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ABSTRACT

Objective: Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide

decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natu-

ral language processing (NLP) and machine learning (ML) to unstructured (narrative) clinical notes and struc-

tured electronic health record (EHR) data.

Methods: This case-control study included patients aged 10–75 years who were seen between 2007 and 2016

from emergency departments and inpatient units. Cases were first-time suicide attempts from coded diagnosis;

controls were randomly selected without suicide attempts regardless of demographics, following a ratio of nine

controls per case. Four data-driven ML models were evaluated using 2-year historical EHR data prior to suicide

attempt or control index visits, with prediction windows from 7 to 730 days. Patients without any historical

notes were excluded. Model evaluation on accuracy and robustness was performed on a blind dataset (30% co-

hort).

Results: The study cohort included 45 238 patients (5099 cases, 40 139 controls) comprising 54 651 variables

from 5.7 million structured records and 798 665 notes. Using both unstructured and structured data resulted in

significantly greater accuracy compared to structured data alone (area-under-the-curve [AUC]: 0.932 vs. 0.901

P< .001). The best-predicting model utilized 1726 variables with AUC¼0.932 (95% CI, 0.922–0.941). The model

was robust across multiple prediction windows and subgroups by demographics, points of historical most re-

cent clinical contact, and depression diagnosis history.

Conclusions: Our large data-driven approach using both structured and unstructured EHR data demonstrated
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accurate and robust first-time suicide attempt prediction, and has the potential to be deployed across various

populations and clinical settings.

ABSTRACT

Suicide is a leading cause of death in the United States, and the suicide rate has been increasing in the United

States in contrast with a declining rate in many other countries. Moreover, two-thirds of suicide deaths repre-

sent their first suicide attempt. To address this public health crisis, we aimed to assess first-time suicide attempt

risk by developing machine learning (ML) and natural language processing (NLP) technologies applied to

patients’ electronic health record (EHR) data.

We proposed a large data-driven approach to aggregate

multi-faceted patient information from EHR data, including narrative clinical notes, demographics, medications,

diagnosis history, and healthcare-seeking habits. Our data-driven models captured thousands of patient-

specific risk factors, including social determinants of health (SDOH), obtained from NLP of clinical notes that

contain approximately 80% of EHR data. Our models using clinical notes and other EHR data significantly im-

proved risk prediction performance compared to other models that did not leverage clinical notes.

Our large data-driven approach using ML and NLP of EHR

data may be valuable for healthcare professionals to identify patients at risk of first-time suicide attempts accu-

rately. Ultimately, timely risk assessment can facilitate prescribing interventions for reducing first-time suicide

attempts, especially in nonmental healthcare settings where mental health services are not readily available.
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INTRODUCTION

The suicide rate in the United States has increased over decades in

stark contrast with a decline in many other countries.1,2 Accurate

and early identification of patients at high suicidal risk is crucial to

bolster interventions and evidence-based system changes in health-

care delivery that effectively decrease the rates of suicide attempts

and suicide deaths.3 First-time suicide attempts account for two-

thirds of suicide decedents, stressing the importance of predicting

first-time suicide attempts.4–6

Three barriers have impeded accurate identification of suicidal

risk. First, suicidal behavior is relatively rare and predictive models

often require large population samples.7 Second, risk assessment

relies heavily on patient self-report, yet patients may be motivated to

conceal their suicidal intentions.8,9 Third, prior to suicide attempts,

the last point of clinical contact of patients who die by suicide com-

monly involves providers with varying levels of suicidal-risk assess-

ment training.10,11

The increasing ubiquity of electronic health record (EHR) data

and advances in the use of machine learning (ML) present an oppor-

tunity to improve the prediction of suicidal behavior.12,13 While

EHRs contain extensive longitudinal data on a large number of indi-

viduals, ML approaches have shown success to handle the chal-

lenges inherent to EHR data, such as variable collinearity, high-

dimensionality, nonlinear interactions, and missing data.14,15

There have been promising ML applications to predict the risk

of suicidal behavior using structured (tabular)8,9,12,16 or unstruc-

tured (free-text) data separately.17 Barak-Corren et al.12 used a Na-

ı̈ve Bayes model to predict suicide attempts and suicide deaths

within 3–5 years, achieving an area under the receiver operating

characteristic curve (AUC) of 0.77. Walsh et al.9,16 used Random

Forest models to accurately predict suicide attempts in adolescents

and adults in a time window as short as 7 days (AUC�0.83). While

Walsh and colleagues’ studies show impressive results, they relied

on manual chart reviews, which is cost-intensive and unlikely to

scale in routine practice. Simon et al.8 reported on the use of penal-

ized least absolute shrinking and selection operator (LASSO) regres-

sion in a prospective study of nearly 3 million patients, and achieved

AUCs of 0.85 and 0.86 for the prediction of suicide attempts and

death within 90 days after the historical most recent (last) point of

clinical contact, respectively. The main limitation of this study was

that it focused solely on patients with documented mental health di-

agnoses, which covers only half of all suicide decedents in the United

States.10 Those studies focused on structured EHR data, leaving a

gap for incorporating natural language processing (NLP) of unstruc-

tured narrative notes into predictive algorithms. The use of unstruc-

tured data can be of value to predict suicide risk,17 especially

because approximately 80% of EHR data are locked in narrative

form.18 NLP can identify suicide attempt predictors from clinical

notes,19,20 such as clinician positive valence assessments21 and social

determinants of health (SDOH).22,23 SDOH are nonmedical factors,

such as housing, employment, and family support, which have pro-

found influences on health outcomes.24

This study complements the above-noted pioneering studies in

four ways. First, we focused on first-time suicide attempt as a pri-

mary outcome. Second, we used both structured and unstructured

data to test the extent to which NLP added to the predictive accu-

racy of algorithms that relied solely on structured data. Third, we

developed a large data-driven approach to systematically assess tens

of thousands of variables collected from EHR data. Last, we tested

the robustness (bias) of our models stratified by patient demo-

graphics, last point of clinical contact, and depression diagnosis his-

tory.

MATERIALS AND METHODS

The Institutional Review Board at the University of Pittsburgh

reviewed the study and determined this to be exempt research.
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Patients’ private information was removed by a certified honest bro-

ker (PRO17060116).

Dataset
In this case-control study, we identified a cohort from inpatients and

emergency department patients aged 10–75 years at any of the 18

hospitals in the University of Pittsburgh Medical Center (UPMC) be-

tween January 1, 2007 and December 31, 2016. The dataset was re-

trieved from the UPMC’s Medical ARchival System.

Figure 1 summarizes the cohort identification process. Case in-

dex visits were defined as any emergency department or inpatient

encounters with a coded suicide attempt diagnosis based on a list of

International Classification of Diseases Ninth (ICD-9) and Tenth

(ICD-10) revision codes identified by Hedegaard et al.25 First-time

suicide attempt was chosen as a primary outcome because of its in-

creased correlation with suicide death and future suicide attempts.26

Thus, we excluded suicide attempts where patients had any previous

suicide attempt diagnosis from historical encounters within the

UPMC hospital network as far back as January 1, 2005 (i.e., 2 years

before the start of the study period.) We recognize that this is a silver

standard, since previous suicide attempts may not be documented at

all, or they might be documented outside of the UPMC hospital net-

work.

Control index visits were defined as emergency department or in-

patient encounters without any known suicide attempt diagnosis.25

These were randomly selected from all emergency department and

inpatient visits across the 18 hospitals, regardless of demographics

Figure 1. The diagram of cohort identification process. From all inpatient or emergency department visits between 2007 and 2016, our initial cohort comprised

8588 suicide attempt patients based on diagnoses and randomly selected 77 292 patients without any suicide attempt diagnoses. After applying the exclusion cri-

teria, we had a final cohort with 5099 case patients and 40 139 control patients. The cohort was further divided into training and test datasets for model building

and testing, respectively. Abbreviation: UPMC, University of Pittsburgh Medical Center.
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or services provided; a ratio of 9 controls per case was selected given

the balance between a sample size and prevalence of suicide

attempts. suicide attempt prevalence in predictive modeling litera-

ture ranged from 36 to 62 900 per 100 000 individuals.7 Outpatient

visits were excluded from case and control index visits because the

vast majority (98%) of suicide attempts were found in either emer-

gency department or inpatients settings in our database. Moreover,

the literature shows that patients seen in these two settings have an

increased risk for suicide and suicidal behavior.27,28

We retrieved 2-year historical data prior to an individual index

visit for risk prediction. Figure 2 shows a temporal diagram of a

patient’s historical clinical encounters related to the index visit. We

excluded from analysis any cases and controls that had no historical

clinical visits or without any clinical notes in the 2-years window;

thus, each cohort patient had a minimum of one clinical encounter

with at least one clinical note as shown in Figure 1.

To assess the validity of suicide-related ICD diagnoses across 77

ICD-9/10 codes, a total of 151 records were reviewed independently

by three reviewers (NR, DB, and CB). Ambiguous cases were

reviewed and consensus was reached to make a final determination

of the presence or absence of an attempt. Suicide attempt was con-

firmed in 112 records, whereas in 39 records there was probable but

not definitive evidence of a suicide attempt (e.g., self-inflicted gun-

shot wound that the patient claimed was an accident). Therefore,

ICD suicide-related diagnoses were utilized as coded.

Data sources

The study comprised five data sources. The first data source was un-

structured data (clinical notes) comprising history and physical ex-

amination, progress, and discharge summary notes. These notes

were generated by clinicians, for example, attending physicians and

residents during clinical encounters. The remaining four were struc-

tured data including demographics, diagnoses, healthcare utilization

data (e.g., the number of previous inpatient visits), and medications.

Missing data and data imputation

We identified a large set of variables from the cohort and assigned

observed values for the variables from EHRs. When observed values

were missing, we added an “unknown” category to multi-category

variables such as race and insurance, and to all the variables from

unstructured data to avoid imputation bias. For example, if a

patient’s race was not observed in the EHR data, we assigned the

race variable an “unknown” category. However, for those binary

variables without observed values from diagnoses and medications,

we imputed them with “absent” (“no”) values; for example, a pa-

tient without a diagnosis ICD-10 code F32.9 would have a record of

F32.9 with an “absent” value.29

Natural language processing
We employed the cTAKES30 4.0.0 open-source NLP tool to process

narrative notes without any preprocessing steps. This tool has been

widely employed and rigorously evaluated in extracting clinical find-

ings31 that can be used in ML models for prediction tasks (Fig-

ure 3).32 The cTAKES tool can process a variety of narrative notes,

such as history and physical, progress, discharge summary, and radi-

ology notes.31,33,34 This process consists of extracting clinical con-

cepts that are then annotated with Concept Unique Identifiers

(CUIs) from the Unified Medical Language System (UMLS). UMLS,

developed by the National Library of Medicine, unifies standard vo-

cabularies used in healthcare and biomedical sciences into a single

comprehensive thesaurus and ontology system. For example, when

cTAKES extracts depressive disorder in a note, it annotates that con-

cept with its correspondent CUI C0011581 code and assigns a polar-

ity to each annotation, that is, whether the identified concept is a

positive (present) or negative (absent) finding. We updated cTAKES

4.0.0 with the 2017AA release of the UMLS Knowledge Sources.35

Those cTAKES extracted CUIs from 2-year historical notes served

as features (variables) for model construction. Whenever a CUI was

extracted in multiple encounters in the patient’s longitudinal EHR

data, we chose the polarity (present/absent) of their most recent

mention. We chose cTAKES over MetaMap, a popular open-source

NLP tool from NLM, due to cTAKES’ slightly better performance in

literature.36

Machine learning and feature engineering
We used a large data-driven approach, employing all features from

EHR data, applied to four common ML algorithms in the primary

analysis: Naı̈ve Bayes (NB), least absolute shrinkage and selection

Figure 2. The temporal diagram showing historical electronical health record (EHR) data up to 2 years prior to an index visit at an emergency department or an in-

patient facility. A case index visit represents a first-time suicide attempt visit and a control index visit represents a randomly selected visit from controls with lon-

gitudinal EHR data. A first-time suicide attempt visit (Vt0
) is defined as first known suicide attempt visit between 2005 and 2016; Vt0

: the index visit; Vt�1 : last point

of clinical contact or last clinical encounter prior to the index visit (Vt0 ). A prediction window is defined as the time interval between the index visit time (Vt0 ) and

the historical most recent clinical-visit time (Vt�1
) prior to the index visit.
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operator (LASSO) regression, random forest (RF), and the ensemble

of extreme gradient boosting (EXGB).15,37,38 All the models esti-

mated the posterior probability of suicide attempt based on histori-

cal data extracted within 2 years prior to the index visit, that is,

P(suicide attempt j2-year EHR data prior to the index visit).

To effectively process a large number of features obtained from

EHRs, we employed three feature engineering frameworks: filter,

wrapper, and embedded frameworks. For NB, we filtered features

based on information gain scores.39 EXGB and RF used a wrapper

framework, which merges feature search and modeling together,

and Gini feature importance was used for feature search.40 LASSO

used embedded feature selection framework through L1 regulariza-

tion.41

Primary analysis: Model training and testing

For the primary analysis that estimated each model’s capability for

predicting first-time suicide attempts, we randomly sampled 70% of

the cohort as a “training” dataset, while the remaining 30% served

as a “test” (blind) dataset. All of the models were trained and tuned

in the training dataset exclusively. Model performance was reported

exclusively on the test dataset.

Prediction evaluation metrics

The predictive models were evaluated in the test dataset using three

standard evaluation metrics: AUC, sensitivity, and specificity. Sensi-

tivity and specificity were measured at different binary-classification

thresholds that the authors deemed relevant for clinical practice. In

specific, we fixed either sensitivity or specificity at 90% and 95%

and measured the value of the metric that was not fixed. This results

in four possible combinations (e.g., sensitivity¼90% with specific-

ity¼81.24%; Table 1). The adjusted P-values for paired AUC com-

parisons were conducted using two-sided DeLong tests with

Bonferroni multiple-hypotheses corrections.42

Measure of NLP impact to prediction performance
To measure how NLP impacted the predictive performance, two

full-feature models (e.g., EXGB and LASSO) trained from both

structured and unstructured data were compared with two

structured-feature-only models trained from structured data exclu-

sively (i.e., S-EXGB and S-LASSO). The NB and RF were excluded

in this comparative analysis due to their lesser performance in the

primary analysis. All the three evaluation-metrics were employed to

measure the NLP impact. Both S-EXGB and S-LASSO were built to

best estimate suicide attempt risk for the scenario when no narrative

notes were available for analysis. All full-feature and structured-

feature-only models were tested in the test dataset.

Prediction windows

A prediction window was defined as the interval between an index

visit time and the time of last clinical contact prior to the index visit

(last point of clinical contact). We selected four windows—7, 30,

90, and 730 days (Figure 2)—based on previous studies.9,16

Analysis of model features
We evaluated each feature (variable) from the best scoring model by

using three statistical metrics: feature scores (e.g., Gini feature im-

portance),43,44 unadjusted odds ratios (ORs),45 and adjusted odds

ratios (aORs).46 ORs were obtained by univariate logistic regres-

sion, whereas aORs controlled demographic confounders using

multi-variate regression, adjusted for age, sex, race, and health in-

surance type.

Model robustness (Bias) evaluation
In addition to overall model performance, it becomes increasingly

important to test whether ML models behave robustly across rele-

vant subgroups.47,48 Robustness (or bias) was evaluated by compar-

ing model AUCs in the test dataset across six axes (18 subgroups):

age (<35, �35 years old), sex (male, female), race (White, Black,

Other, Unknown), insurance type (commercial, Medicaid, Medi-

care, self-pay, others), last point of clinical contact prior to the index

visit (outpatient, emergency department, inpatient), and depression

diagnosis history (present, absent.)

Sensitivity analysis of NLP-based suicide attempt con-

cept extraction
The accuracy and completeness of ICD codes may be limited.49,50

We performed a sensitivity analysis to explore the possibility that

cases and controls may have been mislabeled by diagnosis ICD

codes. First, we identified mentions of suicide attempts from un-

structured notes based on extracted CUIs from NLP. We then re-

moved patients with suicide mentions from the dataset, thus

reducing the possibility of including suspected follow-up (not first)

suicide attempts in the case group or patients with suicide history in

the control group.

Figure 3. The process flow of a medical natural language processing (NLP) pipeline, which transforms a narrative sentence in a clinical note to structured out-

comes. For example, the sentence has three symptoms (fever, cough, and vomiting) and vomiting concept is negated. Negated concepts are common in clinical

notes.
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RESULTS

Cohort data
We initially identified 8588 case patients with 12 446 suicide at-

tempt visits (some patients had multiple attempts) and randomly se-

lected 77 292 control patients with 77 292 index visits (one index

visit per control) from emergency department and inpatient settings

during the study period (Figure 1). For those patients with multiple

attempts, we only selected the first-attempt visit per patient in the

dataset. After applying the aforementioned exclusion and inclusion

criteria (e.g., index visit inpatient or emergency department, at least

one previous visit with a clinical note within 2 years of the index

visit), the final cohort consisted of 5099 (11.3%) cases and 40 139

(88.7%) controls. The test dataset had 1495 (29.3% of cohort cases)

cases and 11 993 (29.9% of cohort controls) controls.

The majority of suicide attempts were patients aged 15–54 years

(83.8%), an age group that had more females than males (59.5%)

(Supplementary Figure S1). The majority (65.8%) of cohort cases

made a suicide attempt within 90 days of their historical most recent

clinical visit prior to the index visit (Supplementary Figure S2).

The structured EHRs had 5 738 154 records that included medi-

cations, demographics, healthcare utilization data, and diagnoses.

The unstructured EHRs had 798 665 narrative clinical notes. After

we applied the cTAKES to all the clinical notes, there were a total of

54 651 features from both structured (13 873; 25.4%) and unstruc-

tured (40 778; 74.6%) EHR data.

Model prediction performance
All of the models were constructed using the training dataset with

up to 2126 features from structured and unstructured data using the

feature filtering method. The models were tested in the test dataset,

and Figures 4 and 5 show the prediction performance: Receiver op-

erating characteristic (ROC) curves and AUCs of the four predictive

models in 30- and 730-day prediction windows, respectively. De-

tailed prediction performance across four prediction windows (7,

Table 1. Predictive performancea across four predictive models using full-feature (structured and unstructured) data with 4 prediction win-

dows (7, 30, 90, and 730 days)

Predictive model (number of features) EXGB (n¼ 1726) LASSO (n¼ 484) NB (n¼ 2126) RF (n¼ 1617)

Prediction window: �
7 days

Cases/Controls 273/3980

AUC (95% CIb) 0.9298 (0.9153 2 0.9445) 0.9042 (0.8841� 0.9231) 0.7580

(0.7340� 0.7808)

0.9055

(0.8882� 0.9220)

P-value Ref <.001 <.001 <.001

4 sets of sensitivity/

specificity (%)

90.00/79.92 90.00/71.66 90.00/46.63 90.00/72.19

95.00/69.45 95.00/58.47 95.00/22.02 95.00/60.95

75.09/90.00 71.43/90.00 25.79/90.00 69.60/90.00

64.84/95.00 59.71/95.00 12.90/95.00 57.51/95.00

Prediction window: �
30 days

Cases/Controls 625/7900

AUC (95% CI) 0.9320 (0.9222 2 0.9409) 0.9086 (0.8964� 0.9205) 0.7663

(0.7500� 0.7825)

0.9002

(0.8873� 0.9123)

P-value Ref <.001 <.001 <.001

4 sets of sensitivity/

specificity (%)

90.00/81.24 90.00/74.77 90.00/45.72 90.00/71.73

95.00/70.49 95.00/58.59 95.00/22.94 95.00/59.08

77.44/90.00 73.28/90.00 27.03/90.00 70.40/90.00

65.92/95.00 60.32/95.00 13.51/95.00 54.24/95.00

Prediction window: �
90 days

Cases/Controls 971/10108

AUC (95% CI) 0.9286 (0.9210 2 0.9361) 0.9031 (0.8928� 0.9127) 0.7643

(0.7514� 0.7767)

0.8848

(0.8745� 0.8950)

P-value Ref <.001 <.001 <.001

4 sets of sensitivity/

specificity (%)

90.00/80.05 90.00/73.16 90.00/49.69 90.00/66.56

95.00/69.87 95.00/59.81 95.00/24.99 95.00/54.00

76.73/90.00 71.37/90.00 25.88/90.00 65.29/90.00

64.06/95.00 57.16/95.00 12.94/95.00 49.43/95.00

Prediction window: �
730 days

Cases/Controls 1495/11993

AUC (95% CI) 0.9190 (0.9118 2 0.9255) 0.8926 (0.8844� 0.9010) 0.7554

(0.7448� 0.7653)

0.8645

(0.8550� 0.8730)

P-value Ref <.001 <.001 <.001

4 sets of sensitivity/

specificity (%)

90.00/76.88 90.00/70.15 90.00/51.10 90.00/62.51

95.00/65.85 95.00/57.45 95.00/28.16 95.00/50.47

73.78/90.00 67.56/90.00 23.84/90.00 58.80/90.00

60.13/95.00 51.97/95.00 11.92/95.00 43.34/95.00

Note: EXGB, Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) applied further feature engineering frameworks (wrapper

and embedded) to get a smaller number of features. The number listed in the parentheses associated with each model represents the final number of features used

in the model. A boldfaced number represents the best AUC within each prediction window compared to other models.

EXGB: Ensemble of eXtreme Gradient Boosting; LASSO: Least Absolute Shrinkage and Selection Operator; NB: Naı̈ve Bayes; RF: Random Forest.
aAll the models were trained in a training dataset and tested in a test (blind or hold-out) dataset. The evaluation metrics include the area under the receiver op-

erating characteristic curve (AUC) with 95% confidence interval, sensitivity (or recall) and specificity (or precision). Each P-values was tested with respect to the

AUC of Ensemble of eXtreme Gradient Boosting (EXGB) in the same prediction window. For each model, we started a total of 2126 features (including 215 social

features) after applying feature filter.
bAll 95% confidence intervals were measured through 2000 stratified bootstrap replicates.
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30, 90, and 730 days) are in Table 1; among the four models, EXGB

consistently had the best performance across all windows, with

AUCs ranging from 0.919 (95% CI, 0.912–0.926, in 730-day win-

dow) to 0.932 (95% CI, 0.922–0.941, in 30-day window). In the

30-day prediction window, the model reached 90% sensitivity at

81% specificity and 77% sensitivity at 90% specificity. While

LASSO regression model performed well, EXGB model outper-

formed it [30-day: AUC 0.909 (95% CI, 0.896–0.921) vs. 0.932

(95% CI, 0.922–0.941); 730-day: AUC 0.893 (95% CI, 0.884–

0.901) vs. 0.919 (95% CI, 0.912–0.926)] (Table 1).

NLP impact to prediction
Predictive models using full-feature data (comprising both struc-

tured and unstructured data) significantly outperformed (P< .001)

the models using only structured features. Table 2 shows the de-

tailed pairwise comparison among gradient boosting and regression

models. In the 30-day prediction window, the two structure-data-

only models (S-EXGB and S-LASSO) had lower AUCs with statisti-

cal significance compared to the full-feature-data models using full-

feature data, for example, AUCs 0.901 (S-EXGB) vs. 0.932 (EXGB),

P< .001. Moreover, EXGB using full-feature data had the best

sensitivity-specificity performance compared to the other models

(Table 2).

Model robustness (Bias) evaluation results
Overall, EXGB was robust and performed similarly across 18 sub-

groups stratified by demographics (age, sex, race, and health insur-

ance type), last point of clinical contact, and depression diagnosis

Figure 4. Receiver Operating Characteristic (ROC) curves of four ML models. Plots A and B show ROCs in 30- and 730-day prediction windows, respectively.

Abbreviations: EXGB, Ensemble of eXtreme Gradient Boosting; LASSO, Least Absolute Shrinkage and Selection Operator.

Figure 5. Plots of predictive model accuracy, measured by the area under a receiver operating characteristic curve (AUC), among 4 predictive models. Plot (A)

shows model performance in 30-day prediction window. Plot (B) shows model performance in 730-day prediction window. Abbreviations: EXGB, Ensemble of

eXtreme Gradient Boosting; LASSO, Least Absolute Shrinkage and Selection Operator.
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history. In the 30-day prediction window, AUCs ranged from 0.875

to 0.949 across 18 subgroups. In the 730-day prediction window,

AUC ranged from 0.82 to 0.942. Figure 6 shows individual AUCs

across the 18 subgroups and the two prediction windows.

Predictive features
EXGB identified 1726 features (from the initial 2126 features) from

the five data sources: clinical notes (n¼1299), demographics

(n¼4), diagnoses (n¼227), healthcare utilization (n¼3), and medi-

cation (n¼193). cTAKES generated features from clinical notes ex-

clusively. Tables 3 and 4 list demographics and the 10 most

significant risk and protective features (among diagnoses, healthcare

utilization, medication, and NLP of clinical notes) from the best

XGB model with ORs and aORs, respectively. Three critical risk

factors with both ORs and aORs > 2 from NLP were suicide at-

tempt (which was picked up in clinical notes but not recorded as a

previous diagnosis), depressive disorder, and drug abuse. While all

of the cases were first-time attempters according to structural diag-

nosis data, 12.8% (654) of cases and 1.5% (616) of controls had a

previous suicide attempt concept according to NLP assessment of

unstructured narrative notes. With respect to service use within 2

years prior to an index visit, a previous emergency department visit

was a risk factor, whereas any outpatient healthcare visit was pro-

tective (Table 4). Supplementary Table S1 lists top 10 features from

the LASSO, S-LASSO, and S-EXGB models.

Social determinants of health

Among 46 SDOH within the 1299 NLP features, we identified in-

creased risk and protective factors with prevalence �1% and statis-

tically significant odds ratios (i.e., 95% CI that excluded 1.0): one

risk factor for suicide attempt (divorced marital status) and three

Table 2. Impact of NLP on suicide attempt predictiona

Model versus prediction window Gradient boosting model Regression model

Full-feature

EXGB Model

(1766 features)

Structured-feature-only

S-EXGB Model

(422 features)

Full-feature LASSO

Model

(484 features)

Structured-feature-

only S-LASSO Model

(192 features)

Prediction window �
7 days

Cases/Controls, n 273/3980

AUC (95% CIb) 0.9298 (0.9153 2 0.9445) 0.9037 (0.8838� 0.9220) 0.9042

(0.8841� 0.9231)

0.8763

(0.8515� 0.8989)

P-value Ref <.001 Ref <.001

4 sets of sensitivity/

specificity (%)

90.00/79.92 90.00/71.61 90.00/71.66 90.00/60.00

95.00/69.45 95.00/53.72 95.00/58.47 95.00/36.03

75.09/90.00 70.70/90.00 71.43/90.00 68.50/90.00

64.84/95.00 58.24/95.00 59.71/95.00 55.68/95.00

Prediction window �
30 days

Cases/Controls, n 625/7900

AUC (95% CI) 0.9320 (0.9222 2 0.9409) 0.9007 (0.8880� 0.9129) 0.9086

(0.8964� 0.9205)

0.8842

(0.8695� 0.8984)

P-value Ref <.001 Ref <.001

4 sets of sensitivity/

specificity (%)

90.00/81.24 90.00/70.20 90.00/74.77 90.00/67.51

95.00/70.49 95.00/56.15 95.00/58.59 95.00/46.72

77.44/90.00 72.00/90.00 73.28/90.00 69.28/90.00

65.92/95.00 57.76/95.00 60.32/95.00 55.68/95.00

Prediction window �
90 days

Cases/Controls, n 971/10108

AUC (95% CI) 0.9286 (0.9210 2 0.9361) 0.8963 (0.8862� 0.9062) 0.9031

(0.8928� 0.9127)

0.8763

(0.8634� 0.8879)

P-value Ref <.001 Ref <.001

4 sets of sensitivity/

specificity (%)

90.00/80.05 90.00/67.82 90.00/73.16 90.00/65.58

95.00/69.87 95.00/55.53 95.00/59.81 95.00/45.31

76.73/90.00 69.62/90.00 71.37/90.00 66.53/90.00

64.06/95.00 54.99/95.00 57.16/95.00 51.18/95.00

Prediction window �
730 days

Cases/Controls, n 1495/11993

AUC (95% CI) 0.9190 (0.9118 2 0.9255) 0.8830 (0.8744� 0.8918) 0.8926

(0.8844� 0.9010)

0.8622

(0.8522� 0.8719)

P-value Ref <.001 Ref <.001

4 sets of sensitivity/

specificity (%)

90.00/76.88 90.00/65.71 90.00/70.15 90.00/62.11

95.00/65.85 95.00/52.31 95.00/57.45 95.00/43.38

73.78/90.00 64.82/90.00 67.56/90.00 60.27/90.00

60.13/95.00 49.23/95.00 51.97/95.00 44.95/95.00

AUC: area under the curve; CI: confidence interval.
aFull-feature (including structured and unstructured features) models and structured-feature-only models were compared. Two full-feature models were in-

cluded: Ensemble of eXtreme Gradient Boosting (EXGB) model and the Least Absolute Shrinkage and Selection Operator (LASSO). Two structured-feature-only

models were included: the Structured-EXGB (S-EXGB) model and the structured-LASSO (S-LASSO) model. All the models were trained in a training dataset and

tested in a test (blind or hold-out) dataset. Full-feature models performed significantly better than structured-feature-only models. We chose four common sets of

metrics (i.e., sensitivity and specificity) based on two sensitivities at 90% and 95% and two specificities at 90% and 95%; given a pre-selected sensitivity or specif-

icity, the corresponding metrics were measured from the test dataset.
bAll 95% confidence intervals were measured through 2000 stratified bootstrap replicates.
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Figure 6. Robustness analysis of Ensemble eXtreme Gradient Boosting (EXGB) model across 18 subgroups based on demographics (age, race, gender, insur-

ance), depression diagnosis, and point of historical most recent clinical contact. Plot (A) shows the EXGB performance in 30-day prediction window. Plot (B)

shows the EXGB performance in 730-day prediction window. Age was measured in years. Abbreviations: T, present; F, absent; LastContact, point of historical

most recent clinical contact.

Table 3. Unadjusted and adjusted odds ratiosa with 95% CI for demographic features

Feature Cases, No. (%)

(n 5 5099)

Controls, No. (%)

(n 5 40 139)

Unadjusted Odds Ratio

(95% CI)

Adjusted Odds Ratio(95%

CI)

Demographic: sex

Male 2133 (41.83) 15 839 (39.46) 1.1 (1.04–1.17) 1.36 (1.27–1.44)

Female 2966 (58.17) 24 300 (60.54) 1 (ref) ref

Demographic: age

10–14 253 (4.96) 1481 (3.69) 7.16 (5.76–8.9) 7.62 (6.13–9.48)

15–24 1 368 (26.83) 4697 (11.70) 12.19 (10.15–14.63) 13.93 (11.59–16.74)

25–34 1 103 (21.63) 5281 (13.16) 8.74 (7.27–10.51) 9.6 (7.98–11.54)

35–44 901 (17.67) 5485 (13.67) 6.87 (5.71–8.28) 7.4 (6.14–8.92)

45–54 903 (17.71) 8217 (20.47) 4.6 (3.82–5.54) 4.81 (4–5.8)

55–64 439 (8.61) 9436 (23.51) 1.95 (1.6–2.37) 1.98 (1.62–2.41)

65þ 132 (2.59) 5542 (13.81) 1 (ref) ref

Demographic: race

Black 885 (17.36) 8075 (20.12) 0.84 (0.78–0.91) 0.68 (0.63–0.73)

Not specified 155 (3.04) 1300 (3.24) 1.33 (1.11–1.58) 1.12 (0.93–1.34)

Other 152 (2.98) 878 (2.19) 0.91 (0.77–1.08) 0.78 (0.66–0.93)

White 3907 (76.62) 29 886 (74.46) 1 (ref) ref

Demographic: insurance

Medicaid 2180 (42.75) 8398 (20.92) 2.85 (2.64–3.07) 2.59 (2.4–2.8)

Medicare 789 (15.47) 12 663 (31.55) 0.68 (0.62–0.75) 1.35 (1.22–1.49)

Others 530 (10.39) 3617 (9.01) 1.61 (1.44–1.79) 1.62 (1.45–1.81)

Self-pay 314 (6.16) 1356 (3.38) 2.54 (2.22–2.91) 2.1 (1.83–2.42)

Commercial 1286 (25.22) 14 105 (35.14) 1 (ref) ref

EXGB: Ensemble XGB; XGB: extreme gradient boosting.
aThe adjusted odds ratios (aORs) were estimated while controlling for sex, age, race, and insurance. The boldfaced numbers represent the highest OR/aOR in

the increased risk categories or the lowest OR/aOR in the decreased risk categories.
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protective factors (marriage, family support, and rehabilitation ther-

apy) (Table 4).

Sensitivity analysis results
We conducted a sensitivity analysis to address a potential limitation

of ICD-9/10 coded suicide attempt, that is, cases and controls may

have been mislabeled.49 After applying NLP to the search of cases

and controls with CUIs having a suicide keyword, we removed those

cases and controls and re-evaluated EXGB performance in 30- and

730-day prediction windows within the test dataset. In the 30-day

window, 218 (34.9%) cases and 568 controls (7.2%) were removed;

in the 730-day window, 381 (25.5%) cases and 755 (6.3%) controls

were removed. The sensitivity analysis showed no significant predic-

tion performance difference compared to the original (primary)

results in both 30-day and 730-day windows (30-day AUCs, 0.920

vs. 0.932, P¼ .17; 730-day AUCs, 0.910 vs. 0.919, P¼ .1).

DISCUSSION

In this single-center (18 hospitals) retrospective case-control study,

we leveraged NLP and ML technologies to identify patients at risk

of first-time suicide attempts using historical EHR data. A large

data-driven approach was employed to systematically collect and as-

sess 54 600þ features from both structured and unstructured EHR

data. Our EXGB model comprising 2126 features as a result of fea-

ture engineering demonstrated high accuracy of suicide attempt pre-

diction across four prediction time windows—7, 30, 90, and 730

days—between an index visit, and the last clinical encounter prior to

Table 4. Unadjusted and adjusted odds ratios in top 10 increased-risk and decreased-risk features with status present (true)

Feature Cases, No.

(%)

(n 5 5099)

Controls, No.

(%)

(n 5 40 139)

Unadjusted Odds Ratio

(95% CIa)

Adjusted Odds Ratiob (95%

CIa)

Top 10 increased-risk featuresc from best model in

EXGB with all odds ratios and 95% CIs > 1 ranked by feature importance

One or more emergency department visits in 2 years 4196 (82.29) 22 405 (55.82) 3.68 (3.41–3.96) 3.06 (2.83–3.3)

Other psychological or physical stress not elsewhere

classified (ICD-9 62.8a)

748 (14.67) 481 (1.20) 14.17 (12.58–15.95) 13.17 (11.62–14.93)

Episodic mood disorders (ICD-9 296a) 1901 (37.28) 4051 (10.09) 5.30 (4.96–5.65) 5.36 (5–5.74)

Suicide attempt (UMLS C0038663d) 654 (12.83) 616 (1.53) 2.27 (1.8–2.87) 2.03 (1.58–2.6)

Depressive disorder (UMLS C0011581) 2556 (50.13) 12 510 (31.17) 2.5 (2.11–2.94) 2.59 (2.19–3.07)

Anxiety, dissociative and somatoform disorders (ICD-9 300a)2252 (44.17) 9460 (23.57) 2.57 (2.42–2.72) 2.89 (2.71–3.08)

Drug abuse (UMLS C0013146) 2127 (41.71) 9635 (24.00) 2.28 (1.95–2.67) 2.11 (1.79–2.49)

Depressive disorder, not elsewhere classified (ICD-9 311a) 2182 (42.79) 8617 (21.47) 2.74 (2.58–2.91) 3.17 (2.97–3.38)

Suicidal (UMLS C0438696) 1524 (29.89) 3111 (7.75) 1.41 (1.23–1.63) 1.32 (1.14–1.54)

Depressed mood (UMLS C0344315) 1427 (27.99) 4413 (10.99) 1.58 (1.22–2.05) 1.54 (1.18–2.02)

Top 10 Decreased-risk Features from best model in

EXGB with all odds ratios and 95% CIs <1 ranked

by feature importance

One or more outpatient visits in 2 years 3619 (70.97) 35 127 (87.51) 0.35 (0.33–0.37) 0.44 (0.41–0.48)

Hypertensive disease (UMLS C0020538) 1707 (33.48) 20 328 (50.64) 0.6 (0.49–0.74) 0.76 (0.61–0.95)

Anger (UMLS C0002957) 656 (12.87) 1229 (3.06) 0.55 (0.33–0.92) 0.51 (0.29–0.88)

Hypersensitivity (UMLS C0020517) 3661 (71.80) 31 540 (78.58) 0.61 (0.57–0.66) 0.71 (0.66–0.77)

Neoplasms (UMLS C0027651) 655 (12.85) 11 508 (28.67) 0.63 (0.54–0.75) 0.72 (0.61–0.85)

Mecarzole (UMLS C0065839) 12 (0.24) 856 (2.13) 0.11 (0.06–0.2) 0.11 (0.06–0.19)

Effusion (UMLS C0013687) 382 (7.49) 5843 (14.56) 0.69 (0.59–0.8) 0.75 (0.64–0.87)

Diabetes mellitus (ICD-9 250a) 547 (10.73) 9066 (22.59) 0.41 (0.38–0.45) 0.66 (0.6–0.73)

Encounter for antenatal screening of mother (ICD-9 V28a) 109 (2.14) 2052 (5.11) 0.41 (0.34–0.49) 0.21 (0.17–0.26)

Anesthetics (NDF-RT CN200e) 1473 (28.89) 19 963 (49.73) 0.41 (0.39–0.44) 0.53 (0.5–0.57)

SDOH from EXGB ranked by the unadjusted odds ratio

Divorced state (UMLS C0086170) 404 (7.92) 1809 (4.51) 1.82 (1.63–2.04) 2.29 (2.03–2.57)

Marriage, life event (UMLS C0024841) 280 (5.49) 1857 (4.63) 0.17 (0.06–0.48) 0.19 (0.07–0.56)

Family support (UMLS C0150232) 157 (3.08) 578 (1.44) 0.34 (0.21–0.56) 0.29 (0.17–0.48)

Rehabilitation therapy (UMLS C0034991) 1071 (21.00) 6719 (16.74) 0.43 (0.26–0.71) 0.45 (0.26–0.77)

Note: Selected features were limited to a minimum of 1% prevalence in case or control group. The 95% confidence intervals for the selected features were lim-

ited to their range either all >1 or <1. The ranking was based on feature importance from the best performing extreme gradient boosting (XGB) model among the

ensemble XGB (EXGB). The adjusted odds ratios were estimated while controlling for sex, age, race, and insurance (see Table 3). The SDOH were identified from

EXGB ranked by the unadjusted odds ratio. The boldfaced number represents the highest odds ratio (OR) or adjusted OR (aOR) in the increased risk categories

or the lowest OR/aOR in the decreased risk categories.

ICD-9: International Classification of Diseases, Ninth Revision; UMLS: Unified Medical Language System; NDF-RT: National Drug File—Reference Terminol-

ogy.
aAll 95% confidence intervals were measured through 2000 stratified bootstrap replicates.
bWe used the Firth logistic regression method52 to calculate adjusted ORs.
cExcluding demographic features that were listed in the top portion of the table.
dUMLS Concept Unique Identifier (CUI).
eNDF-RT code.
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the index visit (last point of clinical contact). Prediction of suicidal

behavior within short windows of time is particularly salient to

clinicians, given the paucity of existing tools to predict imminent

suicidal risk.20 We demonstrated that NLP of unstructured clinical

narrative notes added significantly to the predictive power of ML

applied solely to structural data. In addition, our EXGB model was

robust across multiple demographic strata, last point of clinical con-

tact, and depression diagnosis history. This suggests that our EXGB

model could be deployed across various populations and clinical set-

tings in the region, and may be potentially applied to similar popula-

tions in other healthcare systems. Additionally, the large number of

features used by the EXGB model could potentially facilitate person-

alized intervention.

The strengths of this study include: (1) a focus on the prediction

of first-time attempts, which account for two-thirds of suicide dece-

dents; 4–6 (2) demonstration of the added value of NLP into a predic-

tion of suicidal behavior through an integration of NLP and ML; (3)

development of a large data-driven approach with four ML models

assessing 54 600þ features from EHR data; (4) evaluation of the ro-

bustness (bias) of a model to various demographic and clinical strati-

fications.

This study chose index visits among emergency department and

inpatient facilities where practitioners may not be skilled at an as-

sessment of suicidal risk, and where patients may be at increased sui-

cidal risk.10,11,28 Although our models did not include index visits

from outpatient facilities, the prior 2 years of EHR data included

outpatient, emergency department, and inpatient visits. Most impor-

tantly, we showed consistent performance across the three types of

last point of clinical contact prior to suicide attempt (i.e., emergency

department, inpatient, and outpatient), suggesting that our model

may have utility in different clinical settings.

This study has limitations. First, patients were included from a

single, large regional healthcare system in the Northeastern United

States and thus may not generalize to other healthcare settings.

Moreover, patients may have sought healthcare in other systems,

thereby underestimating the suicide attempts in study patients. Sec-

ond, this is a retrospective case-control study with cases and controls

selected from emergency department and inpatient index visits. This

may have underestimated the contribution of some risk factors,

since patients seen in these settings are at increased risk for a suicide

attempt. Third, the study did not analyze EHR utilization shifts over

time. To the extent that less complete data could occur in earlier

years, the results of this effect would be to underestimate the perfor-

mance of our model in more recent years when more complete EHR

data became available. Last, we did not compare our models against

conventional suicide prediction models. Besides technical limitations

to estimating other predictive scores retrospectively, our main focus

was to highlight the importance of unlocking the information wealth

of available unstructured data to improve predictions and inform

clinicians about SDOH. Moreover, our findings of AUC’s>0.90,

along with relative high sensitivity and specificity, contrast favor-

ably with the performance of some commonly used scales in the lit-

erature. For example, in one large multi-site study, four commonly

used scales were tested in emergency department settings to predict

a suicide attempt within six months. The AUCs ranged from 0.49 to

0.71, and scales either had high sensitivity and low specificity, or

vice versa.51

It is well-known that documentation of suicide risk in specific

settings, and of medical charting in general is neither complete nor

highly accurate,49 and consistent with previous reports, using NLP

found that coded diagnoses underestimated the rate of suicide

attempts.50 Any biases or disparities in the receipt of healthcare

could be reflected in our algorithm. The algorithm is static and does

not consider session-to-session changes in clinical status. While

EXGB was the most accurate of the four ML models, its results are

not transparent, and a slightly less accurate but more readily under-

stood algorithm, such as one based on LASSO regression, may be

more clinically useful.8 The left censoring of data prior to 2005 may

have led to mislabeling of cases and controls from historical ICD

codes. Thus, our data might include some cases or controls with pre-

vious suicide attempts. We leveraged the use of narrative notes and

NLP to identify such occurrences and found no significant difference

in prediction performance in our sensitivity analyses, which bolsters

confidence that our findings are robust with or without undetected

cases with a previous suicide attempt.

This study demonstrates that NLP of unstructured data added

predictive power to the ML models (S-EXGB and S-LASSO) based

solely on structured data. With the NLP of unstructured data, we

identified several SDOH that affected suicide risk prediction includ-

ing marital conflict (a risk factor) and family support (a protective

factor). These SDOH could potentially furnish the clinician with rel-

evant intervention targets. NLP also identified suicidal behavior that

was not documented in the structural diagnosis codes. Thus, while

the ML models without NLP of unstructured data performed well

(e.g., AUC¼0.9 in a 30-day window), NLP may provide a better

utility on further identifying clinically actionable findings that might

be missed by the ML models solely using structured data.

Future work based on our study will require the following:

1. replication in other healthcare systems with diversity of popula-

tions and organizational structure using a prospective design;

2. extending this work to develop algorithms that are sensitive to

changes in suicidal risk;

3. developing a continuous learning system that can periodically up-

date models based on the most recent data;

4. exploring how to present risk data and potential treatment

options suggested by the individual’s risk level to the clinician and

how the clinician should present these results to patients;

5. working with patients, healthcare providers, insurance providers,

and regulatory agencies to find the effective, equitable, and ethical

ways to apply these algorithms in healthcare settings.

CONCLUSIONS

Our ML and NLP framework using both structured and unstruc-

tured EHR data demonstrated accurate and robust first-time suicide

attempt prediction. Using recently developed NLP analyses of un-

structured textual data in EHRs provided a significant boost to the

overall accuracy of these ML models. Thus, our large data-driven

approach may be of value for healthcare systems to better identify

patients with first-time suicide attempt risk and be used to provide

timely interventions, especially in nonmental healthcare facilities,

which is the most common point of contact for the majority of

patients at high suicidal risk. Moreover, this approach may enable

personalized intervention given the enormous amount of informa-

tion identified from individual patients, particularly from unstruc-

tured clinical records.
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