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Quantitative comparison of myocardial fiber
structure between mice, rabbit, and sheep using
diffusion tensor cardiovascular magnetic
resonance
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Abstract

Background: Accurate interpretations of cardiac functions require precise structural models of the myocardium,
but the latter is not available always and for all species. Although scaling or substitution of myocardial fiber
information from alternate species has been used in cardiac functional modeling, the validity of such practice has
not been tested.

Methods: Fixed mouse (n = 10), rabbit (n = 6), and sheep (n = 5) hearts underwent diffusion tensor imaging (DTI).
The myocardial structures in terms of the left ventricular fiber orientation helix angle index were quantitatively
compared between the mouse rabbit and sheep hearts.

Results: The results show that significant fiber structural differences exist between any two of the three species.
Specifically, the subepicardial fiber orientation, and the transmural range and linearity of fiber helix angles are
significantly different between the mouse and either rabbit or sheep. Additionally, a significant difference was
found between the transmural helix angle range between the rabbit and sheep. Across different circumferential
regions of the heart, the fiber orientation was not found to be significantly different.

Conclusions: The current study indicates that myocardial structural differences exist between different size hearts.
An immediate implication of the present findings for myocardial structural or functional modeling studies is that
caution must be exercised when extrapolating myocardial structures from one species to another.

Background
Computational studies are increasingly used to help
interpret empirical measurements or to investigate func-
tions of the body beyond experimental limitations.
Because structures of the myocardium such as the fiber
orientation play a deterministic role in its material prop-
erties and functional behaviours, accurate simulations of
cardiac functions require precise anatomical models of
the myocardium. Anatomy-based models of the myocar-
dium have been used in computational studies of both
electrophysiology [1,2] and mechanics [3-5] of the heart.
In electrophysiological studies, utilizing anisotropic fiber
orientation information has led to improved predictions

of the electrical activity in the heart [2,6]. Similarly,
incorporation of fiber structure into mechanical models
has helped better explain the structure-function rela-
tionships [7,8].
Despite the significance of the information, measuring

myocardial fiber orientation can be difficult, the key
challenges being the small size (notably for the mouse)
and availability of specimens (for humans). Tissue struc-
tures including myocardial fiber orientations are conven-
tionally measured using histology [9-13]. By
characterizing the anisotropy of water diffusion exerted
by the molecular environment, cardiovascular magnetic
resonance (CMR) diffusion tensor imaging (DTI) [14]
has emerged as a viable alternative with the advantages
of being non-destructive, relatively convenient, and
inherently 3D. Across the spectrum of species, the
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practical feasibility of DTI for characterizing the fixed
mouse heart has been demonstrated [15]. In contrast,
applications of DTI on the human heart are largely lim-
ited to in vivo studies [16-18], which, due to technical
limitations, continue to have relatively low spatial reso-
lution and measurement quality.
Two approaches have been undertaken to circumvent

the difficulties of acquiring subject-specific, or at least
species-specific, structural information for modeling.
First, generalized approximations of the structures are
used. The most common examples of this approach
include the prolate spheroidal representation [11] and
the linearly varying (as a function of transmural depth)
myocardial fiber orientation of the left ventricular myo-
cardium [19,20]. Second, when species-specific informa-
tion is unavailable (e.g., in the cases of mouse and
human hearts), the myocardial structure for the species
is simply substituted by that from another [4,21]. The
obvious drawback of either approach, especially the sec-
ond one, is that its validity is essentially untested, due to
the very same reason of scarcity that prompted its use.
To date, although myocardial structures have been
examined using DTI and other techniques in individual
species, few studies have systematically and quantita-
tively investigated their variability across different spe-
cies. The dissimilar methodologies (e.g., specimen
preparation, scan parameters, myocardial regions and
structural parameters examined) employed among dif-
ferent studies make direct comparisons difficult, even
for a retrospective study. There has been one anecdotal
report comparing a single human heart to a group aver-
age of canine hearts [22], which found that the human
heart appeared more different than the canine hearts
were from one another, though the statistical signifi-
cance was undetermined.
The goals of the current study are to perform a sys-

tematic comparison of the myocardial structures, as
characterized by DTI, among different species, and to
test the validity of modeling the myocardium of one
species using the known parameters from another.
Because of the high number of animal species in exis-
tence, a comprehensive study of this kind is practically
prohibitive. Instead, the study focuses on 3 species span-
ning the spectrum of the size of the heart, including the
mouse (small), rabbit (medium), and sheep (large),
which have all been used in both experimental and
computational studies of cardiac functions.

Methods
DTI datasets of fixed, intact normal mouse (male 129/
ola strain, n = 10), rabbit (male New Zealand, n = 6)
and sheep (castrated male Dorsett, n = 5) hearts were
retrospectively obtained from unrelated studies
[15,23,24] that were all approved by the appropriate

Institutional Animal Care and Use Committees at the
respective institutions (see referenced studies for
details). Inclusion of all available data was considered
more important than the unequal sample size, which
can be accounted for through the statistical analysis.
Rabbit and mouse hearts were flushed with saline and
fixed in formalin immediately after excision. The sheep
hearts were perfused with KCl prior to a saline flush.
None of the hearts were fixed with left ventricular trans-
mural stress, so their conformation approximately corre-
sponded to either the end-systolic (for the mouse and
rabbit hearts) or beginning-diastolic (sheep hearts) state.
Due to the different sizes of the heart specimens, MRI

scans were conducted using different instrumentation
(e.g., scanner field strength and RF coil size) and scan
parameters (see Table 1). However, the DTI experiments
were deemed comparable in terms of the encoding
scheme (encoding directions and b factor), relative pixel
size (with respect to the heart size), and SNR of the
non-weighted (i.e., b0) scan. Each DTI dataset consisted
of a single non-weighted and 12 diffusion-weighted 3D
spin echo scans (128 × 128 × 128 matrix size) encoded
in each of the same optimized set of 12 gradient direc-
tions. A schematic of the overall image-processing pipe-
line is pictured in Figure 1 and is described below. The
diffusion-weighted scans were acquired and recon-
structed using a novel “reduced encoding” DTI metho-
dology [25], which combined partial k-space sampling

Table 1 Anatomical, imaging and computed parameters
for DTI scans on the mouse, rabbit, and sheep hearts.

Mouse
(n = 10)

Rabbit
(n = 6)

Sheep
(n = 5)

Anatomical parameters

Apex-to-base length 6.7 ± 0.5
mm

19.5 ± 1.9
mm

76.6 ± 6.8
mm

LV wall thickness 1.5 ± 0.4
mm

3.9 ± 0.5
mm

12.5 ± 1.1
mm

Imaging parameters

Scanner field strength 9.4 T 7.1 T 2 T

RF Coil diameter 1.4 cm 4 cm 10 cm

FOV 12.8 mm3 3.2 cm3 10 cm3

Pixel size 0.10 mm 0.25 mm 0.78 mm

Diffusion pulse width 5 ms 5 ms 10 ms

Diffusion pulse
separation

7.5 ms 7.7 ms 15 ms

Maximum gradient 50 G/cm 40 G/cm 18 G/cm

Diffusion weighting b
factor

1130 s/
mm2

748 s/mm2 1175 s/mm2

Computed parameters

LV wall thickness in
pixels

15.6 ± 3.6 15.7 ± 2.0 16.0 ± 1.4

SNR of non-weighted
scan

95 ± 15 102 ± 32 125 ± 34

When applicable, the entries are mean ± SD.
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and generalized-series reconstruction [26], and has been
shown to offer significantly improved DTI acquisition-
time efficiency (i.e., fiber orientation mapping accuracy
versus scan time). The scan time for each DTI dataset
was the same, approximately 9.1 hrs. Subsequently, dif-
fusion tensors were estimated using a nonlinear least
squares curve fitting on a voxel-by-voxel basis and diag-
onalized to determine the corresponding eigenvectors
and eigenvalues.
To obtain anatomically matching regions-of-interest

(ROIs) for consistency of the analysis, the cardiac
volumes were realigned via rigid body rotation using

nearest neighbour interpolation so that the long axis of
the left ventricle (LV) was approximately perpendicular
to the image slices (i.e., the image slices corresponded
to the true short-axis slices of the heart). The long axis
was defined as the straight line connecting the apex of
the heart through the approximate location of the tissue
between the mitral and aortic valve as visually deter-
mined for each heart [12]. Myocardial structure repre-
sented by fiber helix angle was obtained in the mid-
hemispheric region of each specimen where the LV was
mostly cylindrical and can be most consistently and
easily identified among the species. The myocardial fiber

Figure 1 Overview of image processing pipeline for data analysis. Processing pipeline includes (a) realignment of images, (b) determination
of fiber helix angle, and (c) sampling of helix angle.
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orientation helix angle was calculated as the inclination
angle of the projection of the diffusion tensor principal
eigenvector with respect to the circumferential imaging
plane [10].
Without loss of generality, the myocardial structural

parameters of the left ventricle were investigated at 4
wedge-shaped ROIs, at (a) the middle of the septum, (b)
the anterior free wall, (c) the lateral free wall, and (d)
the posterior free wall, as schematically depicted in
Figure 2. The anterior and posterior regions were placed
midway between lateral free wall and the insertion
points of the right ventricle. Within each wedge, the
helix angles were sampled transmurally in 1.5-degree
increments on 3 contiguous image slices for a total of
33 trajectories for each ROI in each heart.
Once the transmural fiber helix angles were sampled,

each trajectory was processed for consistent demarca-
tion of the epicardium and endocardium end-points.
The epicardial end-point was taken as the minimum in
the helix angle trajectory. The determination of the
endocardial end-point was sometimes complicated by
the presence of papillary muscles. Since in these
instances the papillary muscle gave rise to a plateau in
the helix angle trajectory, the beginning of the plateau
was chosen as the endocardial cut-off. Following the
definition of the two end-points, the helix angle trajec-
tory was fitted to a straight line. The fitted y-intercept
and r-squared value were used as the subepicardial fiber
orientation and a metric of the linearity of the trans-
mural rotation of the LV helix angle, respectively. Addi-
tionally, the range of the helix angles from the
epicardium to the endocardium was computed to quan-
tify the amount of transmural fiber rotation. The range
was picked instead of the slope in order to eliminate the

need for normalization based on wall thickness. The
helix angle parameters for all trajectories in each ROI
were then averaged for each animal.
Finally, to investigate the inter-species and inter-ROI

variability of the myocardial structure, SAS™ software
was used to fit a linear mixed model to the data and
determine significance through the appropriate f or t-
test using procedure MIXED (SAS Inst. Inc., Cary, NC).
The different species and regions of interest were trea-
ted as fixed factors while the individual animal was trea-
ted as a random factor. The effect of the interactions
between the species and region as well as the subepicar-
dial helix angle, linearity of transmural rotation, and
range of helix angle were tested. A p-value of 0.05 was
considered significant.

Results
Myocardial fiber orientations obtained in representative
mouse, rabbit and sheep heart specimens are visualized
in Figure 3, which consists of falsecolor-coded fiber
orientation helix angle maps, and fiber orientations of
the same short-axis slice rendered as cylindrical rods
viewed obliquely from an elevated angle. Qualitatively,
both methods visualization show the expected counter-
clockwise transmural rotation of cardiac fibers from epi-
cardium to endocardium. The fiber helix angles for the
mouse appear to have a greater range than either that of
the rabbit or the sheep.
More precisely, representative transmural plots of the

fiber orientation helix angle for the mouse, rabbit and
sheep are shown in Figure 4. The helix angle trajectories
for all species and zones also exhibit the expected coun-
ter-clockwise transmural rotation of the helix angle
from epicardium to endocardium, confirming what is
observed in the visualization of the helix angles in
Figure 3. The trajectories are tightly clustered for each
group, and within each zone for a given heart, indicating
that the average for the wedge is an appropriate
approach of measurement. Qualitatively, the subepicar-
dial helix angle appears to be more negative in mouse
than in either rabbit or sheep. Additionally, the trans-
mural range the helix angle appears to be larger for the
mouse than either the rabbit or sheep. In contrast, the
behaviours of the transmural helix angle trajectories
appear to be similar across different circumferential LV
zones for all species.
The ROI-average values and standard deviations for the

range, subepicardial helix angle, and linearity are tabu-
lated in Table 2. The values for the helix angle range are
similar to previously reported values for the mouse [15],
rabbit [13], and sheep [27]. The transmural course of the
helix angle appears to be more linear in the mouse than
in the rabbit or sheep with a higher r-squared value in all
zones for mouse than rabbit or sheep. Similarly, the

Figure 2 Schematics of the ROIs for myocardial structural
analysis. ROIs include (a) mid septal wall, (b) anterior, (c) lateral,
and (d) posterior free wall of the left ventricle. The same ROIs are
defined for 3 consecutive image slices at the left ventricular
equatorial plane, and myocardial structural parameters are sampled
transmurally along radial paths separated by 1.5, for a total of 33
trajectories for each circumferential location for each heart.
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Figure 3 Visualization of myocardial fiber orientation for representative mouse (a, d), rabbit (b, e) and sheep (c, f) heart specimens.
The myocardial fibers from the same short-axis slice are shown either as rendered cylindrical rods (a, b, c) inside semi-opaque volumes of the
hearts viewed obliquely from an elevated perspective, or as falsecolor-coded helix angle maps.

Figure 4 Transmural trajectories of the myocardial fiber helix angle. Myocardial fiber helix angles (in degrees) are shown as a function of
circumferential ROI from representative mouse, rabbit, and sheep hearts. All individual trajectories are aligned at where the helix angle is zero to
better show the slight variability in the ventricular wall thickness and the regional helix angle.
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range of helix angles is greater and the subepicardial
helix angle is more negative in the mouse than either the
rabbit or sheep. Results of the mixed factor analysis show
that there are significant differences between mouse and
sheep and mouse and rabbit (p < 0.01) for the subepicar-
dial helix angle, range, and linearity of transmural helix
angle, summarized in Table 3. Region did not have a sig-
nificant effect on the range (p = 0.49) or linearity of fit
(p = 0.27) but did on the subepicardial helix angle
(p < 0.01). Specifically, the anterior free wall is different
from the lateral free wall (p = 0.03) and the septal wall
(p < 0.01) and the posterior free wall is significantly dif-
ferent from the septal wall (p < 0.01). Between the rabbit
and sheep subepicardial helix angle and the transmural
linearity were not significantly different (p = 0.34 and
0.39 respectively), however range of helix angle was
found to be significant (p < 0.01).

Discussion
Comparisons of the fiber helix angles indicate that there
are significant myocardial fiber structural differences
between any given two of the three species included in
the current study. Specifically, the range of helix angles
is larger, the subepicardial helix angle is significantly
more negative, and the transmural course of the helix
angle is more linear in mouse than in rabbit or sheep.
Additionally, the range of the helix angles is significantly

different between the rabbit and sheep, although neither
the subepicardial angle nor the transmural linearity was
significantly different between the two species. These
findings strongly suggest that there exists species-depen-
dent variability the myocardial fiber structure, at least in
the LV as a function of animal size. This species-depen-
dent variability would suggest differences are likely
between human and animal myocardial fiber structure
as well. An immediate implication of the finding is that
cross-species substitution of myocardial fiber structural
models is not a valid modeling practice.
The exact functional implications of the fiber struc-

tural differences among species are currently unclear,
and are an obvious direction for future investigation.
Based on the known structure-function relationships of
the myocardium, at a minimum, one likely biomechani-
cal impact of differing fiber structure is altered ventricu-
lar torsion. Since the transmural rotation of the
myocardial fiber orientation is linked to the twisting
motion of the heart [28], it is reasonable to predict that
greater ventricular torsion would be associated with the
larger transmural range of fiber helix angle found in
smaller hearts. The increased torsion, in turn, would
help compensate for the fewer myocytes spanning the
ventricular thickness in maintaining the contractile effi-
ciency. Indeed, a recent study on wall motion [29] indi-
cated that there were significant variations among
mouse, rat, and human hearts, specifically that latter
had smaller torsion than either of the former two. Since
human hearts are closer in size to sheep hearts, a possi-
ble explanation for the difference could be the size-
dependent difference of the fiber structure.
One possible limitation of the current study exists in

the different preparation of the fixed heart specimens,
that the sheep hearts were perfused with KCl and thus
fixed in the beginning-diastole state. In a previous study
[30], it was determined that there was no significant dif-
ference between hearts fixed in an end diastolic and
beginning systolic state but there was between the end

Table 2 Measured myocardial fiber orientation.

Species Septal wall Lateral free wall Anterior free wall Posterior free wall

Range Mouse 129.8 ± 12.9 124.2 ± 18.8 127.7 ± 16.7 123.5 ± 17.9

Rabbit 82.5 ± 17.9 75.8 ± 15.2 72.7 ± 19.1 78.7 ± 12.8

Sheep 59.5 ± 16.1 58.2 ± 14.2 52.1 ± 14.3 58.1 ± 15.5

Subepicardial Helix Angle Mouse -58.6 ± 9.53 -50.2 ± 14.7 -35.9 ± 14.6 -46.9 ± 14.4

Rabbit -42.6 ± 14.9 -29.9 ± 14.6 -27.7 ± 11.4 -23.7 ± 13.9

Sheep -28.2 ± 19.2 -30.2 ± 8.74 -24.3 ± 9.64 -26.6 ± 9.26

Linearity Mouse 0.98 ± 0.011 0.99 ± 0.011 0.97 ± 0.025 0.98 ± 0.017

Rabbit 0.93 ± 0.14 0.94 ± 0.038 0.94 ± 0.050 0.97 ± 0.028

Sheep 0.91 ± 0.070 0.95 ± 0.044 0.95 ± 0.055 0.94 ± 0.052

Fiber orientation is as characterized by the transmural range and linearity of the fiber helix angle, and subepicardial helix angle, as functions of both species and
circumferential location of the ROI. Both the angular range and subepicardial angle are reported in degrees, whereas the linearity is dimensionless. All entries are
mean ± SD.

Table 3 Summary of mixed analysis comparison of
myocardial fiber orientation helix angle parameters in
Table 2.

Comparison pairing Mouse/
Sheep

Mouse/
Rabbit

Rabbit/
Sheep

Range Yes Yes Yes

Subepicardial Helix
Angle

Yes Yes No

Linearity Yes Yes No

“Yes” entries indicate that a significant difference was found for the
comparison for the measure indicated.
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diastolic and end systolic states. The differences in the
myocardial fiber angles between different cardiac states
were mainly attributed to the presence or absence of
intraventricular volume. Consequently, because all heart
specimens were fixed without intraventricular volume
(or transmural stress) in the present study, perfusion
with KCl is unlikely the cause of the different myocar-
dial fiber structures observed between the sheep and
either rabbit or mouse hearts.
A second potential limitation of the present study may

exist in the inadvertent misalignment (e.g., in the deter-
mination of the cardiac long axis) of the image data,
which would introduce systematic errors in the myocar-
dial fiber angular measurements. To investigate the
degree to which such misalignment could impact the
current measurements, the image data of selected hearts
were deliberately tilted in the left-right or anterior-pos-
terior axis by 10°, and the angular measurements were
repeated in all circumferential regions of the hearts. The
results (not shown) indicate that the deliberate misalign-
ment introduced statistically insignificant differences in
all measurements, including the transmural range and
linearity of the helix angle. One the one hand, the error
in determining the cardiac long axis was estimated to be
less than 10°. On the other hand, in the extreme case
that the misalignment occurs in either the left-right or
anterior-posterior axis, which would cause maximum
systematic errors in angular measurements in the
regions along the same axis, the effects were found to
be insignificant. Therefore, the myocardial fiber struc-
tural differences observed in the current study are unli-
kely a result of errors in the alignment of the data.
Finally, it is worth noting that the methodology of data

analysis employed in the current study relied on manual
registration and ROI-based comparisons, which are com-
monly used in both DTI [23,31,32] and non-DTI [10,33]
studies of myocardial fiber structures. Advances in com-
putational anatomy have made it possible to achieve
more precise image data registration and perform voxel-
based analysis via techniques such as large deformation
diffeomorphic metric mapping (LDDMM) [34]. More-
over, besides the fiber structure, the myocardial laminar
or sheet structure [12] has been a subject of recent DTI
studies [35-37]. These areas of investigation, including
their technical challenges (e.g., increased likelihood of
false positive differences when performing a large num-
ber of comparisons), are beyond but not precluded by the
scope and findings of the current study. Conversely, stu-
dies either using more sophisticated data analysis techni-
ques or examining more dimensionalities of the data
likely will uncover details that only underscore the pre-
sent findings, that significant differences exist in the
myocardial structures among different species.

Conclusions
In summary, significant differences in the myocardial
fiber structure as represented by the fiber helix angle
were observed between any two of the three species
investigated in the current study. The range of the helix
angle, subepicardial helix angle, and linearity of the
transmural rotation of the helix angle through the left
ventricle were all significantly different between the
mouse and rabbit and between mouse and sheep. Simi-
larly, the transmural range of the helix angles was signif-
icantly different between the rabbit and the sheep.
Although how these findings can be generalized to spe-
cies not included in the current study is unclear, there
is indication that myocardial structural differences exist
between different size hearts. An immediate implication
of the present findings for myocardial structural or
functional modeling studies is that caution must be
exercised when extrapolating myocardial structures from
one species to another.
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