patients in the
Chinese population. Our data suggested that this approach may reveal the underlying molecu-
lar mechanisms of FSGS and MCD and identify potential biomarkers to aid the differential
diagnosis between these two diseases.

Conclusions
In conclusion, we identified the up-regulated DEGs in FSGS patients compared with MCD
patients were primarily involved in spermatogenesis, gamete generation, regulation of muscle
contraction, response to unfolded protein, cell proliferation, skeletal system development. The
down-regulated DEGs were primarily related to metabolic process, intracellular transport, oxi-
dation reduction, establishment of localization in cell. Among these genes, MME was a down-
regulated gene that was previously identified as a candidate gene for kidney development.
Expression of MME both in RNA and protein levels were decreased significantly in glomeruli
of FSGS kidneys compared with MCD kidneys.
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