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Purpose: To investigate the significance of macrophage infiltration to the

prognosis of lung adenocarcinoma.

Methods: R language bioinformatics analysis technology, was used to obtain

macrophage infiltration-related module genes through WGCNA (Weighted

Gene Co-Expression Network Analysis). Marker genes of macrophage

subtypes were identified using single-cell sequencing of lung adenocarcinoma

tissue. Risk score models were constructed and validated using external data

cohorts and clinical samples.

Results: Analysis of cohorts TCGA-LUAD, GSE11969, GSE31210, GSE50081,

GSE72094 and GSE8894, revealed a negative correlation between

macrophage infiltration and survival. Immunohistochemical analyses of

clinical samples were consistent with these data. Based on cell-cluster-

markers and TAMs-related-genes, TOP8 genes were obtained (C1QTNF6,

CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2, and TK1) with a significant

association to prognosis. Risk score models including 9 factors (C1QTNF6,

FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65) for prognosis were

constructed. The efficacy, stability and generalizability of the risk score models

were validated using multiple data cohorts (GSE19188, GSE26939, GSE31210,

GSE50081, GSE42127, and GSE72094).

Conclusions: Macrophage infiltration negatively correlates with prognosis in

patients with lung adenocarcinoma. Based on cell-cluster-markers and
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TAMs-related-genes, both TOP8 genes (C1QTNF6, CCNB1, FSCN1, HMMR,

KPNA2, PRC1, RRM2, TK1) and risk score models using C1QTNF6, FSCN1,

KPNA2, GLI2, TYMS, BIRC3, RBBP7, KRT8, GPR65 could predict disease

prognosis.
KEYWORDS

macrophages, prognosis, lung adenocarcinoma, ScRNA, bulkRNA, infilitration, marker
gene, WGCNA (weighted gene co- expression network analyses)
1 Introduction

Lung cancer remains the most common malignancy

worldwide and a leading cause of cancer-related death, despite

advances in screening and treatment (1, 2). Whether it was for the

non-small cell lung cancer (NSCLC) or small cell lung cancer

(SCLC) patients, immunotherapy was the most shining one among

many treatment methods, which had changed the landscape of

anti-tumor therapy and brought anti-tumor therapy into a new era

(3–7). However, there were still many details in the screening of

immunotherapy benefit populations and related predictors needed

to be further elucidated (8–16). Specific macrophage phenotypes

can act as indicators of lung cancer prognosis and the efficacy of

immunotherapy (17–24). Sequencing technologies and R language

based bioinformatics, formerly reported (25–27), can be used for

studies in this area (28–30). Based on our previous studies (28–30),

we performed bioinformatics analysis and clinical sample

validation to identify specific macrophage signatures that can act

as indicators of therapeutic efficacy.
2 Methods

2.1 Data analysis

2.1.1 TCGA data
mRNA expression profiles, clinical information, copy

number alterations and mutations of GDC TCGA Lung

Adenocarcinoma (LUAD) samples were downloaded from

https://xenabrowser.net/datapages/. Tumor samples were

screened according to sample name. RNA-seq data for 513

tumor samples and 59 paracancerous samples were obtained.
ation and Projection;

l lung cancer; LUAD,

-Expression Network

, Gene Set Variation

embedding; IHC,

DEGs, Differential

d Selection Operator.
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2.1.2 GEO data
Expression data and sample survival information for

GSE11969, GSE19188, GSE26939, GSE31210, GSE42127,

GSE50081, GSE72094 and GSE8894 were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo). Survival

information of the samples were summarized as follows:

(Supplementary Table 1_train_clin.tsv; Supplementary Table 1_

GSE11969_clin.txt; Supplementary Table 1_GSE19188_clin.txt;

Supplementary Table 1_ GSE26939_clin.txt; Supplementary

Table 1_GSE31210_clin.txt; Supplementary Table 1_

GSE42127_clin.txt; Supplementary Table 1_GSE50081_clin.txt;

Supplementary Table 1_ GSE72094_clin.txt; Supplementary

Table 1_ GSE8894_clin.txt). Single-cell sequencing data from

GSE131907 were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo). A total of 42,995 cells and 29,634

genes were obtained.
2.2 Immune infiltration analysis

Immune infiltration for each sample was calculated using

IOBR of the R package for the training set TCGA expression

matrix and GEO data, respectively (method = ‘cibersort’).
2.3 Survival analysis

For survival assessments, R packages “survminer” and

“survival” were analyzed and survival curves were constructed

based on survival time and status. Differences in prognosis

among the groups were assessed.
2.4 Screening of modules corresponding
to macrophages using WGCNA

Hierarchical clustering analysis was performed on the

TCGA expression matrix using the R package “hclust”,

“method=average”. Phenotypic information was obtained
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using the infiltration ratio of macrophages. A correlation

between different modules and macrophages was obtained.
2.5 Clustering analysis of samples

The R package “ConsesusClusterPlus” was used to perform

consensus clustering analysis. After clustering on the TCGA and

GEO data, the optimal number of categories were determined

according to the change of area under the CDF curve. The k

value of the cluster category ranged from 2 to 6.
2.6 Analysis of single-cell data

Single-cell data were filtered using the R package “seurat” to

remove cells with ≥ 20% mitochondrial expression. Data were

analyzed using the “seurat” normalization pipeline. To identify

tumor-associated macrophage (TAM) populations, marker

genes from published studies were used to identify

corresponding clusters. TAM populations were selected for

standardization analysis using “Seurat”.
2.7 Trajectory analysis of single-cell data

Trajectory analysis was performed on TAM subclasses using

the R package “monocle” with default parameters. This resulted

in differentiation trajectories and key genes determining

these trajectories.
2.8 Gene set variation analysis

To investigate differences in the expression patterns of

specific TAM isoforms in biological processes, GSVA

enrichment analysis was performed using the R package

“GSVA”. GSVA is a nonparametric, unsupervised method

primarily used to assess alterations in signaling pathways and

biological processes in samples.
2.9 Construction of risk scoring model

Univariate cox regression analysis was performed on “cell-

cluster-markers” and “TAMs-related-genes”, and genes

significantly associated with OS survival were screened at the

p<0.05 level. According to the identified prognosis-related genes,

the R package ‘glmnet’ was used to construct a prognosis model

(or classifier model) with a 10-fold cross-validation fold using

the cox method. Characteristic factors were then screened.

Kaplan-Meier survival analysis and ROC curves were used to

evaluate the predictive power of the prognostic model.
Frontiers in Immunology 03
2.10 Clinical sample validation (sample
collection and immunohistochemistry)

Lung Cancer samples were collected from the First Affiliated

Hospital of Shandong First Medical University & Shandong

Provincial Qianfoshan Hospital from June 2012 to February

2020. Written informed consent was provided by all

participants. Tumor tissues were surgically resected, formalin

fixed and paraffin embedded (FFPE) for histological evaluation.

HE-stained and immunohistochemical (IHC) slides were

examined by two independent and experienced pathologists

according to the WHO criteria.

Samples were IHC stained with mouse anti-human CD68

monoclonal antibodies (MAB-0863, clone MX075) and mouse

anti-human CD163 monoclonal antibodies (MAB-0869, clone

MX081). CD68 was used as a general surface marker for

macrophages, whilst CD163 was used as a marker for M2

macrophages (31). Double-labeled immunohistochemical

staining was performed using alkaline phosphatase and

horseradish peroxidase conjugated secondary antibodies.

Substrates were fast red (AP-Red) and diaminobenzidine

(DAB) (Roche Ltd) stained. Slides were processed using an

automated Roche BenchMark XT staining system according to

the manufacturer’s protocol.
3 Results

3.1 Proportion of immune infiltrating
cells and the prognostic efficacy
of macrophages

CIBERSORT was used to evaluate the levels of immune-

infiltration from different lung adenocarcinoma datasets

(TCGA-LUAD, GSE11969, GSE31210, GSE50081, GSE72094, and

GSE8894). According to the median macrophage ratio, samples were

divided into high- and low-levels of macrophage infiltration. Survival

differences between high- and low-groups showed a significant

correlation with macrophage infiltration (Figure 1; Supplementary

Table 2_train_cibersort.txt; Supplementary Table 2_GSE

11969_cibersort .txt ; Supplementary Table 2_GSE31

210_cibersort.txt; Supplementary Table 2_GSE50081_cibersort.txt;

Supplementary Table 2_GSE72094_cibersort.txt; Supplementary

Table 2_GSE8894_cibersort.txt).
3.2 Screening of modules corresponding
to macrophages

To identify macrophage-related genes related to infiltration,

WGCNA module analysis was performed on the training dataset

(Supplementary Figure 1, Supplementary Table 3_gene_module.txt).
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Genes corresponding to red modules were named “TAMs-related-

genes” for subsequent analysis.
3.3 TAMs-related-gene-based clustering
analysis, molecular typing and prognostic
assessments

We analyzed the expression profiles of TAMs-related-genes in

samples from different lung adenocarcinoma datasets (TCGA-

LUAD, GSE13213, GSE31210, GSE72094, and GSE8894) to

construct consistent clustering profiles. Based on cumulative

distribution functions and incremental area maps, we selected

stable clusters of TAMs-related-genes to obtain multiple subtypes

(Supplementary Figures 2A–E, Supplementary Table 4_TCGA_

consensusClass.csv; Supplementary Table 4_GSE13213_consensus

Class.csv; Supplementary Table 4_GSE31210_consensusClass.csv;

Supplementary Table 4_GSE72094_consensusClass.csv;

Supplementary Table 4_GSE8894_consensusClass.csv).

Survival analysis was performed on cluster subtypes from

different datasets, revealing significant survival differences

(Supplementary Figures 2F–I). Dimensionality reduction

analysis was performed on each dataset, revealing significant

differences in sample characteristics between different subtypes

(Supplementary Figures 2K–O).
Frontiers in Immunology 04
3.4 Preprocessing of single-cell data

To further investigate the role of macrophages in lung

adenocarcinoma, published single-cell sequencing data of lung

adenocarcinoma patients was analyzed (PMC7210975) (32). Gene

distribution and mitochondrial gene expression were screened

(Supplementary Figures 3A–C). Cells with mitochondrial

expression ≥20% were identified as dead and removed.
3.5 Identification of TAMs in total cells

Markers were used to detect the presence of TAMs in the lung

adenocarcinoma single-cell datasets (Supplementary Figures 3D–

I). TAMs were then extracted and subtype analysis performed to

obtain a TAMs subtype map (Supplementary Figure 3I).
3.6 Screening of differential expression
genes among TAMs subsets

To identify marker genes amongst the different TAM subgroups,

samples were screened in “Seurat”. Dot and violin plots revealed the

top5 marker genes for each TAM subtype (Supplementary Figure 4;

Supplementary Table 5_TAM_marker_genes.txt).
A B

D E F

C

FIGURE 1

Survival curves of high and low macrophage infiltration in lung adenocarcinoma datasets. Horizontal axis: survival time. Vertical axis: survival
probability. Color: level of macrophage infiltration. Survival analysis using (A) TCGA data, (B) GSE11969, (C) GSE31210, (D) GSE50081, (E)
GSE72094, (F) GSE8894.
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3.7 Simulation of dynamic changes
in macrophages

“Monocle” was used to identify dynamic changes

of macrophages in the tumors and cell polarization

(Supplementary Figures 5A–C). Cluster 0 could be divided into

Cluster 1 and Cluster 2 amongst TAM subtypes. The identified

genes were found to regulate differentiation (Supplementary

Figure 5D). Gene enrichment analysis on the subtypes of TAM

showed that Cluster 2 positively correlated with E2F TARGETS

and G2M CHECKPOINT, whilst Cluster 4 negatively correlated

with these pathways (Supplementary Figure 5E).
3.8 Screening of prognostic factors
based on cell-cluster-markers and
TAMS-related-genes using univariate
cox regression analysis

Markers of each TAM subtype and TAMs-related-genes

were used to identify genes related to the prognosis. Samples

were divided into high- and low-expression groups according

to the median of gene expression. Univariate Cox analysis

was performed and survival curves of the top8 prognostic

genes were displayed (Figures 2A–H; Supplementary

Table 6_cox_significant.txt).
3.9 Construction of risk score models
and evaluation of the prognostic efficacy

Based on the “GLMNET” of the R package, LASSO (Least

Absolute Shrinkage and Selection Operator) regression

analysis was used to construct a regression model for the

expression matrix of prognosis related genes corresponding

to “Cell-Cluster-Markers” and “Tams-Related-Genes”. By

analysis, when the value of the freedom degree was 9, the

model was accurate (Figures 2I–O; Supplementary Table 7_

forest.univariate_cox.txt, Supplementary Table 7_Signature_

Coef.txt). The calculation formula of the risk score model are

listed as follows:

Risk Score = 0.0354754835*C1QTNF6 (Expression Value) +

0.0023344103* FSCN1 (Expression Value) + 0.0022298189*GLI2

(Expression Value) + 0.0001616254 * KPNA2 (Expression value) +

0.0005176419*TYMS (Expression Value) + 0.0037498174 *BIRC3

(Expression Value) + 0.0033257017*RBBP7 (Expression Value) +

0.0002465129 *KRT8 (Expression Value) - 0.0263442444 *GPR65

(Expression Value). Kaplan-Meier survival curves indicated a

significant difference in survival between high and low risk

groups. The ROC curve indicated high performance of the risk

score model.
Frontiers in Immunology 05
3.10 Validation of risk score prognostic
models in external datasets

To further verify the stability of the risk score model,

external and independent data GSE19188, GSE26939,

GSE31210, GSE50081, GSE42127 and GSE72094 were used to

verify predictive efficacy. Through Kaplan-Meier survival

analysis, the constructed risk score model performed well for

all external data predictions (Figure 3).
3.11 Robust principal component analysis
of risk scoring models in clinical factors

To confirm the stability of the risk score model according to

clinical characteristics, differences in survival status between

high- and low-risk groups in terms of age, gender,

radiotherapy, clinical characteristics and Pathlogic M were

explored. Significant differences in survival between high- and

low-risk groups were observed in those aged ≥ 60 and ≤ 60 years

(Figures 4A, B; Supplementary Table 8_clinical_inf.txt). Similar

differences were observed between gender subgroups

(Figures 4C, D). In the radiotherapy group, differences

between high- and low-risk groups were more pronounced

(Figures 4E, F). In Pathologic M (Figures 4G, I), significant

differences between high- and low-risk groups were observed for

M0, indicative of higher stability.
3.12 Differences in risk score models
among cancer clinical factors

To investigate the relationship between the risk score model

and clinical characteristics, specific features were selected for

analysis. The risk score was found to be related to radiation

therapy, pathologic T and tumor stage. No significant relationship

to age or gender were observed (Supplementary Figure 6).
3.13 Evaluation of risk score models
through univariate and multivariate cox
regression analysis

To determine whether the risk score model could act as an

independent prognostic factor for cancer, the “coxph()” function

in the R package “survival” was adopted for univariate and

multivariate regression analysis on training and test sets,

respectively. We found that in all validation and test sets, the

p value of the risk score was ≤ 0.05 (Figure 5; Supplementary

Table 9_TCGA_clinical.multivariate_cox.txt; Supplementary

Table 9_TCGA_ clinical.univariate_cox.txt; Supplementary
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FIGURE 2

Survival analysis of top8 genes is significantly associated with prognosis. Abscissa axis: survival time. Ordinate axis: survival probability. Colors:
differential gene expression. Survival analysis of (A) C1QTNF6, (B) CCNB1, (C), FSCN1, (D) HMMR, (E) KPNA2, (F) PRC1, (H) RRM2, and (I) TK1.
(J) Construction of the risk score model and evaluation of its prognostic efficacy. Forest plots of genes included in the risk score model. Right
column: 9 genes included in the risk score model. Left column: corresponding forest plot. (K) Risk score plot for cancer samples (line graph).
(L) Risk score plot for cancer samples (scatter plot graph). (M) Dynamic process diagram of variables screened by LASSO regression analysis and
selection process diagram of the cross-validation parameter l. (N) Survival analysis of the training dataset. Abscissa axis: survival time; ordinate
axis: survival probability. (O) ROC curve of training datasets. Abscissa axis: specificity; Ordinate axis: sensitivity. Colors represent different years.
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A1 B1

A2 B2 C2

C1

D1 E1

D2 E2 F2

F1

FIGURE 3

Validation of the risk score model with external independent data. A1: Validation (ROC curve) of the risk score model using external independent
data GSE19188; A2: survival analysis. B1: Validation (ROC curve) of the risk score model using GSE26939. B2: Survival analysis using GSE26939.
C1: Validation (ROC curve) of the risk score model using GSE31210. C2: Validation (survival analysis) using GSE31210. D1: Validation results (ROC
curve) of the risk score model using GSE50081. D2: (survival analysis) of the risk score model using GSE50081. E1: Validation results (ROC curve)
of the risk score model using GSE42127. E2: survival analysis using E42127. F1: Validation (ROC curve) of the risk score model using GSE72094.
F2: Survival analysis using GSE72094. Abscissa axis: survival time; Ordinate axis: survival probability. Colors: different risk groups.
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Tab l e 9 _GSE1 9 1 8 8 .mu l t i v a r i a t e _ c o x _ r e s u l t . t x t ;

Supplementary Table 9_GSE19188.univariate_cox_result.txt;

Supplementary Table 9_GSE26939. multivariate_cox_result.txt;

Supplementary Table 9_GSE26939.univariate_cox_result.txt;

Supplementary Table 9_GSE42127.multivariate_cox_result.txt;

Supplementary Table 9_GSE42127. univariate_cox_result.txt;

Supplementary Table 9_GSE50081. multivariate_cox_result.txt;

Supplementary Table 9_GSE50081.univariate_cox_result.txt;

Supplementary Table 9_GSE72094. multivariate_cox_result.txt;

Supplementary Table 9_GSE72094.univariate_cox_result.txt).

This indicated that the risk score model was an accurate

independent prognostic factor for cancer.
Frontiers in Immunology 08
3.14 Construction of a nomogram model
of risk scores and clinical factors to
predict cancer progression

We next sought to apply the risk scoring model to the

prediction of cancer progression in the clinic. The R package

“rms” was adopted to construct a nomogram using a variety of

clinical features. Calibration curves were used to calculate 1, 2, 3,

and 5-year survival times (Supplementary Figure 6,

Supplementary Table 10_nomogram_patient_info_part.txt).

All survival calibration curves were near the 45° slope,

indicating high accuracy of the nomogram.
A B

D E F

G IH

C

FIGURE 4

Kaplan-Meier survival analysis between high- and low risk groups. Abscissa axis: survival time; Ordinate axis: survival probability. Colors: different
risk groups. (A) Kaplan-Meier survival analysis between high- and low-risk groups in those aged ≤ 60 years. (B) >60 years. (C) Female patients.
(D) Male patients. (E) + Radiation therapy. (F) - Radiation therapy. (G) M:M0. (H) M: M1. (I) M: Mx.
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FIGURE 5

Univariate and multivariate cox regression analysis of the risk score model in training and validation datasets. (A) Univariate cox regression
analysis. (B) Multivariate cox regression analysis. (C) GSE19188 univariate cox regression analysis. (D) GSE19188 multivariate cox regression
analysis. (E) GSE26939 univariate cox regression analysis. (F) GSE26939 multivariate cox regression analysis. (G) GSE42127 univariate cox
regression analysis. (H) GSE42127 multivariate cox regression analysis. (I) GSE50081 univariate cox regression analysis. (J) GSE50081 multivariate
cox regression analysis. (K) GSE72094 univariate cox regression analysis. (L) GSE72094 multivariate cox regression analysis.
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3.15 Prediction of immunotherapy
efficacy amongst subtypes

We next investigated whether the risk score model could

predict the prognosis of immunotherapy. Data were calculated

using the risk score model and the K-M survival status between

high- and low-risk groups evaluated (Supplementary Figure 7A,

Supplementary Table 11_Immune_treatment.xlsx). Upon

statistical analysis of the distribution of CR/PR and PD/SD,

the proportion of treatment response rates significantly differed

between high- and low-risk groups (Supplementary Figure 7B,

chi-square test p= 0.004133). No significant differences in the

risk scores between the different treatment response groups were

observed (Supplementary Figure 7C).
3.16 Overall survival analyses of M1 and
M2 macrophage subtypes in patients
with lung cancer

A total of 32 patients with lung cancer were evaluated for M1

and M2 macrophage subtypes. Samples were stained using

double-labeled IHC. The majority of patients were in

patho log ica l S tage I I (62 .5%) and the dominant

histopathological type was adenocarcinoma (68.8%). The

clinicopathological characteristics of the lung cancer patients

are shown in (Table 1).

To identify M1 and M2 macrophage subtypes, CD68 and

CD163 antibodies were used for double-labeled IHC staining.

CD68 (brown/yellow) as a surface marker for all macrophages

primarily localized to the cytoplasm, whilst CD163 (red)
Frontiers in Immunology 10
localized to the plasma membrane. M2 macrophages were

identified through double staining for CD68 and CD163. M1

macrophages were identified through staining with CD68 alone.

Representative IHC images are shown in (Figures 6A, B).

The prognostic value of macrophage infiltration was next

evaluated. Total macrophages, M2 to M1, and M2 macrophage

infiltration were identified as detrimental to patient survival

(Figures 6C, E, F), whilst M1 macrophage infiltration was

beneficial to prognosis (Figure 6D). The infiltration of M1

macrophages in adenocarcinoma was significantly higher than

that in squamous cell carcinoma of lung cancer. No significant

differences in M2 nor total macrophage infiltration were

observed between these two histological subtypes (Figure 6G).
4 Discussion

Macrophages with different phenotypes are frequently cited

as indicators of the prognosis of lung cancer patients and the

efficacy of immunotherapy (17–24). In our preliminary analyses,

macrophage infiltration, rarely reported in lung cancer, had a

significant detrimental effect on the prognosis of lung cancer

patients (Figure 1). These data were consistent across cohorts

(Figures 1A–F) and fur ther ver ified in fo l low-up

immunohistochemical analysis of clinical samples (Figure 6C).

Collectively, these data highlight how macrophages not only act

as innate immune cells to regulate immunological responses

(23), but play an important role in the prognosis of lung cancer.

This lays the foundation for subsequent module analysis based

on macrophage infiltration (Supplementary Figure 1).

Based on the expression profiles of TAMs-related-genes, a

consistent clustering profile was constructed (Supplementary

Figures 2A–E). Significant differences in both survival analysis

and PCA (Supplementary Figures 2F–O) were observed. These

apparent differences were further identified in single-cell data

(Supplementary Figure 3) confirming the importance of

macrophages to the prognosis of lung cancer patients (17–24,

32). These data also highlight the need for further refinement of

relevant factors to more favorably evaluate patient prognosis.

Given the advantages and progress of single-cell sequencing

in lung cancer immunity (33–35), the single-cell data was further

analyzed (Supplementary Figures 4, 5, and Figure 2) (32). Based

on cell-cluster-markers and TAMs-related-genes, TOP 8 genes

(C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1, RRM2,

and TK1) significantly associated with prognosis were obtained

(Figure 2). These have obvious benefits to clinicians for the

assessment of patient prognosis (36–49). The same data were

used to construct a risk score model containing 9 factors

(C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7,

KRT8, and GPR65) for prognostic evaluation (Figure 2) (50–

55). The model was validated using external data cohorts

(Figure 3) and identified as robust and accurate for prognostic

evaluation (Figure 4). Significant differences in the risk scores
TABLE 1 Basic characteristics of enrolled clinical samples.

Characteristic levels Overall

n 32

Age, n (%) >65 12 (37.5%)

≤65 20 (62.5%)

Gender, n (%) Female 16 (50%)

Male 16 (50%)

T stage, n (%) T1 5 (15.6%)

T2 20 (62.5%)

T3 7 (21.9%)

N stage, n (%) N0 21 (65.6%)

N1 8 (25%)

N2 3 (9.4%)

Pathological Stage, n (%) I 8 (25%)

II 20 (62.5%)

III 4 (12.5%)

Histologic type, n (%) Adenomcarcinoma 22 (68.8%)

Mucoepidermoid carcinoma 2 (6.2%)

Squamous cell carcinoma 8 (25%)
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FIGURE 6

Validation analysis of clinical samples. A1: Immunohistochemical staining of M1 macrophages. A2: Enlargement of the boxed regions. B1:
Immunohistochemical staining of M2 macrophages. B2: Enlargement of the boxed regions. Images were obtained at 40×10 magnification under
a light microscope. (C) Kaplan-Meier survival analysis of macrophage infiltration. (D) M1 macrophage infiltration. (E) M2 macrophage infiltration.
(F) M2 to M1 macrophage infiltration. (G) M1, M2 and total macrophage infiltration between adenocarcinoma and squamous cell carcinoma.
Horizontal axis: survival time. Vertical axis: survival probability. Colors: macrophage infiltration.
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were observed for clinical characteristics including radiation

therapy, pathologic T, and Tumor stage (Supplementary

Figures 6A–E). This further highlighted the efficiency of the

risk score to predict therapeutic efficacy.

Through univariate and multivariate cox regression analysis,

the risk score model held utility as an independent prognostic

factor for cancer, further affirming its clinical benefits (Figure 5).

Furthermore, cancer progression could be more accurately

predicted using nomogram models constructed based on risk

scores and clinical factors (Supplementary Figures 6F–J). For

prognostic assessments of immunotherapy, the risk score model

could also act as an accurate evaluation tool (Supplementary

Figure 7). Upon immunohistochemical analysis of clinical tissue

samples to verify the correlation between the macrophage

phenotype and patient prognosis, similar conclusions were

obtained (Table 1; Figures 1, 6). Macrophage infiltration,

particularly for the M2 phenotype, were not conducive to the

prognosis and survival of patients, consistent with previous

studies (20–24, 56, 57).

We used WGCNA to identify macrophage infiltration-

related module genes and single-cell sequencing of lung

adenocarcinoma tissue to identify marker genes of

macrophage subtypes. This permitted the construction of a

risk assessment model with high prognostic efficacy. The

model performed well on external and independent datasets.

Immunohistochemistry analysis of clinical samples were

consistent with our data. We therefore infer that the risk score

has both high clinical practicability and application.
5 Conclusion

Macrophage infiltration was negatively correlated with

prognosis for patients with lung adenocarcinoma. Based on

cell-cluster-markers and TAMs-related-genes, both TOP8

genes (C1QTNF6, CCNB1, FSCN1, HMMR, KPNA2, PRC1,

RRM2, TK1) and the risk score model containing 9 risk factors

(C1QTNF6, FSCN1, KPNA2, GLI2, TYMS, BIRC3, RBBP7,

KRT8, GPR65) had a high efficacy for the prediction

of prognosis.
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SUPPLEMENTARY FIGURE 1

Screening of modules corresponding to macrophages using WGCNA
(Weighted Gene Co-Expression Network Analysis). (A) The cluster

dendrogram of modular genes associated with macrophage infiltration.
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(B) Heatmap of module-trait relationships associated with macrophage
infiltration. (C) Module genes relevant heatmap related to macrophage

infiltration. (D) Scatter plot of correlation between modules and
gene features.

SUPPLEMENTARY FIGURE 2

Sample clustering, molecular typing, and prognosis evaluation analyses
based on TAMs-related-genes. (A) Subtypes of clustering profiles

obtained through analysis of the expression profiles of TAMs-related-

genes in TCGA-LUAD samples (consensus matrix k=3). (B) Subtypes of
consistent clustering profiles obtained through analysis of the expression

profiles of TAMs-related-genes in GSE13213 samples (consensus matrix
k=3). (C) Subtypes of the consistent clustering profiles obtained from

GSE31210 samples (consensus matrix k=2). (D) Clustering profiles from
GSE72094 samples (consensus matrix k=2). (E) GSE8894 samples

(consensus matrix k=3). (F) Survival analysis of different cluster subtypes

in TCGA-LUAD samples. (G) Results of survival analysis of different cluster
subtypes in GSE13213 samples; The horizontal axis represents survival

time; the vertical axis represents survival probability; Curves with different
colors represent different cluster subtypes. (H) Results of survival analysis
of different cluster subtypes in GSE31210 samples; The horizontal axis
represents survival time; the vertical axis represents survival probability;

Curves with different colors represent different cluster subtypes. (I)
Results of survival analysis of different cluster subtypes in GSE72094
samples; The horizontal axis represents survival time; the vertical axis

represents survival probability; Curves with different colors represent
different cluster subtypes. (J) Results of survival analysis of different

cluster subtypes in GSE8894 samples; The horizontal axis represents
survival time; the vertical axis represents survival probability; Curves

with different colors represent different cluster subtypes. (K) Results of

principal component analysis (PCA) on TCGA-LUAD samples; (L) Results
of principal component analysis (PCA) on GSE13213 samples; (M)
Results of principal component analysis (PCA) on GSE31210 samples;
(N) Results of principal component analysis (PCA) on GSE72094 samples;

(O) Results of principal component analysis (PCA) on GSE8894 samples.

SUPPLEMENTARY FIGURE 3

Single-cell data. (A) Number of genes expressed in cells; (B) Total counts.
(C) Mitochondrial gene expression. (D–I) UMAP (Uniform Manifold

Approximation and Projection) dimensionality reduction analysis results
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of TAM subgroups. (D) C1QA. (E) C1QB. (F) APOE. (G) C1QC. (H) Analysis
of TAM clusters. (I) Subtypes derived from re-clustering of TAM

cell populations.

SUPPLEMENTARY FIGURE 4

Screening of differentially expressed genes amongst tumor macrophage

subsets. (A) Dotplot of Top5 maker genes of each subtype. Abscissa axis:
marker genes. Ordinate axis: top5 of TAM subtypes. Colors: mean

expression per-group; Dot sizes represent the fraction of cells in each

group (%). (B–G) Violin plots of the expression of the top5 marker genes.
Abscissa axis: different TAM subtypes. Ordinate axis: gene expression.

SUPPLEMENTARY FIGURE 5

Pseudo-chronological analysis of tumor macrophages for simulation of
the dynamic changes of macrophages. (A–C)Differential states according
to monocle trajectory analysis, distribution of TAMs in trajectories, and

pseudo-sequences of differentiation. (D)Genes influencing differentiation
states in the clusters. Left column: different clusters. Right column: names

of genes. (E) Pathway enrichment analysis of different TAM subtypes.
Color: correlation; Red: positive correlation; Blue: negative correlation.

Numerical values: correlation p-value.

SUPPLEMENTARY FIGURE 6

Comparison of risk scores corresponding to the clinical characteristics of
the different groups. (A) Age, (B) Gender, (C) Radiation therapy. (E)
Pathologic T cells; (E) Tumor stage. Abscissa axis: Different groups.
Ordinate axis: risk scores. (F) Nomogram model for risk scores and

clinical factors according to the clinical characteristics of prognosis. (G)
Calibration curve for 1-year survival. (H). 2-year survival. (I) 3-year survival.
(J) 5-year survival. Abscissa axis: predicted probability of survival. Ordinate

axis: actual survival.

SUPPLEMENTARY FIGURE 7

Assessment of immunotherapy prognosis according to the risk score. (A)
Survival analysis of immunotherapy responses in the training set. Abscissa
axis: survival time. Ordinate axis: survival probability. Colors represent

different risk groups. (B) Comparative analysis of the proportion of

treatment response states between high and low risk groups. (C)
Comparat ive analysis of risk scores for different treatment

response states.
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