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Abstract
Background: The mammalian target of rapamycin protein (mTOR) is an evolutionarily conserved
kinase that regulates protein synthesis, cell cycle progression and proliferation in response to
various environmental cues. As a critical downstream mediator of PI3K signaling, mTOR is
important for lymphocyte development and function of mature T and B-cells. Most studies of
mTOR in immune responses have relied on the use of pharmacological inhibitors, such as
rapamycin. Rapamycin-FKBP12 complex exerts its immunosuppressive and anti-proliferative effect
by binding outside the kinase domain of mTOR, and subsequently inhibiting downstream mTOR
signaling.

Results: To determine the requirement for mTOR kinase activity in the immune system function,
we generated knock-in mice carrying a mutation (D2338) in the catalytic domain of mTOR. While
homozygous mTOR kd/kd embryos died before embryonic day 6.5, heterozygous mTOR+/kd mice
appeared entirely normal and are fertile. mTOR +/kd mice exhibited normal T and B cell
development and unaltered proliferative responses of splenocytes to IL-2 and TCR/CD28. In
addition, heterozygousity for the mTOR kinase-dead allele did not sensitize T cells to rapamycin in
a CD3-mediated proliferation assay. Unexpectedly, mTOR kinase activity towards its substrate 4E-
BP1 was not decreased in hearts and livers from heterozygous animals.

Conclusion: Altogether, our findings indicate that mTOR kinase activity is indispensable for the
early development of mouse embryos. Moreover, a single wild type mTOR allele is sufficient to
maintain normal postnatal growth and lymphocyte development and proliferation.

Background
The mammalian target of rapamycin (mTOR) is a serine-
threonine kinase and a member of the phosphoinositide
kinase related-kinase family (PIKK), which is evolutionary
conserved from yeast to humans. mTOR acts as a sensor

kinase that coordinates cellular response to growth fac-
tors, nutrients and energy availability in mammalian cells
[1,2]. Natural product rapamycin, in complex with immu-
nophilin FKBP12, binds the FKBP12-rapamycin binding
(FRB) domain of mTOR and inhibits phosphorylation of
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downstream substrates 4E-BP1 and S6K1 [3]. One of the
established roles of mTOR within the "rapamycin-sensi-
tive" mTORC1 complex is to enhance translation rates
though the direct phosphorylation of S6K1 and 4E-BP1 in
response to mitogen and nutrient stimulation. Another,
functionally distinct "rapamycin-insensitive" mTORC2
complex phosphorylates AKT and regulates cytoskeletal
organization in yet understood fashion. [4]. To date, it is
clear that mTOR signaling controls cell cycle progression,
cell growth and proliferation by fine-tuning multiple met-
abolic circuits at the cell autonomous or organismal level.
In many human cancers, deregulation of mTOR signaling,
which is caused by the loss of critical tumor suppressors
(PTEN, TSC1/2, LKB1), somatic mutations or gene ampli-
fications of PI3CA (p110 alpha subunit of PI3K) or acti-
vating mutations in AKT, ultimately leads to increased cell
growth, cell survival, and suppression of autophagy [5].

Previous studies of the in vivo functions of mTOR in adult
metazoans were hampered by the early embryonic
lethality or developmental arrest of TOR loss-of-function
mutants. [6-9]. On the other hand, blocking mTOR with
rapamycin, an agent that exhibits potent immunosup-
pressive efficacy in animal models and in clinics, provided
important clues for the current understanding of mTOR
function in immune responses. For example, rapamycin
suppresses T cell proliferation in part through its inhibi-
tory effects on cytokine production, cytokine signaling,
and on T cell receptor/CD28 mediated lymphocyte activa-
tion [10]. The above effects are linked to the integral role
of mTOR in control of G1- to S- phase of cell cycle. While
the exact molecular mechanisms by which mTOR controls
T cell division remain unknown, mTOR is responsible for
activation of Cdk2 and Cdc2 kinases, downregulation of
p27Kip1 and the induction of D-cyclins [11-13]. More
recent study has demonstrated a direct physical associa-
tion between mTOR, aurora B, S6K and 4E-BP1 that deter-
mines G1-S checkpoint in T cells [14]. Specifically, Aurora
B and mTOR cross-regulate each other: rapamycin reduces
aurora B kinase activity and aurora B – mediated events,
such as Rb phosphorylation, induction of cyclin A and
activation of Cdk1 and Cdk2 in primed T cells, whereas
expression of aurora B enhances phosphorylation of S6K1
and 4E-BP1 [14]. Another report described a novel action
of mTOR as a regulator of T cell migration during immune
activation, where mTOR uniquely restricts the expression
of L-selectin CD62L, chemokine receptor CCR7 and
sphingosine 1-phosphate receptor type 1 (S1P1), presum-
ably through the downregulation of the transcription fac-
tor KLF2 in activated T cells [15]. In addition to T cells,
rapamycin can also interfere with B cell activation, prolif-
eration and development, as well as with the function of
mast cells [16-19].

Although mTOR is a downstream player of PI3K-Akt sign-
aling pathway in numerous cell types, it can also respond

to PI3K-independent signals, such as levels of amino acids
or energy status. Indeed, cooperation between mTOR and
PI3K signaling is important for proper regulation of lym-
phocyte size, metabolic activity, and cell cycle progres-
sion. Rapamycin and LY294002, a PI3K inhibitor, can
target parallel pathways; combining LY294002 and
rapamycin in human peripheral blood lymphocytes
(PBL) stimulated by TCR or in human Kit225 cells
induced by IL-2 leads to a synergystic suppression of pro-
liferation. This correlates with differential effect of each
drug on Cyclin D2 and Cyclin D3 expression [13].
Another example of where mTOR kinase can be stimu-
lated in a PI3K-independent fashion is transformed B cell
lines, in which induction of mTOR signaling, but not of
PI3K or MEK, is sensitive to the withdrawal of nutrients
[20].

Blocking mTOR signaling with rapamycin is largely
explained by the inhibitory effect of the drug on mTORC1
complex. In this context, rapamycin acts as an allosteric
mTOR inhibitor that does not bind the ATP binding
pocket of mTOR kinase. However, the exact mechanism of
how rapamycin inhibits mTOR signaling is not fully
understood. One of the possibilities is that it blocks
kinase-independent functions of mTOR by disrupting
interactions between mTOR and its binding partners.
Indeed, rapamycin is known to dissociate raptor-mTOR
interactions resulting in attenuated recognition of sub-
strates by mTOR [21] or to abolish phosphatidic acid
binding to mTOR [22]. Additional, kinase-independent
mechanism of rapamycin action is known in yeast, where
rapamycin activates protein phosphotase 2A [23]. This
and the emergence of mTORC2, a complex that is insensi-
tive to acute rapamycin treatment, suggests a presence of
previously unrecognized, mTOR kinase-dependent bio-
logical responses that are not blocked by rapamycin.

To understand the functional relevance of mTOR enzy-
matic activity in mouse development and in immune
responses in vivo, we generated kinase-dead knock-in
mutant mice. This strategy allowed us to avoid "second-
ary" effects that could be caused by conventional gene dis-
ruption and to ensure appropriate relative stoichiometry
between mTOR and other components of mTORC1 and
mTORC2 complexes. Our results reveal a critical role for
mTOR kinase catalytic activity for the early embryonic
development. Because of the lethality of homozygous
mTOR knock-in embryos, we analyzed the lymphocyte
development, proliferative responses and lymphocyte
sensitivity to rapamycin in vitro in heterozygous animals.

Results
Generation of mTOR D2338A knock-in mice
To understand the in vivo role of the mTOR kinase cata-
lytic activity, we set out to generate knock-in mice with a
targeted replacement of the wild type mTOR allele with a
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mutant version in which Asp 2338 was changed to Ala
(D2338A) (Fig 1, Methods). This D2338A substitution
(Fig. 2A) is well known to eliminate phosphotransferase
activity in vitro and suppress mTOR signaling in cell cul-
tures or in vivo [24-28]. Correctly targeted ES clones har-
boring a mutant mTOR allele with PGK-Neo cassette were
identified by Southern blotting with an appropriate probe
(see Additional file 1). Genotyping of the heterozygous
mTOR kinase-dead (mTOR+/kd) mice was achieved by
PCR analysis of genomic DNA. As expected, approxi-
mately 332-bp and 405-bp fragments were obtained from
the wild-type and kinase-dead mutant alleles, respectively
(Fig. 2B, Methods). Presence of D2338A mutation in the
offspring mice was further confirmed by conventional
sequencing of the amplified fragments or by pyrosequenc-
ing (data not shown).

Embryonic lethality of mTOR homozygous kinase-dead 
knock-in mice
Intercrossing of heterozygous animals followed by PCR
genotyping of the offspring revealed that no homozygous
pups can be recovered at birth. Wild-type and hetero-
zygous mice however, were born at the expected 1:2 ratio
(of the 101 first-generation mice, 29 were +/+ and 72 were
+/kd, Table 1), indicating that mTOR kinase-dead muta-
tion is recessive embryonic lethal. Next, to determine the
time of embryonic lethality, embryos were collected at dif-

ferent stages of gestation. Strikingly, no homozygous
mTOR kd/kd embryos were detected at embryonic day
16.5 (E16.5), 13.5, 12.5, 8.5, or 6.5 (Table 1). These find-
ings demonstrate that mTOR kinase-dead embryos die
within E6.6 stage and are consistent with a role of mTOR
in early embryonic development.

General phenotype of mice heterozygous for the mTOR 
knock-in allele
Heterozygous mTOR kinase-dead mice were fertile and
healthy. It was previously reported that heterozygous
PI3K/p110α kinase-dead knock-in mice and S6K1 knock-
out mice exhibit reduction in body weight [29,30]. There-
fore, we compared body weights among mTOR+/+ and
mTOR+/kd mice during postnatal growth. There was no

Generation of mTOR kinase-dead knock-in miceFigure 1
Generation of mTOR kinase-dead knock-in mice. 
Schematic map of the wild-type mTOR gene locus, targeted 
allele before and after Cre recombination. Exons are repre-
sented by white boxes. LoxP sites are shown as black boxes. 
Positions of Southern blot probes, PCR primers, and restric-
tion enzyme sites are indicated. PGK-Neo, neomycin resist-
ance gene. Asterisk shows D2338A mutation in exon 50.

WT

Targeted
Allele

Knock-In
Allele

50 stop
HindIII HindIII

*
p25 p13

probe

6.9 kb

stop
HindIII HindIII

PGK neo

50

*

50

4.8 kb

stop
HindIII HindIII

CRE

mTOR kinase-dead allele and its confirmation in miceFigure 2
mTOR kinase-dead allele and its confirmation in 
mice. (A) Nucleotide and corresponding amino acid 
sequence of the wild type or mutated allele. (B) PCR-based 
genotyping using genomic DNA and a primer set (p13 and 
p25) flanking the remaining loxP site. The 332 bp band corre-
sponds to the wild type allele, while 405 bp band corre-
sponds to the mutant allele containing the remaining loxP 
site.
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Table 1: Genotypes of offspring from intercrosses of mTOR+/kd 
mice.

Genotype
Age +/+ +/kd kd/kd Resorbed Total

E6.5 2 7 0 0 9
E8.5 1 8 0 0 9
E12.5 3 6 0 0 9
E13.5 2 19 0 0 21
E16.5 4 8 0 3 12
3 weeks 29 72 0 N/A 101

N/A, not applicable
Genotyping of embryos was performed by PCR as in Fig. 2B. Number 
of embryos with corresponding genotypes is shown.
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significant difference in body weights or pattern of
growth, organ size, gross appearance or behavior observed
between wild type and heterozygous mice at least up to 14
months of age (Fig. 3; data not shown). Although hetero-
zygous male mice were slightly smaller during weeks 4–6,
the average body weights were not statistically different
from those of wild type males (p > 0.05).

mTOR mRNA and protein expression in mTOR 
heterozygous kinase-dead knock-in mice
RT-PCR was used to determine the transcript levels of
mTOR in heterozygous mTOR kinase-dead vs. wild-type
mice. mTOR mRNA expression was analyzed in the heart
tissues from two pairs of mTOR+/+ and mTOR+/kd ani-
mals using two different primer sets. Similar levels of
mTOR mRNA were detected in both wild-type and heter-
ozygous kinase-dead mice (Fig. 4A), indicating that the
presence of point mutation and of the remaining loxP site
in the downstream intron does not affect mTOR mRNA
expression in the heterozygous mice. We also compared
mTOR protein expression in the heart tissues of mTOR+/
+ and mTOR+/kd mice by Westtern immunoblot. Quanti-
fication of mTOR protein expression levels from two pairs
of mTOR+/+ and mTOR+/kd mice did not reveal any sig-
nificant difference between two genotypes (Fig. 4B). These
results indicate that mTOR heterozygous kinase-dead ani-
mals express full-length mTOR protein at normal levels
and are consistent with our RT-PCR data.

Immunological phenotype of mTOR kinase-dead 
heterozygous mice
Given the inhibitory effects of rapamycin on T- and B-cell
mediated immune responses, we analyzed relative distri-

bution of immune cell subsets in thymus, spleen, and
bone marrow of mTOR+/+ and mTOR+/kd littermates.
Flow cytometric analysis revealed no differences between
mTOR+/+ and mTOR+/kd mice in the percentages of dou-
ble negative, double positive and single positive CD4 and
CD8 expressing cells in the thymus (Fig. 5). In the periph-
ery, the proportions of splenic CD4 and CD8 T cells were
also comparable. Moreover, we did not observe signifi-
cant changes in the number of T cells detected with CD3
antibody in thymi and spleens of mTOR+/kd mice (see
Additional file 2). Collectively, these findings indicate
that T cell maturation in thymus or periphery is not per-
turbed in mTOR+/kd mice. We also investigated B cell
development in mTOR heterozygous mutant mice. The
levels of more mature IgM+ B220+ and IgM+ CD19+ B
cells in the bone marrow were comparable in mTOR+/+
and TOR+/kd littermates (Fig 6A). However, the bone
marrow of mTOR+/kd mice had slightly reduced fraction
of IgM- B220+ and IgM- CD19+ B cells. Finally, our anal-
ysis revealed no difference in the proportions of B-lym-
phocyte populations in the spleens of wild-type and
mTOR+/kd mice (Fig. 6B). These results show that pres-
ence of a single functional mTOR allele is sufficient to
support the T- and B-cell development in mice.

Mature T cell proliferation
Previous reports have demonstrated that rapamycin sup-
presses IL-2- and TCR/CD28-driven cell proliferation and
G1- to S-phase progression of T-cells. Furthermore, lower-
ing TOR levels with siRNA or genetically is known to
cause hypersensitivity to rapamycin in model organisms
and in vitro [8,31,32]. Specifically, growth of Drosophila
larvae that are heterozygous for dTOR was more pro-
foundly delayed in the presence of rapamycin compared
to the wild-type controls [8,31,32]. Therefore, we first
investigated proliferative responses of lymphocytes from
mTOR+/kd mice to various T cell stimuli. Proliferation of
splenic T cells in response to IL-2 stimulation, anti-CD3
stimulation alone or anti-CD3 antibody in combination
with IL-2 or with anti-CD28 was not impaired in mTOR+/
kd compared to wild-type mice (Fig. 7A and 7B). As
expected, treatment with 30 nM rapamycin potently
inhibited IL-2-driven proliferation of wild-type spleno-
cytes (Fig. 7A). Similar sensitivity to rapamycin was also
observed for the lymphocytes from mTOR+/kd mice.
Next, inhibitory effects of rapamycin on anti-CD3-
induced proliferation of wild-type and heterozygous cells
were compared using purified T cells grown in the pres-
ence or absence of different concentrations of the drug.
The proliferative response of T cells to anti-CD3 stimula-
tion was equally well inhibited by rapamycin with IC50
values of ~1 nM for cells of both genotypes (Fig. 8). These
results indicate that T cell proliferation is normal in
mTOR+/kd mouse and that a heterozygousity for a kinase-

Average body weights of mTOR+/kd knock-in miceFigure 3
Average body weights of mTOR+/kd knock-in mice. 
Shown are growth curves of female and male mTOR+/+ or 
mTOR+/kd animals. Values are means ± S.E.M., n = 4–15. F, 
female; M, male.
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Expression of mTOR in wild type and +/kd knock-in miceFigure 4
Expression of mTOR in wild type and +/kd knock-in mice. (A) RT-PCR analysis of mRNA from hearts of wild-type and 
mTOR+/kd mice using two different pairs of primers frto1 and frto2. β-actin is used as a positive control. (B) Immunoblot of 
mTOR in protein extracts (10 μg) from heart tissues of mTOR+/+ and mTOR+/kd mice and its semiquantification by densit-
ometry analysis. β-tubulin is loading control. Two independent pairs of +/+ and +/kd mice are shown.
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dead mTOR does not sensitize T cells to rapamycin in
vitro.

mTOR Kinase activity is normal in mTOR+/kd mice
Because only one catalytically active mTOR allele is
present in all tissues from the kinase-dead heterozygous
animals, we expected to observe nearly 50% loss in total
mTOR kinase activity. Immunoprecipitation of the mTOR

from heart and liver lysates of mTOR+/kd mice showed
no change in kinase activity, as measured by phosphoryla-
tion of exogenously added 4E-BP1 and by auto-phoshor-
ylation of the mTOR itself (Fig. 9, see Additional file 3).
This finding suggests that there may be a compensatory
up-regulation of mTOR activity in mTOR+/kd mice, as the
total expression of mTOR remains unchanged (see Fig. 4).

Analysis of T cell populations in mTOR+/kd miceFigure 5
Analysis of T cell populations in mTOR+/kd mice. Total cells from thymi and spleens were analyzed by flow cytometry 
with the indicated antibodies, as described in Methods. All plots show cells in the lympchocyte gate. Numbers indicate the per-
centage of gated cells in particular quadrant. The data are representative of three pairs of mice examined. Thymocytes and 
splenocytes were stained for CD4 and CD8.
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Analysis of B cell populations in mTOR+/kd miceFigure 6
Analysis of B cell populations in mTOR+/kd mice. Total cells from spleens and bone marrows were analyzed by flow 
cytometry as described in Methods. All plots show cells in the lympchocyte gate. Numbers indicate the percentage of gated 
cells in particular quadrant. The data are representative of three pairs of mice examined. (A) Bone marrow cells were stained 
for immunoglobulin M (IgM) and B220 (top) or IgM and CD19 (bottom). (B) Splenocytes were stained for IgM and B220 (top) or 
IgM and CD19 (bottom).
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Proliferative capacity of mTOR+/kd T cellsFigure 7
Proliferative capacity of mTOR+/kd T cells. (A) Proliferation of splenocytes after IL-2 stimulation. Spleen cells from 
mTOR+/+ and mTOR+/kd mice were stimulated with IL-2 in the presence or absence of rapamycin and proliferation was 
assessed by [3H] thymidine incorporation, as described in Methods. (B) Proliferation of spleen cells from mTOR+/+ and 
mTOR+/kd littermates in response to anti-CD3 with or without soluble anti-CD28 or IL-2 was measured as in (A). Data are 
expressed as % control. Results shown are representative of three experiments.
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Discussion
Current understanding of the in vivo role of mTOR in the
immune responses stems from the use of pharmacological
inhibitors of the PI3-kinase signaling and nutrient-sens-
ing mTOR pathway. The mTOR signaling inhibitor
rapamycin is a widely used immunosuppressive drug that
interferes with the lymphocyte function at multiple levels.
It acts in part, by inhibiting T- and B-cell proliferation, T
lymphocyte migration, or by promoting Treg cell differen-
tiation [15,16,33-35]. Cancer biology has generated sig-
nificant body of evidence indicating that rapamycin's
effects on mTOR kinase activity are incomplete or are at
times even different from the direct inactivation of kinase
activity by mutations [3,36]. Furthermore, the deletion of
mTOR gene in mice results in more pronounced pheno-
types than those induced by rapamycin [6,7,37]. To avoid
"secondary" effects caused by gene disruption we
attempted to generate mTOR kinase-dead knock-in mice
that will reflect the action of small molecule inhibitors
more accurately. Unexpectedly, we found that a single site
mutation in the mTOR kinase domain, a replacement of
aspartic acid at position 2338 with alanine is essential for
the early development of homozygous mouse embryos.
As demonstrated in multiple studies, D2338A change
renders mTOR kinase catalytically inactive, suggesting
that observed embryonic lethality is a direct consequence
of the loss of the mTOR kinase activity in vivo.

Similar to our report, early embryonic lethality was
described for mTOR null mice with complete or partial
(C-terminus) disruption of the mTOR gene [6,7].

Lethality of homozygous mTOR null embryos in these
studies was linked to the defect in inner cell mass (ICM)
and trophoblast proliferation of the blastocysts. Although
we have not determined the exact reason and the timing
of embryonic lethality in mTOR kd/kd mice, the fact that
no homozygous embryos can be recovered at E6.5 in our
study agrees well with developmental arrest of
homozygous mTOR null embryos at E5.5 [7]. The reason
why mTOR kd/kd mutant embryos cannot be detected at
the same stage when homozygous mTOR null embryos
are still present (E6.5 and E7.5), could be explained by the
possible contamination of the mTOR kd/kd embryos with
maternal tissue during the dissection procedure. Another
example underscoring the role of mTOR in embryonic
development is the ethylnitrosourea-induced "flat-top"

Response of mTOR+/kd T cells to rapamycinFigure 8
Response of mTOR+/kd T cells to rapamycin. Purified 
T cells from spleens of mTOR+/+ and mTOR+/kd mice were 
cultured on anti-CD3-bound plates in the presence of vari-
ous doses of rapamycin and proliferation was measured as in 
Fig 7. Data are expressed as % control. Results shown are 
representative of three experiments.
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mutation in the intron of mTOR [37]. The homozygous
flat-top mouse mutant embryos obtained during the
above study, however, survive to the much later stage
(E12.5) than mTOR kd/kd mice, presumably due to the
residual expression of the wild-type mTOR protein suffi-
cient to support the embryonic development at earlier
stages. In addition, profound defects in forebrain develop-
ment in both flat-top embryos and rapamycin-induced
phenocopy [38] were not observed in mTOR+/kd mice in
our study.

mTOR+/kd knock-in mice showed no gross morphologi-
cal or behavioral changes. This result is consistent with the
phenotypes of homozygous mTOR null mice, showing no
obvious anatomical defects. Furthermore, mTOR+/kd
pups exhibited normal body weights, which is also in
agreement with unaltered body sizes of heterozygous
mTOR null mice. The ability of mTOR+/kd knock-in mice
to progress through embryonic development and postna-
tal growth without obvious abnormalities suggests that a
single remaining wild-type mTOR allele is sufficient to
support normal mouse development. Interestingly, this is
in contrast to the phenotypes of mice heterozygous for the
kinase-dead knock-in mutation in PI3K p110α, which
show growth retardation linked to the decrease in skeletal
muscle mass [30].

Generation of the mTOR kinase-dead knock-in mice
ensured appropriate relative stoichiometry between
mTOR and other components of mTORC1 and mTORC2
complexes. For example, complete elimination of mTOR
expression in homozygous mTOR null mice leads to more
severe phenotype compared to the partial reduction in the
functional mTOR protein in the flat-top mutants. Because
mTOR+/kd mice contain one copy of wild-type allele and
one copy of kinase-dead D2338A allele, they are expected
to express normal levels of mTOR mRNA or a "full-
length" mTOR protein. While we were not able to distin-
guish the product of the mutant allele from the wild type
mTOR, our knock-in procedure did not interfere with
either mTOR mRNA level or the total amount of mTOR
protein in tissues from mTOR+/kd mice. Thus, an indis-
pensable role of mTOR in early embryogenesis is likely
due to the loss of its catalytic activity, rather than a disrup-
tion of mTOR containing protein complexes or a scaffold-
ing function of the mTOR, both of which cannot be ruled
out from the studies involving mTOR null or flat-top
mutants. Given the established effects of rapamycin in T
and B cell development, we examined the role of mTOR
in the immune system in mice heterozygous for the
kinase-dead mutation of mTOR. Surprisingly, FACS anal-
ysis of lymphoid compartments did not reveal any signif-
icant changes in T cell development in thymus or in
generation and maintenance of mature T cells in the
periphery of mTOR+/kd mice. While we have observed

somewhat decreased frequency of IgM-B220+ and IgM-
CD19+ subsets in the bone marrow, the precise stage of B
cell development at which this reduction occurs awaits
further investigation. Furthermore, the frequency of the
more mature B cell subsets in the bone marrow and spleen
was comparable between +/kd mice and their wild type
littermates, suggesting that the development and mainte-
nance of mature B cells were largely unperturbed in
mTOR+/kd mice. Multiple studies utilizing rapamycin
have also demonstrated a critical role for mTOR in the
response of T cells to TCR/CD28 initiated stimuli or IL-2
driven cell expansion. In the present report, however, we
found that IL-2 or CD3-mediated proliferative responses
of T cells were not compromised in mTOR+/kd mice.

Reduction of TOR gene dosage in other organisms is
known to cause hypersensitivity to rapamycin. For exam-
ple, heterozygous Drosophila dTOR larvae are much more
sensitive to rapamycin than wild type controls [8]. Com-
bination of mTOR siRNA and rapamycin had also syner-
gistic effect at inhibiting growth of several human cancer
cell lines [31,32]. Thus, we hypothesized that prolifera-
tion of T cells isolated from mTOR+/kd animals could be
more sensitive to the effects of the drug. Our finding that
wild type T cell proliferation in response to anti-CD3 was
inhibited by rapamycin in a dose-dependent manner with
an IC50 value of 1 nM is consistent with previous reports
[39,40]. Notably, proliferation of T cells of both geno-
types was similarly inhibited by the drug at all doses when
stimulated with CD3 anitbody or by 30 nM rapamycin
when IL-2 was present in the medium. In addition to com-
parable proliferative responses between +/kd and wild
type T cells, we found no significant alterations in the cell
cycle profile of +/kd thymocytes (see Additional file 4).
Thus, our data suggest that eliminating one functional
allele of mTOR does no affect immune system function in
mice.

There are two possible explanations of why mTOR+/kd
mice did not show significant phenotypes compared to
with wild type littermates. First, is that expected 50%
reduction in total mTOR kinase activity is not sufficient to
disrupt mTOR-related functions in mTOR+/kd mice. Sec-
ond, it is possible that there could be a compensatory
increase in catalytic activity of the protein generated from
the wild type allele to account for the loss of kinase activ-
ity by the kinase-dead protein. Our data show that
mTOR+/kd mice exhibit normal overall mTOR kinase
activity in at least heart and liver tissues. While more accu-
rate measurements of the total mTOR kinase activity and
phosphorylation of the downstream mTOR effectors 4E-
BP1 and S6K1 may be necessary, we think that compensa-
tory upregulation of the mTOR kinase activity in a hetero-
zygous setting is a possibility in at least some tissues.
Although no previous knock-out studies addressed a role
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for the mTOR in the immune system function, mice het-
erozygous for mTOR did not exhibit any obvious altera-
tions in morphology or growth, which is consistent with
our findings. Interestingly, Drosphila larvae heterozygous
for dTOR also grow at a similar rate as wild type controls
[8].

Conclusion
In summary, generation of mTOR kinase-dead knock-in
mice demonstrated a critical role for mTOR catalytic activ-
ity in normal embryonic development. Since mTOR+/kd
mice are indistinguishable from wild type in phenotypes,
further studies involving conditional tissue-specific inacti-
vation of mTOR will be necessary to clarify the role of
mTOR in immune system and in diseases such as cancer.

Methods
Targeting vector and chimeric mouse production
mTOR kinase-dead knock-in heterozygous mice were
developed in collaboration with Lexicon Genetics (Wood-
lands, TX) using a proprietary knock-in strategy. Briefly, to
create the mTOR kinase-dead mutation, Asp 2338 was
mutated to Ala in the pKOS28 genomic clone containing
region of the wild type mTOR allele. The kinase-dead
knock-in targeting vector was made by inserting a PGK
Neo cassette flanked by 2 LoxP sites 26 nt after the exon
50. The targeting vector was transfected into Lex-1 ES cells
(male) derived from the 129/SvEvBrd strain. Targeted ES
cell clones were grafted into embryos and embryos were
further implanted into female foster mice to generate chi-
meras. The PGK-Neo cassette was eliminated using Cre
recombinase transgene during spermatogenesis in chi-
meric males, leaving only loxP junction sequence in the
intron 50. Chimeric transmitting males were crossed into
C57BL/6 (albino) females to generate heterozygotes bear-
ing the point-mutated alleles. All experimental studies in
mice were approved by the animal care and user commit-
tee of Johnson & Johnson Pharmaceutical Research and
Development.

Genotyping of targeted ES cells, mice, embryos
Homologous recombination in targeted ES cell clones was
confirmed by Southern blot analysis. Genomic DNA was
digested with HindIII and hybridized to the 5' probe.
mTOR+/kd clones produced a 4.8 kb wild-type band and
a 6.9 kb targeted band containing PGK Neo cassette (see
Additional file 1). The genomic DNA of the offspring was
extracted from their tails by using DNEasy kit (Qiagen). A
set of two primers was used to amplify regions of genomic
DNA present in either wild type or knock-in animals. PCR
with the forward primer in intron 49 (p25; 5'-CTGTCA-
CATGTGCTCTGGTG-3') and the reverse primer in intron
50 (p13; 5'-CTGTCATCTTAGCTCAGTGATG-3') generates
a 332 bp fragment corresponding to a wild-type allele and
a 405 bp fragment specific for the mutant mTOR-kd allele.
To confirm the presence of the kinase-dead single nucle-

otide change mutations in the offspring mice, gel – puri-
fied PCR products were cloned into pcr2.1-TA vector
(TOPO TA Cloning Kit; Invitrogen, CA) according to the
manufacturer's instructions, and 10 independent clones
were sequenced. Pyrosequencing and sample preparation
was performed with PSQ 96MA analyzer in accordance
with the manufacturer's instructions (Biotage, Inc).
Genomic DNA was amplified with p25 and p13 (bioti-
nylated at 5' position) primers. The pyrosequencing
primer (PyrSeqF1; ACATTTTAGGCCTTGG) was comple-
mentary to the 16 bp common region 2 nucleotide
upstream of the mutation site. Embryo genotyping was
performed by PCR analysis of DNA isolated from either
the yolk sac or the whole embryos.

Body Weight
Body weight was measured with electronic balance at the
indicated age. Because of the natural difference in body
weight between males and females, each gender was ana-
lyzed separately. Data were expressed as mean ± SEM, n ≥
5 for all groups at all ages.

Flow Cytometric Analysis
mTOR+/kd mice were analyzed in parallel with age-
matched wild type siblings. Single cell suspensions from
the thymus and spleen were prepared by homogenization
of the organs with the blunt end of a syringe plunger and
were passed through a 70 μm nylon mesh cell strainer.
Bone marrow cells were obtained from femurs and tibias
by flushing with PBS using a 27-gauge needle and were fil-
tered through a nylon mesh. Splenic cells were depleted of
erythrocytes by osmotic lysis with 1XRBC lysis buffer (eBi-
oscience) according to manufacturer instructions. Cell
suspensions were washed once with 50 mL of staining
buffer (eBioscience), centrifuged for 4 minutes at 4°C
(400 g) and resuspended in staining buffer at 2 × 107 per
ml. Prior to staining, cells were pre-incubated with anti-
CD16/CD32 antibody cocktail (BD Biosciences) to block
nonspecific Fc binding. Aliquots of 106 cells were stained
with 1 μg of anti-CD4, -CD8, -CD3, -CD19, -IgM, or
CD45R/B220 (BD Bioscences) at 4°C for 20 minutes.
Monoclonal antibodies conjugated with phycoerythrin
(PE), fluorescein isothiocyanate (FITC), or cychrome
(CyC) were used in two- or three-color analyses. Flow
cytometry was performed on a FACScan flow cytometer
(BD Biosciences) and analyzed by using WinList 5.0 (Ver-
ity Software House) or FloJo (TreeStar) software. Cell
cycle analysis of thymocytes was performed by staining
with propidium iodide (BD Biosciences) according to the
manufacturer's protocol. Cell cycle phase distribution was
determined using ModFit (Verity Software House).

Lymphocyte Isolation and Proliferation Assays
Mouse spleens were extracted under sterile conditions.
Splenocyte cell suspensions were prepared as described
above. Following red blood cell lysis, splenocytes were
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washed in PBS, and resuspended at 2 × 106 per ml in
RPMI-1640 medium (Cellgro) containing 25 mM HEPES,
L-Glutamine, 10% heat-inactivated fetal calf serum, anti-
biotic-antimycotic solution (100×, Gibco), and 2-mercap-
toethanol (1000×, Gibco). 2 × 105 cells were plated in 96-
well flat-bottom plates (Corning). Cells were further stim-
ulated for 72 h with or without recombinant human IL-2
(10 U/well, R&D Systems), plate-bound anti-CD3 MAb
(BD Biosciences, pre-coated at 2 μg/ml), 10 μg/ml anti-
CD28 MAb (BD Biosciences) or IgG. When indicated, 10
μl of the medium containing either DMSO or rapamycin
(Calbiochem, EMD Biosciences) was added prior to the
stimulation. For the last 8 hours, cultures were pulsed
with 1 μCi per well [3H] thymidine (GE Healthcare). Pro-
liferation was measured using a FilterMate Cell Harvester
(PerkinElmer) and counted with a TopCount NXT coun-
ter (PerkinElmer). All results are expressed as means ±
standard error of triplicate cultures. For rapamycin titra-
tion experiments, splenic T cells were purified from total
splenocytes with negative selection antibody mix
(CD11b, Ter-119, CD21, CD45R/B220, CD19), followed
by incubation with magnetic beads (Dynal, Invitrogen)
according to the manufacturer's specifications. Purified
cells were plated in commercially available anti-CD3
coated 96-well T cell activation plates (BD Biosciences)
and proliferation was assessed by the incorporation of
[3H] thymidine as described above.

Western blot analysis, Immunoprecipitation, kinase assay
Organs of interest were excised immediately after sacrific-
ing the animals and processed right away or stored at -
80°C until further analysis. Tissues were homogenized
using Ultra-Turrax T8 homogenizer in 3 ml ice-cold lysis
buffer containing 50 mM Tris-HCl pH7.4, 100 mM NaCl,
50 mM β-glycerolphosphate, 10% glycerol, 1 mM DTT, 1
mM MgCl2, 1 mM PMSF, Phoshatase Inhibitor Cocktail 1
and 2 (Sigma) and complete EDTA-free protease inhibi-
tors (Roche Applied Science). The cell lysates were centri-
fuged twice for 15 min at 12,000 × g at 4°C to remove
cellular debris. Protein extracts were further used to detect
total mTOR level or for immunoprecipitation. mTOR was
immunoprecipitated from 1.5 ml cleared cell lysates by
incubation with 12 μl of anti-mTOR antibody, mTab1
(Upstate, Millipore) for 12 hours at 4°C, followed by
incubation with 100 μl of 50% washed recombinant pro-
tein G agarose beads (Invitrogen) for an additional 4
hours. Immunoprecipitation with control IgG was per-
formed in parallel. The agarose beads were washed twice
with 1 ml of ice-cold wash buffer (lysis buffer containing
1% w/v Tween 20), once with 1 ml of high salt buffer (100
mM Tris-HCl pH7.4, 500 mM LiCl), and twice with 1 ml
of kinase buffer A (10 mM HEPES pH7.4, 50 mM NaCl).
To assay kinase activity, the immunocomplexed beads
were resuspended in 25 μl of kinase buffer B containing
kinase buffer A, 1 mM DTT, Phoshatase Inhibitor Cocktail

1 and 2 (Sigma), complete EDTA-free protease inhibitors
(Roche Applied Science), 50 mM β-glycerolphosphate, 2
mM EDTA. 25 μl of the reaction mixture [kinase buffer B,
100 μM ATP, 20 mM MnCl2, 20 mM MgCl2, 0.5 μg 4E-BP1
(Stratagene), and 10 μCi [γ-33P]ATP] was combined with
beads and incubated at 30°C for 30 min, followed by ter-
mination with 15 μl of 4× LDS sample buffer (Invitro-
gen). Reaction products were subjected to 4–12% SDS-
PAGE and transferred to the nitrocellulose membrane
according to manufacturer instructions (Invitrogen).
Incorporation of 33P into 4E-BP1 was analyzed by Phos-
phoImager (Molecular Dynamics). For relative quantifica-
tion of mTOR kinase activity, incorporation values were
normalized to the amount of total mTOR present in each
reaction mixture determined via densitometry of mTOR
immunoblots. When desired, the transferred proteins
were visualized by Ponceau S staining.

To detect mTOR, blots were probed with 1:500 dillution
of rabbit mTab1 antibody following the manufacturer's
protocol (Upstate, Millipore). For tubulin detection, a
1:1000 dilution of mouse anti-β-tubulin antibody
(Upstate, Millipore) was used. The secondary antibody
was a 1:10,000 dilution of goat or mouse anti-rabbit IgG
horseradish peroxidase (HRP) conjugate (Pierce, Thermo
Scientific). Immunoblots were detected using the ECL
Plus system (GE Life Sciences). Extracts from serum
treated NIH3T3 cells (Cell Signaling) were used as a con-
trol to visualize correct position of mTOR band on a west-
ern blot.

RNA Isolation and RT-PCR Analysis
For total RNA isolation, mouse heart tissues were cut into
slices and stabilized in RNAlater RNA Stabilization Rea-
gent (Qiagen) for 1 week. Next, tissues were homogenized
using Ultra-Turrax T8 homogenizer and total RNA was
isolated with RNeasy Protect Mini Kit (Qiagen). To digest
DNA, samples were treated with DNA-free DNAse
(Ambion). The OneStep RT-PCR kit (Qiagen) was used to
quantitate RNA. RNAse Inhibitor (SUPERase In, Ambion)
was included in all RT-PCR reactions. RT-PCR was per-
formed using specific oligonucleotide primers spanning
two different regions of mTOR mRNA. Primers were
designed so that generation of 353-bp products is a result
of mRNA amplification, ruling out possibility for genomic
DNA contamination. Mouse β-actin was used as a control
amplicon to assess constitutive transcription rates. The
sequences of primers used for the detection of mTOR
mRNA are as follows: forward fto1 5'-AACAACACAGCT-
GGGGACGA-3', reverse rto1 5'-TCTCGGAGCACTTCCAT-
CACA-3'; forward fto2 5'-AAGGCCTGATGGGATTTGG-3',
reverse rto2 5'-TGTCAAGTACACGGGGCAAG-3'. β-actin
primer set (forward 5'-TGTGATGGTGGGAATGGGTCAG-
3', reverse 5'-TTTGATGTCACGCACGATTTCC-3') was
from Stratagene. The conditions were dependent upon
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Tm of the primers and initial amount of template. The
amplification parameters were the following. Reverse
transcription at 50°C for 30 min, PCR initial activation at
95°C for 15 min, denaturation at 94°C for 30 s, annealing
at 50–57°C for 20 s, extension at 72°C for 30 s.in a 35
cycle program.

Abbreviations
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Additional file 1
Southern blot verification of targeted ES cell clones. Hybridization of 
Hind III digested genomic DNA from ES cells probed with a 5' external 
probe shows correct targeting event in lanes#1–3. Lane 4 is a control DNA 
from parental cells.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2172-10-28-S1.ppt]

Additional file 2
CD3 expression in the thymocytes of mTOR+/kd mice. Thymocytes from 
mTOR+/+ and mTOR+/kd mice were stained for CD3 and analyzed by 
flow cytometry, as described in Methods. The histograms represent profiles 
of cells from representative mTOR+/+ and mTOR+/kd mice. Percentage 
CD3 cells out of all cells in a live lymphocyte gate is shown. The data are 
representative of three pairs of mice examined.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2172-10-28-S2.ppt]

Additional file 3
Normal mTOR activity in livers of mTOR+/kd mice. mTOR was immu-
noprecipitated from liver lysates and the immune complex kinase assays 
were performed with 4E-BP1 as exogenous substrate., as described in 
Methods. Autoradiogram images showing labeled 4E-BP1 and mTOR are 
shown. Phoshorylation of 4E-BP1 and of mTOR was quantified using a 
phosphoimager and normalized to the amount of mTOR present in a 
kinase reaction (bottom). Amount of mTOR in immunoprecipitates or in 
total lysates was assessed by immunoblotting with mTOR antibody. β-
tubulin was used as a loading control. Equal amount of 4E-BP1 in the 
kinase reaction mixture was visualized by Ponceau S staining. Data are 
representative of two experiments.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2172-10-28-S3.ppt]

Additional file 4
Normal cell cycle profiles of mTOR+/kd thymocytes. Isolated thymo-
cytes were stained with propidium idodide for cell cycle analysis via FACS, 
as described in Methods. The numbers indicate the percentage of cells in 
G1, S, or G2 cell cycle phases.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2172-10-28-S4.ppt]
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