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Ischemia-reperfusion (I/R) injury contributes to the morbidity and mortality of ischemic
strokes. As an in vitro model, oxygen-glucose deprivation and reperfusion (OGD/R)
exposure induces neuronal injury. Low-dose ethanol preconditioning (EtOH-PC) was
reported to alleviate neuronal apoptosis during OGD/R. However, whether the
mitochondrial BKCa (mitoBKCa) channel is involved in the neuroprotective effect of EtOH-
PC during OGD/R is not clearly defined. This study attempts to explore the mediation
of the mitoBKCa channel in the neuroprotective effect of EtOH-PC on OGD/R-induced
neuronal apoptosis and the underlying mechanisms. OGD/R model was established
using primary cortical neurons that were preincubated with ethanol. Subsequently, the
cell viability was measured by CCK-8 assay, and the apoptotic cells were determined by
TUNEL assay. Annexin V/7-AAD staining and mitochondrial membrane potential using
JC-10 were detected by flow cytometry. Western blot analysis was performed to check
the apoptosis-related proteins. In the mixed primary culture, 95% neurofilament-positive
cells were cortical neurons. Low-dose EtOH-PC (10 mmol/L) for 24 h significantly
attenuated the OGD2h/R24h-induced neuronal apoptosis through activating the BKCa

channel. Further investigations suggested that ethanol pretreatment increased the
mitochondrial membrane potential (MMP) and downregulated the production of cleaved
caspase 3 in OGD/R-injured neurons by activating the mitoBKCa channel. Low-dose
ethanol pretreatment significantly attenuated the OGD/R-induced neuronal apoptosis
mediated by the mitoBKCa channel which modulated the mitochondrial function by
impeding the uncontrolled opening of mitochondrial permeability transition pore (MPTP).

Keywords: mitoBKCa channel, ethanol preconditioning, oxygen-glucose deprivation and reperfusion (OGD/R),
apoptosis, ischemia-reperfusion (I/R) injury, stroke
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INTRODUCTION

Contributions of ischemia-reperfusion (I/R) to morbidity and
mortality of ischemic strokes have been well documented (Yan
et al., 2015). The oxygen-glucose deprivation and reperfusion
(OGD/R) was used as a well-established in vitro model to induce
neuronal apoptosis under pathological conditions and to study
the neuroprotective effect of the pharmacological intervention
(Alluri et al., 2015; Zhang et al., 2016). Apoptosis is defined as
a form of programmed cell death maintaining the stabilization of
the intracellular environment under physiological or pathological
conditions, and the apoptotic pathway is divided into two types:
the extrinsic pathway and the intrinsic pathway. The extrinsic
pathway mainly relies on the binding of death ligands to their
receptor localized on the cell membranes. On the contrary,
the intrinsic pathway was mediated by the mitochondrial
depolarization and the subsequent release of cytochrome C and
other large molecules, leading to the activation of caspases and
the formation of apoptotic bodies (Burg et al., 2006). Therefore,
pharmacological intervention, such as metformin or neuroserpin,
might protect neurons from OGD/R-induced damage (Meng
et al., 2016; Yang et al., 2016).

The large-conductance, Ca2+-activated K+ channels (BKCa)
is one of the intrinsic molecular determinants that regulate
neuronal excitability and neurotransmitter release in the
central nervous system (CNS) (Raffaelli et al., 2004). The
protective effect of BKCa channels from I/R injury has
been well documented by both transgenic animal models
and pharmacological interventions. For instance, resveratrol
treatment reversed neuronal damage induced by OGD by
activating BKCa channels (Zhang et al., 2008). Furthermore,
universal expression and localization of BKCa channels on the
membranes of both plasma and mitochondria were observed
(Bednarczyk et al., 2013). In addition, a recent report has
demonstrated mitochondrial BKCa (mitoBKCa) as a member of
the Kcnma1 gene family (Singh et al., 2013), roles of which
have been well characterized in protecting the heart from
ischemia, properly through regulation of the generation of
reactive oxygen species (ROS), mitochondrial Ca2+ flux, and
the permeability of the mitochondrial membrane (Xu et al.,
2002; Balderas et al., 2015). However, whether mitoBKCa is
involved in the neuronal apoptosis induced by OGD/R is not
clearly understood.

Ethanol consumption, specifically low-to-moderate ethanol
intake, may typically initiate the cytoprotective mechanism
that prevents the deleterious effects of subsequent I/R
(Yamaguchi et al., 2002; Korthuis, 2004) as an effect of
ethanol preconditioning (EtOH-PC) and finally may reduce the
risk of stroke morbidity and mortality (Reynolds et al., 2003;
Ducroquet et al., 2013; Zhang et al., 2014). The cardioprotective
and neuroprotective effects of ethanol against I/R injury have
been proposed by the famous “French paradox” (Sun et al., 2002),
which was consistent with our previous work to explore the
neuroprotective effect of ethanol in a gerbil model (Wang et al.,
2007). Moreover, another study from our group demonstrated
the potential correlation between ethanol and the activation of
BKCa channel in an in vitro OGD/R model (Su et al., 2017).

However, the mitoBKCa-involved neuroprotective effect of
EtOH-PC is not clearly defined.

Here, we showed that low-dose EtOH-PC significantly
attenuated the OGD/R-induced neuronal apoptosis mediated by
mitoBKCa channel which modulated the mitochondrial function
by impeding the uncontrolled opening of MPTP. This study
identified mitoBKCa as a promising target for the neuroprotective
treatment of ischemic stroke. More importantly, the low-lose
EtOH-PC is beneficial for stroke patients and is valuable for
further study in clinics as the mitoBKCa activator.

MATERIALS AND METHODS

Primary Cortical Neurons Culture
Isolation of the primary neurons from Sprague-Dawley rat fetuses
(Vital River Laboratory Animal Technology Co., Ltd., Beijing,
China) has been described previously (Liu Y. et al., 2012) with
minor modification. All the experiments have been approved
by the Ethics Committee of the Beijing Tiantan Hospital of
Capital Medical University. The bilaterally cortical brain tissue
was collected and minced, followed by digestion with 0.125%
trypsin EDTA supplemented with 0.5 mg/ml DNase for 15 min
at 37◦C, and were then terminated by mix with complete
medium containing DMEM/F12 with 10% fetal bovine serum
and 5% horse serum. Single-cell suspension was then isolated
by centrifugation followed by resuspension with culture medium
(DMEM/F12, 10% FBS, 5% HS, 0.5 mmol/L L-glutamine, and
1% penicillin/streptomycin) into the plates coated with poly-
L-lysine (0.1 g/L). After 4 h incubation, the medium was
changed with a medium composed of neurobasal-R medium,
2% B27, 1% BSA, and 1% penicillin/streptomycin. The cells
were maintained at 37◦C in an incubator supplemented with 5%
CO2.

Immunofluorescence
Immunofluorescence was performed to confirm the purity of the
isolated neuron cells as previously described (Su et al., 2017).
Briefly, cells were first fixed with 4% paraformaldehyde after
culturing for 7 days, and then, they were stained with anti-
neurofilament antibody and anti-glial fibrillary acidic protein
antibody to label the endogenous expression of both proteins
at 4◦C overnight (1:500, Beijing GuanXing Yun Science and
Technology Co., Ltd., Beijing, China). The next day, the unbind
primary antibodies were removed by washing, and then, the cells
were incubated with secondary antibodies at room temperature
for about 1 h. The unbind secondary antibodies were removed
as previously described, and then, the DNAs were stained with
DAPI for 2 min at room temperature. Cell images were collected
using a microscope from Olympus.

Oxygen-Glucose Deprivation and
Reoxygenation
To establish the OGD/R mode, neuron cells were first challenged
with glucose-free DMEM (Thermo Fisher Scientific, Inc.,
Waltham, MA, United States) and a hypoxic condition with 5%
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carbon dioxide, 2% oxygen, and 93% nitrogen at 37◦C for 1, 2,
and 3 h, respectively, and then, they were recovered with culture
medium with normal glucose as well as normoxic condition with
5% carbon dioxide at 37◦C for 24 h (reoxygenation period).

Pharmacological Treatments
Cells were first treated with paxilline at 5 µmol/L for
10 min, and then, they were incubated with 10 mmol/L
ethanol (Sigma-Aldrich, St. Louis, MO, United States) for 24 h
followed by OGD/R.

Cell Viability Assay
The cell viability was measured by Cell Counting Kit-8 (CCK-8;
Dojindo, Kumamoto, Japan) Briefly, 20 µl of the CCK-8 reagent
was mixed with the culture medium and then incubated at 37◦C
for about 4 h. The absorbance at OD 450 was measured by the
Molecular Device M5.

Electrophysiology Recording
Borosilicate glass patch pipettes for single-channel recordings
had a resistance of 3–5 MX when filled with an internal

FIGURE 1 | Establishment of OGD/R model. (A) Identification of primary cortical neurons. Double-labeling immunofluorescence staining with the neuron marker NF
(green) and the astrocyte marker GFAP (red); nuclei stained with DAPI; scale bar: 50 µm. (B) Effects of different time of OGD/R on neuron viability. Cell viability was
measured by CCK-8 assay. #P < 0.01 vs. control; *P < 0.01 vs. control; 1P < 0.01 vs. control.
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solution. Recordings were made using a patch clamp amplifier
and patch master 2.73 amplifier (Heka, Lambrecht, Pfalz,
Germany). The single-channel recordings were filtered at 1–
5 kHz and digitized at 20 kHz. All experiments were performed
at room temperature (22–25◦C). Fitmaster software (Heka,
Lambrecht, Pfalz, Germany) was used for data analysis. Open
probability is expressed as channel open probability (NPo),
where N represents the number of single channels present in
the patch, and Po is the open probability of a single channel.
NPo was calculated as follows: NPo = (A1 + 2 A2 + 3
A3 + n An)/(A0 + A1 + A2 + . . .An), where A0 is the
area below, the plot of the amplitude histogram corresponds
to the closed state, and A1–An represents the area of the
histogram, reflecting different open current levels from 1 to n
channels in the patch.

Terminal Deoxynucleotidyl Transferase
(TdT)-Mediated dUTP Nick End-Labeling
(TUNEL)
TUNEL assay for the detection of apoptosis was performed
according to the instruction of the manufacturer (Thermo Fisher
Scientific, Waltham, MA, United States). Apoptotic cells were
pictured by microscope (Olympus), and counted and analyzed by
Graphpad Prism 6.0 from five independent fields.

Annexin V-PE and 7-AAD
Double-Staining Assay
Apoptosis was determined using the PE Annexin V Apoptosis
Detection Kit with 7-AAD (BioLegend) and detected by flow
cytometry (BD C6; BD Biosciences, Franklin Lakes, NJ). Briefly,

FIGURE 2 | BKCa mediated the protective effect of ethanol preconditioning. (A) Representative single-channel recordings of BKCa channels in the inside-out
configuration. (B) The current–voltage curve of the BKCa channels. *P < 0.05 vs. control; ###P < 0.001 vs. control; oP < 0.05 vs. OGD/R. (C) Statistical data for
close time of the BKCa channels. *P < 0.05 vs. control; #P < 0.05 vs. OGD/R. (D) Statistical data for open probability (NPo) of the BKCa channels. *P < 0.05 vs.
control; #P < 0.05 vs. OGD/R.
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FIGURE 3 | Ethanol preconditioning protected against the OGD/R-induced neuronal apoptosis through activating BKCa channel detected by TUNEL staining.
Results are expressed as mean ± S.D. (n = 5). #P < 0.01 vs. CON; *P < 0.01 vs. OGD/R; 1P < 0.05 vs. EtOH-PC + OGD/R; scale bar: 100 µm.

FIGURE 4 | Ethanol preconditioning protected against the OGD/R-induced neuronal apoptosis through activating BKCa channel detected by flow cytometry. After
the neurons were preincubated with paxilline (5 µmol/L) for 10 min and preconditioned with ethanol (10 mmol/L) followed by OGD2h/R24h, the neurons were stained
with Annexin V and 7-AAD and detected by flow cytometry (A). Results are expressed as mean ± S.D. (n = 5). #P < 0.01 vs. CON; *P < 0.05 vs. OGD/R; 1P <

0.05 vs. EtOH-PC + OGD/R (B).
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the cells were collected by trypsinization and then washed with
PBS three times to remove the debris and complete medium.
Subsequently, cells were stained with 5 µl of Annexin V-PE and
5 µl of 7-AAD at dark for 15 min at 23–25◦C. For the analysis
of the apoptotic cells at different stages as well as the non-
apoptotic cells, the early apoptotic cells were defined as positive
for PE-Annexin-V and negative for 7-AAD, whereas the late-
stage apoptotic cells were defined as positive for PE-Annexin V
as well as 7-AAD.

Detection of Mitochondrial Membrane
Potential
After treatment, the neuronal cells were collected by
trypsinization and then labeled with JC-10 (Beyotime
Biotechnology, Shanghai, China) at 37◦C for 30 min. Next,
the cells were centrifuged at 1,000 rpm for 4 min, followed by
washing with PBS three times. The cells were then suspended
with 400 µl flow buffer and were analyzed by flow cytometry (BD
C6; BD Biosciences, Franklin Lakes, NJ).

Western Blot
Total cell lysate was prepared from neuronal cells with
radioimmunoprecipitation assay buffer (RIPA) supplemented
with protease inhibitor (Biochem, PA, United States). Cell
concentrations were quantitated by BCA assay and were
denatured with SDS-based sample buffer. In Western blot, equal

amounts (30 µg) of protein were loaded and separated by SDS-
PAGE and then transferred onto the PVDF membrane. The
blot was first blocked with 5% non-fat milk and then incubated
with primary antibody overnight at 4◦C. Antibodies for cleaved
caspase 3 (1:1,000; Cell Signaling Technology, MA, United States)
and total caspase 3 (1:1,000; Cell Signaling Technology, MA,
United States), anti-Drp1 (ab184247), and anti-Fis1 (ab156865)
were purchased from Abcam, and anti-March 5 (19168) was
purchased from Cell Signaling Technology. Next, the blots were
washed with TBST and then incubated with secondary antibodies
conjugated with HRP at room temperature for 1 h. Signals were
collected by adding ECL solution and were captured by the
FluorChem FC2 System (Cell Biosciences, Inc., Santa Clara, CA,
United States), and images were analyzed using ImageJ software
(NIH, United States).

Mitochondrial Permeability Transition
Pore Assay
All the cells were first collected by trypsinization and were
washed with PBS two times, and then, they were resuspended
with buffer containing Calcein AM, quenching solution. The
concentration of the cells was 1×106 ml−1, and the cells were
kept at 37◦C for 30 min. The cells were centrifuged at 1,000 g
for 5 min and then resuspended with detection buffer for flow
cytometry analysis.

FIGURE 5 | Ethanol preconditioning increased the mitochondrial membrane potential through activating mitoBKCa. After the neurons were preincubated with
paxilline (5 µmol/L) for 10 min and preconditioned with ethanol (10 mmol/L) followed by OGD2h/R24h, the neurons were incubated with JC-10 at 37◦C for 30 min.
Then, the cells were centrifuged, and the stained cells were subjected to flow cytometry assay (A). Results are expressed as mean ± S.D. (n = 5).#P < 0.01 vs.
CON; *P < 0.05 vs. OGD/R; 1P < 0.05 vs. EtOH-PC + OGD/R (B).
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Statistical Analysis
All the data were expressed as mean ± standard deviation (S.D.)
and were analyzed with SPSS version 25.0. Significant differences
were determined by ANOVA followed by Dunnett’s multiple
comparison test, and the statistical significance was defined as
P < 0.05.

RESULTS

Identification of Primary Cortical
Neurons
To examine the purity of cortical neurons in the primary
mixed culture, we stained the cells with anti-NF directed
against the neurofilament protein and anti-GFAP directed
against glia-specific glial fibrillary acidic protein and observed

that 95% NF-positive cells were cortical neurons (Figure 1A).
To determine the optimal OGD/R condition, we exposed
the neurons to oxygen-glucose deprivation for 1, 2, or 3 h,
respectively, and followed by reperfusion for 24 h. The neurons
viability was decreased with an increase in the deprivation
time, and we determined 2 h OGD as the optimal deprivation
time (Figure 1B).

BKCa Mediated the Protective Effect of
Ethanol Preconditioning Against
Oxygen-Glucose Deprivation and
Reperfusion Injury
In view of our previous findings that 10 mmol/L ethanol
treatment could activate BKCa channels at all membrane voltages
(Su et al., 2017), we then investigated whether EtOH-PC reversed
the OGD/R-induced neuronal injury through activating BKCa

FIGURE 6 | Ethanol preconditioning regulated the mitochondrial permeability transition pore during OGD/R. The neuron cells were preincubated with paxilline (5
µmol/L) for 10 min and preconditioned with ethanol (10 mmol/L) followed by OGD2h/R24h. The mitochondrial potential was determined by mitochondrial
permeability transition pore (MPTP) assay.
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channel. We examined the current–voltage and conductance
of BKCa channel using an inside-out patch after 10 mmol/L
EtOH-PC followed by OGD2h/R24h. It suggested that ethanol
increased the current and conductance of BKCa and decreased
the close time of BKCa. OGD/R exposure markedly decreased
the current and conductance of BKCa and increased the
close time of BKCa. The NPo of BKCa was decreased under
OGD/R, while low-dose EtOH-PC counteracted the effect of
OGD/R on current, conductance, close time, and NPo of
BKCa (Figure 2).

Ethanol Preconditioning Protected
Against the Oxygen-Glucose Deprivation
and Reperfusion-Induced Neuronal
Apoptosis Through Activating BKCa
Channel
Since OGD/R decreased the neuronal viability and ethanol
dramatically attenuated the OGD/R-induced neuronal injury,
we next investigated whether apoptosis was involved in the
decreased cell viability and whether ethanol could attenuate
the OGD/R-induced neuronal apoptosis. As expected, OGD/R
exposure led to apoptosis in neurons as demonstrated by the
TUNEL assay. Furthermore, EtOH-PC had no effect on the
normoxic neurons, but markedly reduced the apoptotic cells after
OGD/R exposure. BKCa channel blocker paxilline preincubation
counteracted the protective effect of ethanol (P < 0.01, Figure 3).

In addition, the neuron apoptosis was further confirmed
by flow cytometry after staining with Annexin V-7-AAD,

indicating that EtOH-PC dramatically reduced the apoptotic
cells. Compared with EtOH + OGD/R group, BKCa channel
blocker paxilline preincubation significantly counteracted the
neuroprotective effect of EtOH-PC (Figures 4A,B).

Taken together, low-dose EtOH-PC protected against OGD/R-
induced neuronal apoptosis through activating BKCa channel.

Ethanol Preconditioning Decreased
Mitochondrial Membrane Potential
Through Activating Mitochondrial BKCa
To determine whether the mitochondrial BKCa channel was
involved in the protective effect of EtOH-PC, we examined
the mitochondrial membrane potential using flow cytometry.
Compared with the control group, OGD/R exposure partially
opened MPTP and subsequently decreased the mitochondrial
membrane potential. EtOH-PC closed MPTP and increased the
MMP. However, BKCa channel blocker paxilline preincubation
before ethanol significantly counteracted the effect of ethanol
with the decrease of MMP (Figures 5A,B). In addition, a similar
trend of regulation was further confirmed by the MPTP assay
(Figure 6). It suggested that mitoBKCa mediated the protective
effect of EtOH-PC.

Ethanol Preconditioning Downregulated
Intrinsic Apoptosis-Related Proteins
Through Activating Mitochondrial BKCa
When the mitochondrial membrane potential decreases, caspase
3 is cleaved and activated by the apoptosis-inducing factor

FIGURE 7 | Ethanol preconditioning downregulated the cleaved caspase 3 expression through activating mitoBKCa. After the neurons were preincubated with
paxilline (5 µmol/L) for 10 min and preconditioned with ethanol (10 mmol/L) followed by OGD2h/R24h, cleaved caspase 3 and total caspase 3 were detected by
Western blot analysis. Representative blots in (A) cleaved caspase 3 and (B) total caspase 3. Quantification of the ratio of cleaved caspase 3 to β-actin (C) and total
caspase 3 to β-actin (D). Results are expressed as mean ± S.D. (n = 3). #P < 0.01 vs. CON; *P < 0.01 vs. OGD/R; 1P < 0.01 vs. EtOH-PC + OGD/R (C). #P <

0.01 vs. CON; *P < 0.01 vs. OGD/R; 1P < 0.01 vs. EtOH-PC + OGD/R (D).
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released from the mitochondrial extracellular compartment
and apoptotic protease activating factor-1 released from
mitochondria. So, we examined the cleaved caspase 3 expression
and found that OGD/R exposure upregulated the cleaved caspase
3 expression. EtOH-PC downregulated the cleaved caspase
3 expression. BKCa channel blocker paxilline significantly
counteracted the downregulation effect of ethanol (Figure 7).
In addition, markers (Drp1, Fis1, March 5) for the apoptosis
pathway were analyzed by Western blot, and the results suggested
that ethanol-mediated neuroprotective effect was dependent on
the intrinsic apoptosis pathway, as can be seen from Figure 8.
Collectively, our data demonstrated that mitoBKCa channel
activation mediated the protective effect of EtOH-PC.

DISCUSSION

In this study, our findings suggested that OGD/R-induced
neuronal apoptosis was mediated by BKCa channel. Low-
dose EtOH-PC significantly attenuated the OGD/R-induced
neuronal apoptosis through activating BKCa channel. Further

mechanism investigations suggested that mitochondrial BKCa
(mitoBKCa) mediated the neuroprotective effect of EtOH-PC by
impeding the uncontrolled opening of MPTP and modulating the
mitochondrial function.

The BKCa belongs to the KCa family and is activated by
multiple signals including elevated levels of intracellular
Ca2+ and membrane depolarization, leading to a large
K+ conductance. As a consequence, the membranes were
re/hyperpolarized, and the voltage-dependent Ca2+ channels
were closed (Bednarczyk et al., 2013). BKCa channel is involved
in the hyperglycemia-altered apoptosis and proliferation in
HEK293 cells (Chang et al., 2011). Activation of BKCa channels
elicits the infarct-sparing effects of late ischemic preconditioning
in myocardial I/R injury in animal models (Wang et al., 2010).
Liu X.R. et al. (2012) suggested that propofol causes greater
vasodilating effects by increasing the Ca2+ sensitivity of BKCa
channel in the cerebral arterial smooth muscle cells. In this study,
the single-channel recordings of the inside-out patch clamp
showed that the BKCa channel was deactivated by OGD/R in
cortex neuron cells; more importantly, low-dose (10 mmol/L)
ethanol activated BKCa channels suggested that BKCa is a

FIGURE 8 | Ethanol preconditioning downregulated intrinsic apoptosis markers during OGD/R through activating mitoBKCa. After the neurons were preincubated
with paxilline (5 µmol/L) for 10 min and preconditioned with ethanol (10 mmol/L) followed by OGD2h/R24h. (A) Representative blots of Drp1, Fis1, and March 5, and
the quantification result were shown in (B–D). Results are expressed as mean ± S.D. (n = 3). #P < 0.001 vs. CON; *P < 0.01 vs. OGD/R; 1P < 0.01 vs.
EtOH-PC + OGD/R (B). #P < 0.01 vs. CON; *P < 0.05 vs. OGD/R; 1P < 0.05 vs. EtOH-PC + OGD/R (C). #P < 0.001 vs. CON; *P < 0.001 vs. OGD/R; 1P <

0.001 vs. EtOH-PC + OGD/R (D).
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promising target for I/R injury treatment, and low-dose ethanol
might be the BKCa channel opener.

Mitochondria are key organelles defining cell fate. The
inner mitochondrial membrane is particularly vital because
it contains the respiratory chain complex, which makes the
mitochondria not only an ATP producer but also a regulator
of redox homeostasis and Ca2+ (Balderas et al., 2015). More
and more K+ selective channels have been uncovered in the
internal membrane, such as mitoBKCa. mitoBKCa may regulate
mitochondrial function as a redox sensor (Augustynek et al.,
2014). The opening of the mitoBKCa channel to a certain extent
can protect the mitochondria from the uncontrolled MPTP
opening, leading to the increase of mitochondrial membrane
potential and the inhibition of apoptosis (Cheng et al., 2008,
2011). The mitochondrial cation channel BKCa plays a significant
role in cardioprotection from I/R injury (Ponnalagu and Singh,
2016). However, it is not clearly understood whether mitoBKCa is
involved in the neuroprotection of ethanol from OGD/R-induced
apoptosis in I/R injury.

Recently, brain preconditioning, especially pharmacological
preconditioning, has demonstrated promising benefits as a
novel treatment option for ischemic stroke (Stetler et al.,
2014). Although excessive ethanol drinking is highly correlated
with increased stroke risk (Balderas et al., 2015) and severity
(Ducroquet et al., 2013), multiple lines of evidence suggest
that low-to-moderate ethanol consumption (1–2 beverages or
30 g of ethanol per day) may exert a protective effect against
I/R injury (Yamaguchi et al., 2002; Korthuis, 2004). Our
previous study demonstrated that low-dose ethanol protected
against OGD/R-induced neuronal injury. As described in this
study, we observed the OGD/R-induced neuronal apoptosis
determined by Annexin V and 7-AAD staining, as well as
TUNEL staining. Low-dose EtOH-PC significantly attenuated
the OGD/R-induced neuronal apoptosis through activating the
BKCa channel.

In mitochondria, when the mitochondrial membrane
potential decreases, caspase 3 is cleaved and activated by the
apoptosis-inducing factor released from the mitochondrial
extracellular compartment and apoptotic protease activating
factor-1 released from mitochondria. Once activated, procaspase-
3 is cut into cleaved caspase-3 and plays the role of proteolytic
enzymes promoting apoptosis (Lazebnik et al., 1994). In this
study, we demonstrated that OGD/R induced the decrease

of mitochondrial membrane potential and upregulated the
cleaved caspase 3 expression. Low-dose EtOH-PC increased
the mitochondrial membrane potential and downregulated
the cleaved caspase 3 expression, leading to the inhibition of
apoptosis. After inhibiting the BKCa channel by paxilline, the
protective effects of ethanol were counteracted, suggesting that
the mitoBKCa channel mediated the protective effect of low-dose
EtOH-PC against the OGD/R-induced neuronal apoptosis.

Taken together, our study has identified mitoBKCa as a critical
channel that mediates the protective effect of low-dose EtOH-
PC against the neuronal apoptosis induced by OGD/R. mitoBKCa
might be a promising target for the neuroprotective treatment of
ischemic stroke. As a potential mitoBKCa activator, the protective
effect of low-dose EtOH-PC in human stroke patients warrants
future investigation.
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