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Abstract

Background: Spatial transcriptomics (ST) combines stained tissue images with spatially resolved high-throughput RNA sequencing.
The spatial transcriptomic analysis includes challenging tasks like clustering, where a partition among data points (spots) is defined
by means of a similarity measure. Improving clustering results is a key factor as clustering affects subsequent downstream analysis.
State-of-the-art approaches group data by taking into account transcriptional similarity and some by exploiting spatial information
as well. However, it is not yet clear how much the spatial information combined with transcriptomics improves the clustering result.

Results: We propose a new clustering method, Stardust, that easily exploits the combination of space and transcriptomic information
in the clustering procedure through a manual or fully automatic tuning of algorithm parameters. Moreover, a parameter-free version
of the method is also provided where the spatial contribution depends dynamically on the expression distances distribution in the
space. We evaluated the proposed methods results by analyzing ST data sets available on the 10x Genomics website and compar-
ing clustering performances with state-of-the-art approaches by measuring the spots’ stability in the clusters and their biological
coherence. Stability is defined by the tendency of each point to remain clustered with the same neighbors when perturbations are
applied.

Conclusions: Stardust is an easy-to-use methodology allowing to define how much spatial information should influence clustering
on different tissues and achieving more stable results than state-of-the-art approaches.
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Background
Single-cell RNA sequencing (scRNA-seq) has emerged as an essen-
tial tool to investigate cellular heterogeneity [1]. Individual cells of
the same phenotype are commonly viewed as identical functional
units of a tissue or an organ. However, single-cell sequencing re-
sults suggest the presence of a complex organization of heteroge-
neous cell states producing together system-level functionalities.
Thus, the comprehension of cell transcriptomics in their morpho-
logical context is crucial to understand the effect of tissue organi-
zation in complex diseases, like specific cancer subtypes [2]. The
pioneering technology called spatial transcriptomics (ST) [3–5] is
able to preserve spatial information in transcriptomics by inte-
grating the features of microarray and the scRNA-seq barcoding
system. In contrast to single-cell sequencing, spatial transcrip-
tomics is only able to sequence the merged transcriptome profile
of a small group of cells, also called a spot. By adding spatial infor-
mation to scRNA-seq data, spatially resolved transcriptomes are
reshaping our understanding of tissue functional organization [6].
The progressive increase in the use of ST technology highlights the

need for new methods for optimizing the extraction of knowledge
from ST data [7–10].

A spatial transcriptomics analysis involves upstream analy-
sis such as data preprocessing, gene imputation and spatial de-
composition, and downstream analysis such as spatial clustering,
identification of spatially variable genes, and gene–cell interac-
tions. The technology is continuously evolving, raising significant
challenges on the above workflow in all different steps; however,
downstream analysis tends to be technology agnostic. Among all
the emerging contributions in this young research area, several
tools can be considered state of the art, mainly focused on down-
stream cluster analysis of ST data [11–14]. Pham et al. [11] pre-
sented stLearn to perform downstream analysis and cell-type de-
velopment states identification by integrating tissue morphology,
spatial dimensionality, and the transcriptional information ex-
tracted from the cells. stLearn uses a deep neural network model to
perform tile-based feature extraction from high-resolution histol-
ogy images. The extracted morphological features, together with
the expression value of the neighboring spots, are exploited to
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smooth the gene expression data before the clustering task. Then,
stLearn applies the Louvain or k-means clustering methods to de-
rive the cluster to which each spot belongs. To cluster data, stLearn
takes as input the number of principal components (PCs), the
number of neighbors to build the k-nearest neighbor graph, and
the resolution of the clustering algorithm.

In the same year, Hu et al. [12] developed SpaGCN, which intro-
duces a data integration approach based on graph convolution.
SpaGCN as stLearn adds the histological information in the clus-
tering task. It represents, through a weighted graph, the gene ex-
pression and also the similarity between each pair of spots. The
latter is calculated taking into account the spatial coordinates of
the spots and the average RGB value in a square of pixels to which
the spots belong. The method allows increasing the weight given
to histological information by varying the contribution of spots
when aggregating gene expression data. To give a higher weight to
images with a clear histological structure, the scaling parameter s
can be increased when calculating the pairwise distance between
spots. The hyperparameter l (i.e., the characteristic length scale)
can be tuned starting from the parameter p, which determines
the percentage of total expression provided by the neighbors. The
characteristic length scale determines the contribution of neigh-
boring spots when aggregating gene expression data by adjust-
ing the edge weight between pairs of spots. Then, SpaGCN uses
Louvain’s method on the aggregated output matrix from graph
convolution layers to perform clustering. In addition, this method
enables setting the size of the RGB square of pixels, the number
of PCs, and the resolution of the clustering algorithm. Moreover,
users have the possibility to discard or keep the image information
by setting a Boolean flag. SpaGCN, as other tools, allows identifying
spatially variable genes or meta genes for each resulting spatial
domain to give a biological meaning to the detected clusters as
reported in Hu et al. [7].

Subsequently, Dries et al. [13] presented Giotto, a toolbox of
algorithms, including a hidden Markov random field (HMRF)
method, to analyze spatial gene expression profiling associated
with histological images. HMRF is a graph-based model that char-
acterizes how many spots are influenced by the neighbors in or-
der to assign each spot to one of k spatial domains (i.e., clusters),
where k is given in input by the user. In Giotto, the parameters to be
set are the ones given in input to the HMRF function, that is, the ex-
pression values to use, the name of the spatial network employed,
the spatially variable genes, the spatial dimensions, the name of
the dimension reduction method, the number of PCs, the number
of spatial domains (or clusters), and three parameters (beta, toler-
ance, and z score) for the initialization of the method. Differently
from the above methods, Giotto uses only spatial information of
the spots and not histological information.

The same direction of Giotto is followed in Zhao et al. [14], who
proposed a method, called BayesSpace, based on a Bayesian sta-
tistical approach, that improves the identification of specific pro-
files in tissues by imposing a Markov random field prior that gives
higher weight to spots that are spatially close. It takes as input
the number of PCs and clusters, the spatial transcriptomic plat-
form, and a series of model parameters comprising the initial
cluster assignments for spots or the method to obtain the initial
assignments, the error model, the precision covariance structure,
the number of Markov chain Monte Carlo iterations, the gamma
smoothing parameter, the prior mean hyperparameter, the prior
precision hyperparameter, and the hyperparameters for Wishart
distributed precision. BayesSpace allows to cluster the spots ac-
cording to some a priori biological knowledge or otherwise using
the elbow plot of the pseudo-log-likelihood to infer the number

of clusters q that are given in input to the method. The authors
show that BayesSpace outperforms, in terms of adjusted Rand in-
dex and manual annotations, other methods in the literature, in
particular, the three widely used nonspatial algorithms, namely,
k-means, mclust, and Louvain’s methods, and the two spatial clus-
tering algorithms, HMRF (Giotto) and stLearn, on distinct samples
of a dorsolateral prefrontal cortex data set. This data set was not
analyzed in our comparisons due to the lack of publicly available
reference manual annotation.

In this article, we propose a downstream ST cluster method,
called Stardust, which takes into account both the expression and
the physical location in the tissue section of the transcriptional
profiles, to define the similarity of the objects to be grouped. Our
proposed method fits on the downstream task to perform cluster-
ing on gene count and spot location matrices. With Stardust, we in-
tend to investigate how much the spatial information combined
with transcriptomics improves the clustering results. Stardust is
based on the Seurat [15] algorithm for the clustering of scRNA-
seq data, which uses Louvain’s method to perform clustering. By
setting a parameter, the user can easily determine how much spa-
tial information should affect the clustering similarity. Such a pa-
rameter can also be automatically derived from a tuning proce-
dure. Moreover, we propose a version of Stardust that is parameter
free, Stardust∗ (i.e., it uses a dynamic nonlinear formulation that
changes the spatial weight according to the transcriptomics val-
ues in the surrounding space). Running time of the two methods
is equivalent.

To understand how the usage of spatial information affects the
stability of clusters, we evaluated both Stardust approaches with
and without considering space on five publicly available 10x Ge-
nomics Visium data sets, respectively derived from human breast
cancer section 1 (HBC1) and section 2 (HBC2), mouse kidney (MK),
human heart (HH), and human lymph node (HLN) tissues [16].
We investigated the scalability of Stardust∗, testing it also on Seq-
scope and Slide-seq data sets [17, 18], which provide higher resolu-
tion and number of captured cells with respect to Visium data sets
that combine spatial information on a tissue section with whole
transcriptome sequencing at a resolution of 55 μm. In Seq-scope,
two sequencing steps are performed respectively, allowing to re-
trieve spatial coordinate and captured complementary DNA infor-
mation. We analyzed two gastrointestinal tissues, liver and colon,
for which the sequencing data were produced in 1-mm-wide cir-
cular areas called “tiles,” achieving a submicrometer resolution
(0.5–1 μm). As for Slide-seq, we analyzed the new Slide-seq V2
mouse cerebellum data set, which consists of spatially resolved
expression data at approximate resolution of a single cell (10 μm).

We compared Stardust and Stardust∗ with currently available ST
clustering methods, including stLearn, SpaGCN, Giotto, and BayesS-
pace. Each tool comes with specific parameters to be set by the
user. We fully exploited the cluster resolution parameter and used
the author-suggested values for all the remaining ones. In order to
assess clustering performances, we exploited functional aspects
such as spatially variable genes, and alternatively from current
contributions, we defined two different objective clustering qual-
ity measures: the cell stability score (CSS) [19] and the coefficient
of variation. The CSS defines the tendency of a cell or spot to re-
main clustered with the same group of elements when inducing
a perturbation to the data set, for instance, by removing a ran-
dom set of items, while the coefficient of variation value is derived
from the CSS distribution as the ratio of the standard deviation
to the mean; thus, a lower coefficient of variation means higher
average stability and less variation from the mean. These com-
parison measures enable us to estimate the clustering stability
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of the different configurations and to assess whether considering
spatial or morphological information leads to an improvement in
terms of stability. By computing Moran’s I [20] for each gene, we
showed that genes with the highest spatial autocorrelation values
colocalize in clusters achieved by the proposed methods. More-
over, when cell-type annotation is available, we verified that Star-
dust clustering maintains biological significance, observing that
cluster shapes appear consistent with the provided annotation.

Results show that Stardust and Stardust∗ improve in a statis-
tically significant manner the clustering stability by combining
the transcriptional similarity of the spots with their spatial local-
ization in several data sets with respect to stLearn, SpaGCN, and
Giotto, and it is comparable with BayesSpace. Furthermore, while
other methods force spots to form misleading cluster structures,
in which neighboring spots are clustered without sensibly shar-
ing their expression profile, the proposed methods appear to be
unaffected by such behavior. Finally, unlike other approaches, be-
sides the number of principal components and clustering reso-
lution parameters, Stardust requires only one parameter (i.e., the
spatial weight) to be set by the user, and Stardust∗ does not require
any parameter.

Methods
In this section, we introduce the proposed ST cluster approaches
and the measures used for evaluating performance. Data sets
used for the clustering evaluation were downloaded from the 10x
Genomics website [16], respectively derived from two serial sec-
tions of human breast cancer (HBC1 and HBC2), MK, HH, and HLN
and from the Deep Blue Data platform [21], respectively collected
from colon and liver TD. These data, together with the Slide-seq
V2 cerebellum data set [18], were used to estimate method time
scalability. For each 10x data set, we loaded the associated Seu-
rat object and extracted the spot coordinates and the expression
matrix. In order to reduce memory usage and computation time,
we filtered in the data matrices those genes expressed in more
than 10 spots. To analyze Seq-scope data, we downloaded the pro-
cessed RDS data files and selected a single tile for each of the two
data sets chosen, specifically, the tile ID 2110 for the colon data
set and the tile ID 2117 for the liver TD data set. The files contain-
ing the digital gene expression matrices and the pixel coordinates
within the Slide-seq data set were downloaded from the Single
Cell Portal website referenced in Cable et al. [18]. Preprocessed
10x data, software code, and tool documentation are available at
https://github.com/InfOmics/stardust/.

Stardust
Stardust is implemented on top of the Seurat [15] clustering al-
gorithm. The Seurat package is one of the most used software
for scRNA-seq data analysis. Seurat implements a network-based
clustering method called the Louvain algorithm [22], which en-
codes each element of a data set as a node in a graph. Pairs of
nodes are connected according to a pairwise measure of similar-
ity based on the Euclidean distance between transcriptional pro-
files. Then, the algorithm performs a community detection step
over the graph to retrieve the data set partition. In Stardust, the
distance matrix used in Seurat is replaced with a summation of
two other matrices representing the transcriptional information
and the spatial position of the spots. Additionally, the distance
among pairs of nodes is computed on the vectors of the distances
of each node to all other nodes. The matrix regarding the tran-
scriptional information is obtained from the pairwise Euclidean

distance between transcriptional profiles in PCA space [23]. The
matrix regarding the spatial position represents the pairwise spa-
tial Euclidean distance between spots.

Given the distance matrix based on transcriptional profiles, T,
and the distance matrix based on spot coordinates, S, a prelimi-
nary linear scaling step is applied to S in order to mitigate cases
in which one measure overpowers the other. The scaling formula
is the following:

S′ = S ∗ max (T )
max (S)

(1)

where max(T) and max(S) are the maximum value in the matrices
T and S, respectively.

The user can choose between two different variants of the de-
signed tool, namely, Stardust or Stardust∗, for the computation of
the final distance matrix ST. Stardust computes the Louvain edge
weights through a linear formulation and requires a fixed a priori
parameter, while Stardust∗ computes the final distances through
a nonlinear formulation without any a priori parameter to be set.

The first method allows the user to specify a parameter called
spaceWeight, a real number in [0,1] that defines how much to weigh
the space with respect to the transcriptional similarity. By con-
figuring a single parameter, the user can control how much the
space-based measure weights on the overall measure. The for-
mula for ST is

ST = S′ ∗ spaceWeight + T (2)

The second method first computes the normalized values of
the expression distance distribution by applying the following
formula:

T ′ = (T − min (T )) / (max (T ) − min (T )) (3)

Once T′ is obtained, the final distance matrix ST is computed as
a mixture of space and transcript information. The latter is always
considered in its integrity, while space information is weighted by
the normalized expression distances. The formula for ST is

ST = S′ ∗ T ′ + T (4)

The proposed methodology is very simple and flexible; indeed,
it can be incorporated into any existing clustering method. Meth-
ods are developed as a standalone R package and can be easily in-
stalled from the GitHub repository or used through the dedicated
docker image.

Cluster validation
In order to give a quantitative performance evaluation of the clus-
tering obtained, we use three different clustering quality mea-
sures: the cell stability score (implemented in the rCASC package)
[19], the coefficient of variation, and Moran’s I (index) [20]. Finally, we
investigate the statistical validation of the results.

Cell stability score
rCASC [19] takes as input a spatially resolved transcriptome and
a clustering algorithm. It computes for each basic element of the
data set a CSS that describes how much each element tends to
remain clustered with the same other elements through a series
of n repetitions of the clustering method on n different permu-
tations of the data set. The basic concept of the rCASC notion is
that a good clustering should remain stable if a perturbation is
applied to the data set. A CSS is a real number in [0,1] associated
with each individual spot in a data set and computed running the

https://github.com/InfOmics/stardust/
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following three steps. First, the desired clustering method is ap-
plied to the data set, and the cluster identity associated with each
object (i.e., each spot in our application) is defined. Then, a subset
of objects is removed from the original data set (the percentage of
objects is decided by the user) and clustered. This step is repeated
n times (n is a user parameter). We decided to set the number of
permutations to 80 and to remove at each permutation 10% of
the spots. In each of the repetitions, the percentage of spots that
remain clustered with a particular spot in that permutation is de-
termined by taking the results obtained in the first step as a refer-
ence. This value is stored. Finally, for each spot, it is computed how
many times the set of spots clustered with it in each of the repe-
titions in the second step is equal to the set in the first step. This
quantity is divided by the number of repetitions, obtaining the sta-
bility score. To reduce the computation time, we set a limit of 4
hours for the computation of the CSS for each tool configuration
compared.

Coefficient of variation
To decide which configuration of Stardust or Stardust∗ was the best
performing (based on stability scores) on a particular data set with
respect to the one not considering the space, we used the coeffi-
cient of variation defined as σ

|μ| , where σ is the standard deviation
of the distribution of the spot scores and μ is its mean. The lower
the coefficient of variation, the better the performances. We also
applied this metric to the other compared methods to evaluate
the best-performing configuration of each tool.

Spatial autocorrelation of cluster markers
To evaluate the biological coherence of the obtained clusters, we
compute genes’ spatial autocorrelation by using Moran’s I [20].
Moran’s I uses both feature locations and feature values simulta-
neously. Spatial autocorrelation is defined as a territorial cluster
of similar marker values. If similar expression values of the genes
are spatially localized, there is a positive spatial autocorrelation of
the data. On the contrary, a spatial proximity of dissimilar values
indicates a negative spatial autocorrelation. Moran’s I is defined
as

I = n
W

∑n
i=1

∑n
j=i wi, j ziz j

∑n
i=1 z2

i

(5)

where zi is the deviation of the genes from the mean, wi, j is the
spatial weight between observations, n is the number of spatial
units, and W is the sum of all wi, j.

Statistical validation
We provide statistical evidence of the variation of cluster stability
achieved by the methods in the following way. Given a data set, we
first apply Stardust or Stardust∗, obtaining a set of stability scores i.
Then, for 100 times, we shuffle the spot coordinates and reapply
the method, obtaining 100 sets of stability scores j1 … j100. For
each couple (i, jk)—with k in 1 … 100—we evaluate the Wilcoxon
statistical test with the null hypothesis that the distribution i is
greater than jk (i.e., the gain in stability obtained from the original
spot coordinates is greater than the gain obtained from shuffled
spot coordinates).

Results
In this section, we assess the performance of Stardust and Stardust∗

on five data sets from 10x Genomics, respectively derived from
two serial sections of human breast cancer (HBC1 and HBC2),

HH, HLN, and MK (see Fig. 1). The dimensions of data sets are
3.798, 3.987, 4.247, 4.035, and 1.438 spots, respectively. Visu-
ally, the data sets show different levels of structures, from high
levels such as breast tissues, where we expect to find more well-
characterized (i.e., stable) clusters, to low ones as in human heart
tissue.

To understand how the usage of spatial information affects the
stability of clusters, we computed the cell stability scores and evalu-
ated the coefficient of variation (CV) of the stability scores (see Clus-
ter validation section) of Stardust by varying the clustering reso-
lution and the space weight parameters and Stardust∗ by varying
only clustering resolution (see Methods section). For Stardust, the
space weights were set to 0, 0.25, 0.5, 0.75, and 1 and cluster res-
olution to 0.6, 0.8, and 1. Space weight equals 0 and, when space
is not considered, corresponds to comparing Stardust with respect
to its transcriptomic-only-based approach, here referred with the
term no space used. Space weight equals 1 means that space and
transcripts contribute in the same way.

Results show that the introduction of spatial information
(Fig. 2A) reduces the coefficient of variation of each Stardust con-
figuration with respect to the configuration where space is not
considered. Since setting Stardust clustering parameters could be
challenging, we also used the R package GenSA [24] solution to es-
timate the best combination of space weight and clustering res-
olution, maximizing the average cell stability score. We created a
dedicated Docker image where GenSA runs the Stardust algorithm
several times to tune all the required parameters. Coefficients of
variation obtained from tuned parameters are shown in Fig. 2A
with violet dots. To limit the computation time, Stardust tuning
was run for each data set, fixing to 10 the maximum number of
GenSA iterations. Despite the low number of iterations, the es-
timated average cell stability scores are all higher than or com-
parable with our best results. The achieved CVs confirmed the
trends observed from the manual tests, allowing to explore Star-
dust configurations not considered before. Tuning running time
varied from 4 to 24 hours, depending on many factors, including
the data set size and computational resources. By increasing the
size of the data sets or the number of combinations of parameters,
GenSA does not scale and therefore it is not straightforwardly ap-
plicable on the other ST algorithms that are far more complex
than Stardust in terms of the entire set of parameters that can be
configured. A similar behavior to the one described for Stardust
is reported for Stardust∗ in Fig. 3A, where the dynamic setting of
the spatial weight leads to a cluster resolution with an average re-
duced or comparable coefficient of variation to clustering without
considering space.

Figures 2 and 3B show cluster stability improvements. Figure 2B
investigates 5 different Stardust space weight configurations and
keeps the cluster resolution fixed to 0.8 (i.e., it focuses the atten-
tion on one of the cell stability score distributions tested in Fig. 2A).
In all the data sets, space is able to increase the overall stability,
and although this behavior is not monotonous with the increase of
weight given to the space, different space weights allow to achieve
the best scores. Figure 3B shows Stardust∗ cluster stability com-
paring its versions with and without space by varying clustering
resolution. The Wilcoxon test (see Cluster validation section) was
used to evaluate the significance of the results, confirming that
the increase of stability scores is not due to chance.

To complete method evaluation, we compute the percentage of
spots becoming stable or unstable. Figure 2C compares one of the
best-performing configurations of Stardust according to the coef-
ficient of variation values in Fig. 2A with the one not using space
information for each data set. Regardless of which threshold is
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Figure 1: Hematoxylin and eosin (H&E) stained tissue sections of human breast cancer section 1 (HBC1), human breast cancer section 2 (HBC2), mouse
kidney (MK), human heart (HH), and human lymph node (HLN).

used, the number of spots that become stable in Stardust with re-
spect to the no space configuration is always more than the number
of spots that become unstable for each data set. However, from a
cluster quality point of view, threshold values are reasonable if
belonging in [0.5, 1] (i.e., it is desired that each spot remains clus-
tered with the same others in at least half of the rCASC permu-
tations). Using the threshold 0.5, Fig. 3C compares Stardust∗ and
the same method with no space information by varying the clus-
tering resolutions, confirming that besides cluster resolution, the
number of spots that become stable using the space information
is always more than the number of spots that become unstable
for each data set.

In Supplementary Figs. S1–S5, we depict how clusters are ar-
ranged in the 2-dimensional space of the tissue section and as
space information influences the clusters across the 5 Stardust
configurations. In Supplementary Figs. S1A–S5A, all points are dis-
played, while in Supplementary Figs. S1B–S5B, only points with
stability scores greater than or equal to 0.5 are displayed. Score
values are in [0, 1], so the threshold 0.5 means that in at least half
of the permutations, a spot remains clustered with the same other
spots and can be considered a stable one. Supplementary Figs. S1
and S2 show that using space, the number of spots that become
stable and the number of spots recognized as a unique cluster
are maximized without creating structure where it is not present,
as in Supplementary Fig. S3. In Supplementary Figs. S4 and S5,
spatial information increases the overall stability of neighboring
clusters or clusters with distant spots but high transcriptional
similarity.

Analyzing clustering results of the most stable configurations,
we observed that the cluster structures reflect the biology of the
tissue. In Fig. 4A, we report a manual annotation of HBC1 from
[2] and the clusters obtained from the most stable configuration
of Stardust∗. Stardust∗ clustering mirrors the general tissue struc-
ture, allowing the identification of tumoral regions, including duc-
tal carcinoma in situ regions corresponding to clusters 9 and 12 and
invasive carcinoma regions like clusters 1, 2, 4, 5, 10, and 11. More-
over, we computed Moran’s index for each HBC1 feature to identify
spatial autocorrelated genes. Analyzing the first 100 genes with
highest Moran’s I, we noticed that they colocalize in the identified
clusters (see Fig. 4B), confirming the biological validity of Stardust∗

clustering.
We computed Moran’s I also for breast cancer (HBC2), MK, HH,

and HLN data sets (Supplementary Fig. S6). We observed that, as
for HBC1 data set, genes colocalize in well-defined cluster shapes,
attesting to the quality of the results achieved by Stardust∗.

Stardust and Stardust∗ were also tested and compared with
state-of-the-art ST clustering methods, namely, stLearn, SpaGCN,
Giotto, and BayesSpace, by analyzing each individual 10x Genomics

data set. We evaluated Stardust stability scores with respect to the
ones achieved with the other tools. We fixed the number of princi-
pal components to 10, which we found to be a good threshold for
all the data sets analyzed through the “elbow” method proposed
by rCASC [19]. The cluster resolution parameter was set to 0.6, 0.8,
and 1 for each tool. For each resolution value, among the 5 con-
figurations of Stardust obtained by varying the space weight pa-
rameter, we decided to represent the most stable ones, with space
weight mainly equal to 0.25 and 0.5 for each data set analyzed.
Since BayesSpace and Giotto require a priori knowledge on the num-
ber of clusters, we derived it from the results of Stardust using for
each cluster resolution the Stardust configuration with the lowest
coefficient of variation score. Moreover, we tested SpaGCN both in-
cluding and excluding histology image information.

Concerning HBC1, by looking at the coefficient of variation in
Fig. 5A, Stardust and Stardust∗ are the tools able to achieve the
highest average stability score. Figure 5B shows the stability re-
sults of the compared tools, using their best configurations ac-
cording to Fig. 5A, that is, the ones with the lowest coefficient
of variation value: resolution 0.6 and space weight 0.25 for Star-
dust, resolution 0.6 for Stardust∗, resolution 0.6 and image True
for SpaGCN and stLearn, resolution 0.8 for BayesSpace, and reso-
lution 0.6 for Giotto. Stardust and Stardust∗ reached the lowest co-
efficients, followed by stLearn and BayesSpace. Results for SpaGCN
with cluster resolution 1 are missing because computation was
out of a predefined time (>4 hours). Cluster results for a vi-
sual exploration together with the original tissue are shown in
Fig. 5C. According to the shifts of the stability scores (Fig. 5D), com-
puted using a threshold of 50%, Stardust∗ outperformed all other
methods.

Analyzing HBC2, HH, HLN, and MK (Supplementary Figs. S7–
S10), we observed that Stardust and Stardust∗ achieved the lowest
values in terms of coefficient of variation (Supplementary Figs.
S7A–S10A) and the highest values in terms of average stability
(Supplementary Figs. S7B–S10B) overcoming all the other tools. In
particular, we noticed that in some cases, only for HBC2, the co-
efficient of variations were comparable with BayesSpace (Supple-
mentary Fig. S7A).

In MK (Supplementary Fig. S10A), Stardust and Stardust∗ clearly
show the lowest coefficient of variation value (Supplementary Fig.
S10A) and the highest stability scores, with an average value above
75% (Supplementary Fig. S10B). Supplementary Figs. S7C–S10C
graphically show the formed clusters. In HBC2 and MK data sets,
Stardust and Stardust∗ overcame all the other tools in terms of the
highest percentage of spots that became stable (Supplementary
Figs. S7D and S10D).

Our methods, as well as all the other tools, in tissues such as
HH and HLN, characterized by a more homogeneous architecture
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Figure 2: Stardust performance on five ST data sets: two sections of human breast cancer (HBC1 and HBC2), mouse kidney (MK), human heart (HH),
and human lymph node (HLN). (A) Stardust coefficient of variation for each configuration obtained varying the space weight and clustering resolution.
Space weight and resolution tuned by maximizing the average cell stability score are shown with violet dots. (B) Stability score comparison for 5
Stardust configurations with increasing space weight and cluster resolution fixed to 0.8. (C) The count of spots shifting from stable to unstable and vice
versa at stability thresholds equal to 0.25, 0.5, and 0.75, which set the limit to consider a spot stable (above the threshold) or unstable (below the
threshold), comparing the best configuration of Stardust (i.e., with the lowest coefficient of variation) with the one not using space information.
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Figure 3: Stardust∗ space version performances with respect to no space version ones evaluated on 5 ST data sets: 2 serial stages of human breast
cancer (HBC1 and HBC2), mouse kidney (MK), human heart (HH), and human lymph node (HLN). (A) Coefficient of variation values comparison for 3
Stardust∗ space and no space configurations obtained by varying the clustering resolution. (B) Stability scores comparison for 3 Stardust∗ space and no
space configurations obtained by varying the clustering resolution. (C) The Stardust∗ count of spots shifting from stable to unstable and vice versa
considering clustering with no space information as baseline at different clustering resolutions equal to 0.6, 0.8, and 1, which set the limit to consider a
spot stable (above the threshold) or unstable (below the threshold).
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Figure 4: Cluster biological coherence. (A) Manual pathologists’ annotation of human breast cancer 1 data set provided by Lewis et al. [2] and
clustering achieved with the best configuration of Stardust∗ with resolution 0.6. (B) Spatial plots showing the expression level of three of the top 100
genes with highest Moran index for the HBC1 Visium data set.

Figure 5: Comparison of Stardust, Stardust∗, and state-of-the-art tools on the HBC1 data set. (A) The coefficient of variation values derived from the
stability score distribution of each tool configuration. The cluster resolution refers to the resolution parameter for the Louvain community detection
algorithm; image usage tells whether the image is included in the clustering method. (B) The cell stability score distributions of the best-performing
configuration of each tool (i.e., the one with the lowest coefficient of variation). (C) The hematoxylin and eosin (H&E) stained tissue sample and a
spatial plot for each best tool configuration with clusters of spots on the tissue section. (D) The stability score shifts obtained comparing the best
configuration of each tool with the base Stardust no space version (i.e., the one not considering space).
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with respect to the morphological structure clearly visible in the
other datasets (Supplementary Figs. S8D and S9D), do not find
a relevant number of spots showing a high degree of stability,
except for BayesSpace, which tends to find a slightly larger number
of stable spots.

To show the scalability of Stardust, we tested it on the five 10x
data sets and on three data sets obtained from two different spa-
tial sequencing technologies, namely, Seq-scope [17] and Slide-seq
[18]. Running time of Stardust∗ is equivalent to Stardust.

Supplementary Fig. S11 shows that the relation between the
size of the data set and Stardust running time increases linearly.
Although the observed relation between the dataset size and the
running time is linear, computational resources required for high-
dimensional data, such as those generated by Slide-seq technol-
ogy, consistently increment when using Stardust for clustering.

Quality of Stardust∗ clustering was also confirmed by analyzing
the biological consistency of the clusters in Seq-scope and Slide-
seq data sets (Supplementary Figs. S12–S14) with the available
cell annotations and by showing that features with the highest
Moran’s I colocalize inside cluster shapes.

Conclusion
We developed Stardust, an open-source and easy-to-install R pack-
age for ST data clustering, which integrates transcriptional and
spatial information through a complete auto-tuned approach.
The package contains a method to manually explore the space
influence on clustering (named as the package, Stardust) and one
version fully automated called Stardust∗. The tools’ performances
were evaluated by analyzing the clustering stability through 2 sta-
bility measures: the cell stability score and the coefficient of vari-
ation. Moreover, we confirmed clustering biological coherence by
comparing tissue architecture with cluster shapes and by com-
puting Moran’s I to identify the spatial autocorrelated features.
Method stability scores were compared with the ones achieved
without using space to show how spatial information can signif-
icantly improve the clustering outcome. Results were also com-
pared with those achieved by the state-of-the-art tools investi-
gated, including BayesSpace, SpaGCN, stLearn, and Giotto. Results of
each data set analysis assess that the proposed methods achieve
more stable results with respect to clustering performed without
considering spatial information and also that they are valid com-
petitors, in terms of stability, to existing state-of-the-art clustering
methods. Moreover, results demonstrated that the introduction
of features from a histology image generally led to more unsta-
ble and misleading clustering results, particularly when the tis-
sue section is quite uniform, and therefore, does not contain any
particular structural information that could help clustering.

Additional Files
Figure S1: Spatial clusters plots in mouse kidney (MK) dataset.

In (a) the results of 5 Stardust configurations with increasing
space weight are shown. The same results, where only spots
that have stability score >= 0.5 are visualized, are shown in
(b). Each color corresponds to one of the 11, 9, 10, 10 and 10
cluster identities obtained in each configuration (in order of
appearance), respectively.

Figure S2: Spatial clusters plots in human lymph node (HLN)
dataset. In (a), the results of 5 Stardust configurations
with increasing space weight are shown. The same results,
where only spots that have stability score >= 0.5 are visu-
alized, are shown in (b). Each color corresponds to one of

the 14, 16, 19, 21 and 21 cluster identities obtained in each
configuration (in order of appearance), respectively.

Figure S3: Spatial clusters plots in human heart (HH) dataset.
In (a), the results of 5 Stardust configurations with increas-
ing space weight are shown. The same results, where only
spots that have stability score >= 0.5 are visualized, are
shown in (b). Each color corresponds to one of the 13, 15,
14, and 15 cluster identities obtained in each configuration
(in order of appearance), respectively.

Figure S4: Spatial clusters plots in human breast cancer
(HBC1) dataset. In (a), the results of 5 Stardust configurations
with increasing space weight are shown. The same results,
where only spots that have stability score >= 0.5 are visu-
alized, are shown in (b). Each color corresponds to one of
the 14, 19, 17, 18 and 18 cluster identities obtained in each
configuration (in order of appearance), respectively.

Figure S5: Spatial clusters plots in human breast cancer
(HBC2) dataset. In (a), the results of 5 Stardust configurations
with increasing space weight are shown. The same results,
where only spots that have stability score >= 0.5 are visu-
alized, are shown in (b). Each colour corresponds to one of
the 14, 19, 20, 21 and 21 cluster identities obtained in each
configuration (in order of appearance), respectively.

Figure S6: Spatial plots showing the expression level of three
of the top 100 genes with highest Moran’s index for HBC2,
HH, HLN and MK Visium datasets and the clusters obtained
with Stardust∗.

Figure S7: Comparison of Stardust, Stardust∗ and state of art
tools on HBC2 dataset: (a) The coefficient of variation val-
ues derived from the stability score distribution of each tool
configuration. The cluster resolution refers to the resolu-
tion parameter for the Louvain community detection algo-
rithm, image usage tells whether the image is included in
the clustering method. (b) The cell stability score distribu-
tions of the best performing configuration of each tool (i.e.,
the one with the lowest coefficient of variation). (c) The H&E
(Hematoxylin & Eosin) stained tissue sample and a spatial
plot for each best tool configuration with clusters of spots
on the tissue section. (d) The stability scores shifts obtained
comparing the best configuration of each tool with the base
Stardust no space version, i.e., the one not considering space.

Figure S8: Comparison of Stardust and Stardust∗ and state of
art tools on HH dataset. (a) The coefficient of variation val-
ues derived from the stability score distribution of each tool
configuration. The cluster resolution refers to the resolu-
tion parameter for the Louvain community detection algo-
rithm, image usage tells whether the image is included in
the clustering method. (b) The cell stability score distribu-
tions of the best performing configuration of each tool (i.e.,
the one with the lowest coefficient of variation). (c) The H&E
(Hematoxylin & Eosin) stained tissue sample and a spatial
plot for each best tool configuration with clusters of spots
on the tissue section. (d) The stability scores shifts obtained
comparing the best configuration of each tool with the base
Stardust no space version, i.e., the one not considering space.

Figure S9: Comparison of Stardust, and Stardust∗ and state of
art tools on HLN dataset. (a) The coefficient of variation val-
ues derived from the stability score distribution of each tool
configuration. The cluster resolution refers to the resolu-
tion parameter for the Louvain community detection algo-
rithm, image usage tells whether the image is included in
the clustering method. (b) The cell stability score distribu-
tions of the best performing configuration of each tool (i.e.,
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the one with the lowest coefficient of variation). (c) The H&E
(Hematoxylin & Eosin) stained tissue sample and a spatial
plot for each best tool configuration with clusters of spots
on the tissue section. (d) The stability scores shifts obtained
comparing the best configuration of each tool with the base
Stardust no space version, i.e., the one not considering space.

Figure S10: Comparison of Stardust, Stardust∗, and state of art
tools on MK dataset. (a) The coefficient of variation values
derived from the stability score distribution of each tool
configuration. The cluster resolution refers to the resolu-
tion parameter for the Louvain community detection algo-
rithm, image usage tells whether the image is included in
the clustering method. (b) The cell stability score distribu-
tions of the best performing configuration of each tool (i.e.,
the one with the lowest coefficient of variation). (c) The H&E
(Hematoxylin & Eosin) stained tissue sample and a spatial
plot for each best tool configuration with clusters of spots
on the tissue section. (d) The stability scores shifts obtained
comparing the best configuration of each tool with the base
Stardust no space version, i.e., the one not considering space.

Figure S11: Time scalability of Stardust on five 10x datasets, two
Seq-scope datasets and one Slide-seq dataset. Axes values
are in the log10 scale.

Figure S12: Cluster Biological coherence. (a) Cell type anno-
tation of Seq-scope Colon Tile 2110 dataset and clustering
achieved using Stardust∗ with cluster resolution 1.5 as in
[21]. (b) Spatial plots showing the expression level of three
of the top 100 genes with highest Moran’s I for Seq-scope
Colon Tile 2110 dataset.

Figure S13: Cluster Biological coherence. (a) Cell type annota-
tion of Seq-scope Liver TD Tile 2117 dataset and clustering
achieved using Stardust∗ with cluster resolution 1 as in [18].
(b) Spatial plots showing the expression level of three of the
top 100 genes with highest Moran’s I for Seq-scope Liver TD
Tile 2117 dataset.

Figure S14: Cluster Biological coherence. (a) Cell type an-
notation of Slide-seq cerebellum dataset and clustering
achieved using Stardust∗ with cluster resolution 0.6. (b) Spa-
tial plots showing the expression level of three of the top
100 genes with highest Moran’s I for Slide-seq cerebellum
dataset.

Data Availability
� Project name: Stardust
� Project homepage: https://github.com/InfOmics/stardust/;

rCASC is available on https://github.com/InfOmics/rCASC
and GenSA for Stardust is available on
https://github.com/SimoneAvesani/Tuning_Stardust.

� Operating system(s): UNIX-like OS (MacOS or a Linux distri-
bution)

� Programming language: R
� Other requirements: Docker
� License: MIT license
� Any restrictions to use by nonacademics: None
� biotools: stardust
� RRID:SCR_022514

Availability of Supporting Data
The 10x data sets are available via the GitHub repository [25]. Af-
ter registration on the 10x Genomics website [26], each individual
data set can be downloaded from:

� Human breast cancer (HBC1): https://www.10xgenomics.co
m/resources/datasets/human-breast-cancer-block-a-secti
on-1–1-standard-1–1-0

� Human breast cancer (HBC2): https://www.10xgenomics.co
m/resources/datasets/human-breast-cancer-block-a-secti
on-2–1-standard-1–1-0

� Human heart (HH): https://www.10xgenomics.com/resource
s/datasets/human-heart-1-standard-1–1-0

� Human lymph node (HLN): https://www.10xgenomics.com/re
sources/datasets/human-lymph-node-1-standard-1–1-0

� Mouse kidney (MK): https://www.10xgenomics.com/resource
s/datasets/mouse-kidney-section-coronal-1-standard-1–1-0

Seq-scope data sets are available at the Deep Blue Data plat-
form [27]

� Colon: https://deepblue.lib.umich.edu/data/downloads/rb68
xc160

� Liver TD: https://deepblue.lib.umich.edu/data/downloads/
7w62f844w

Slide-seq cerebellum data set is available, after registration, at
the Broad Institute Single Cell Portal [28].

An archival copy of the code and supporting data are also avail-
able via the GigaScience repository, GigaDB [29].
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