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Abstract

Computational models of gas transport and aerosol deposition frequently utilize idealized

models of bronchial tree structure, where airways are considered a network of bifurcating

cylinders. However, changes in the shape of the lung during respiration affect the geometry

of the airways, especially in disease conditions. In this study, the internal airway geometry

was examined, concentrating on comparisons between mean lung volume (MLV) and total

lung capacity (TLC). A set of High Resolution CT images were acquired during breath hold

on a group of moderate persistent asthmatics at MLV and TLC after challenge with a bron-

cho-constrictor (methacholine) and the airway trees were segmented and measured. The

airway hydraulic diameter (Dh) was calculated through the use of average lumen area (Ai)

and average internal perimeter (Pi) at both lung volumes and was found to be systematically

higher at TLC by 13.5±9% on average, with the lower lobes displaying higher percent

change in comparison to the lower lobes. The average internal diameter (Din) was evaluated

to be 12.4±6.8% (MLV) and 10.8±6.3% (TLC) lower than the Dh, for all the examined bron-

chi, a result displaying statistical significance. Finally, the airway distensibility per bronchial

segment and per generation was calculated to have an average value of 0.45±0.28, exhibit-

ing high variability both between and within lung regions and generations. Mixed constric-

tion/dilation patterns were recorded between the lung volumes, where a number of airways

either failed to dilate or even constricted when observed at TLC. We conclude that the Dh is

higher than Din, a fact that may have considerable effects on bronchial resistance or airway

loss at proximal regions. Differences in caliber changes between lung regions are indicative

of asthma-expression variability in the lung. However, airway distensibility at generation 3

seems to predict distensibility more distally.
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Introduction

Modeling of the lungs has become an important tool for both diagnostic [1–4] and research

[5–11] purposes. Functional features of the lung such as airway compliance or distensibility

[12–15], resistance [9,12,16–21], aerosol deposition [5,9,22–27] and ventilation distribution

[10,19,26,28–32] computations are frequently made using a combination of medical images

and the utilization of such models. Clearly, knowledge of the underlying lung morphologies is

a key to these applications.

In most cases the airway internal diameters (Din) [33–36], lumen areas (Ai) [33–35,37–39]

or internal perimeters (Pi) [38,40] are evaluated. For computational models of gas-transport

and aerosol deposition, idealized bronchial tree structures are developed and the above mea-

surements used to define a network of bifurcating straight tubes [2,11,41,42]. However, it has

been documented that this simplified models may not be accurate, particularly in the most

proximal regions of the lung where the bronchi display transversal curvature [43,44]. Addi-

tionally, the shape of the cross-section of the airway is neither circular nor smooth [7,45] (Fig

1), a situation exacerbated in disease conditions [45–47]. For example, permanent airway

remodeling in asthma causes the non-uniform swelling of the airway which, combined with

increased mucous secretion, can form a complex lumen shape [45]. These effects need to be

taken into account during functional modeling as they will clearly affect the flow.

A quantity that can be used to infer the potential functional influence of the internal shape

of the airways is the Hydraulic Diameter (Dh), which is commonly used in fluid dynamics to

characterize flow in non-circular channels [48]. Only a very few studies of this geometric fea-

ture have been performed in the past, with some concentrating in the extra-thoracic regions

[49,50]. Recently, Choi et al. [38] have calculated regional Dh values and found that, when nor-

malized to a predicted trachea diameter, Dh decreases in asthmatic bronchi when compared to

healthy bronchi and correlates with certain Pulmonary Function Tests (PFTs).

In the current study, the influence of lung volume on the Dh, Ai and lumen internal perim-

eter Pi was examined. A set of bronchial measurements were performed in a mild intermittent

or persistent group of asthma patients during methacholine (Mch)-induced broncho-constric-

tion who were scanned with High Resolution Computed Tomography (HRCT) at two levels of

lung inflation: mean lung volume (MLV) and total lung capacity (TLC). Subsequently, the Dh

of individual airways was calculated using the measured average Ai and Pi and its correlation

to the average Din was investigated. Finally, the distensibility of the airways was calculated and

the correlation of lung volume change (ΔV/V) to lumen area change (ΔAi/Ai) was explored.

Methods

Medical image acquisition

The imaging protocol was completed at the Massachusetts General Hospital with IRB approval

(Application No. 2007P000493) and is described in detail in [24]. In brief, the study included

24 volunteers diagnosed with mild intermittent or mild persistent asthma, as defined by the

NIH Global Initiative for Asthma [51]. Written informed consent was provided by all volun-

teers. The first patient was recruited in December 2010. Demographic parameters are provided

in Table 1. All subjects displayed reversible obstruction with inhaled albuterol. During an ini-

tial screening visit, the provocative concentration of MCh required to cause a 20% drop in the

subject’s FEV1 (PC20) was estimated. On a second visit that same concentration was adminis-

tered over 5 deep breaths by a DeVilbiss nebulizer and Rosenthal dosimeter (model 646, DeV-

ilbiss Healthcare, Somerset, PA) with the subject already placed in a supine position within a

PET/CT scanner (Biograph 64, Siemens AG).
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Two HRCT images were then obtained during breath hold; one at mean lung volume

(MLV) and one at total lung capacity (TLC), respectively 5 and 30 minutes after the MCh chal-

lenge. The scanner was used in a helical mode to acquire 64 slices per rotation with a 0.6mm

Fig 1. A segmented bronchial tree. The figure includes the central axis lines and the main airway names (down to the

segmental level). The axial slice of the airway RMI is included on the left to demonstrate its non-circular cross-section.

https://doi.org/10.1371/journal.pone.0182052.g001

Table 1. Patient demographic and lung function parameters (mean±std).

Gender 17F / 7M

Age (years) 19.8±1.7

Weight (kg) 66.8±10.6

Height (cm) 168.1±10.6

FEV1 (L) 3.8±0.8

FEV1 (% pred.) 103.2±10.4

FVC (L) 4.5±1.1

FVC (% pred.) 107.7±9.6

PC20 0.59±0.62

Right lung air volume (L) at MLV 1.294±0.441

Right lung air volume (L) at TLC 2.286±0.626

Left lung air volume (L) at MLV 1.136±0.374

Left lung air volume (L) at TLC 2.072±0.56

https://doi.org/10.1371/journal.pone.0182052.t001
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collimation. The imaging parameters were 120kvp, 80mA and a pitch of 1mm. The captured

3D images have slice thickness of 0.75mm with typical pixel spacing of 0.6x0.6 mm and slice

separation of 0.5 mm.

Bronchial geometry acquisition

The airway analysis was performed with the Pulmonary Workstation 2 (PW2) software (VIDA

Diagnostics, Coralville, IA). The lungs, lobes and airway tree bronchi were segmented from

the HRCT images down to the most distal distinguishable generation. A set of measurements

was then performed on each segmented bronchus, including the average Din, Ai, WT, Pi and

Po (outer perimeter). The manual and semi-automatic use of PW2 as a research tool is

explained in detail in [36].

The airways in each segmented image were then uniquely identified, anatomically labeled

and matched (Fig 1); only bronchi that were available at both levels of respiration were used.

Standard nomenclature was used, matching the anatomical airway names with their respective

acronyms [52]. Briefly, the airway names and their acronyms are the following: T (trachea), R

(right main bronchus), L (left main bronchus), RMI (right intermediate), RU (right upper

lobe), RM (right middle lobe), LU (left upper lobe) and LL (left lower lobe). The right lung seg-

mental bronchi are for the right upper lobe RB1 (apical), RB2 (posterior), RB3 (anterior), for

the right middle lobe RB4 (lateral) and RB5 (medial) and for the right lower lobe RB6 (supe-

rior), RB7 (medial basal), RB8 (anterior basal), RB9 (lateral basal), RB10 (posterior basal). For

the left lung, the segmental bronchi in the upper lobe are LB1 (apical), LB2 (posterior), LB3

(anterior), LB4 (inferior), LB5 (superior) and in the lower lobe LB6 (superior), LB8 (anterior

medial basal), LB9 (lateral basal) and LB10 (posterior basal).

The Dh was calculated according to the formula

Dh ¼
4Ai
Pi

ð1Þ

while airway distensibility was defined as

AD ¼
DAi
Aiffiffiffiffiffiffiffiffiffiffiffi
DV
V

� �23
q ¼

AiTLC � AiMLV
AiMLVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VTLC � VMLV
VMLV

� �23

r ; ð2Þ

where AiTLC and AiMLV is the airway lumen area at TLC and MLV respectively and VTLC and

VMLV are the volumes of the bronchi’s subtended lungs (right or left depending on bronchus

position). Paired Student t-tests were used to examine statistical significance between parame-

ters (Dh vs Din) at both lung volumes (p<0.05). Linear regression analyses where assessed

using the Pearson coefficient.

For practical purposes all lobar bronchi were assigned generation 2, segmental bronchi gen-

eration 3 etc. Given this definition, airway segmentation of matched airways was reliably avail-

able down to generation 5 only in the RB1, RB3 (right upper lobe) RB6, RB10 (right lower

lobe) LB3 (left upper lobe) and LB10 (left lower lobe) segments.

Results

The results from the Dh calculations are provided in Table 2 for both MLV and TLC groups.

For convenience these results were organized per generation and per lobe. All bronchi dis-

played a 13.5±9% positive increase in Dh on average, ranging between 8.5±4.7% in the trachea

and main bronchi and 19.6±9% in generations 4–5 of the left lower lobe. The lower lobes dis-

played higher % change on average than the upper lobes. In generation 3 that difference is
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4.75% and 3.1% for the right and left lung respectively, while this trend persists in generations

4 (4.9% and 6.8%) but not fully in generation 5 (-0.7% and 6.2%). A decrease in Dh was also

observed after full inspiration, but was rare (<5% of the examined samples). A Student t-test

between the two groups revealed that, with the exception of RL lobe generations 2 and 5, all

other comparisons were statistically significant (p<0.05).

A linear regression analysis of Dh between MLV and TLC shows that the majority of the

lobar regions display moderate or strong (R2>0.55) correlation to lung volume change (see Fig

2). In fact, the lowest correlation coefficients can be observed at generation 5 for the RU, RL

and LU lobes, where measurement artifacts and more sparsely populated datasets are common

due to diminishing airway sizes. The graphs of Fig 2 represent the effect of the two lung vol-

umes on the Dh for the trachea, right and left main bronchi (Fig 2A), the lobar bronchi (Fig

2B), and the bronchi of generations 3–5 for the RU lobe (Fig 2C, 2D and 2E). With very few

exceptions, the Dh increases for the large majority of the samples involved, with the trend lines

almost parallel to the identity line, thus verifying the 13.5% average increase in Dh between

lung volumes. These results were similar for all lobes.

The comparison between Dh and Din, displayed in Fig 3, gives statistically significant

results for all the airways involved in this study, with Din>Dh and very high correlation coeffi-

cients, as the R2 of the linear regression analyses are between 0.8734 (Fig 3B) and 0.9683 (Fig

3C). Very similar results could be observed for the other lobes for both MLV and TLC.

Table 2. The hydraulic diameter per generation per lobe at MLV and TLC.

Gen DhMLV DhTLC % change P R2

avg std avg std avg std

Trachea 0 13.48 1.98 14.61 2.07 7.7 4.6 <0.0001 0.876

Right 1 11.74 1.69 12.86 1.73 8.7 5.1 <0.0001 0.853

Left 1 9.09 1.58 10.12 1.7 10.1 5.2 <0.0001 0.883

RMI 2 8.68 1.22 9.4 1.22 7.7 4 <0.0001 0.895

RU 2 7.17 1.29 8.23 1.25 12.6 10.6 0.0001 0.469

RB1-3 3 3.82 0.8 4.47 0.9 14.4 7.6 <0.0001 0.848

4 2.75 0.43 3.25 0.58 14.4 10.4 <0.0001 0.582

5 2.55 0.41 2.91 0.37 10.8 13.8 0.0267 0.451

RM 2 5.11 0.79 5.75 0.75 11.1 7.3 <0.0001 0.718

RB4-5 3 3.37 0.44 3.85 0.69 11.7 7.7 0.0001 0.785

4 2.53 0.4 2.89 0.47 12 9.8 0.0001 0.608

RL 2 8.12 1.57 8.37 1.57 2.8 10.7 0.2394 0.715

RB6-10 3 3.57 0.72 4.21 0.91 14.4 9.4 <0.0001 0.73

4 2.57 0.5 3.09 0.65 16.1 9 <0.0001 0.712

5 2.44 0.35 2.81 0.43 13.1 12.3 0.052 0.281

LU 2 7.84 1.33 8.55 1.21 8.3 6.7 <0.0001 0.801

LB1-5 3 3.24 0.6 3.73 0.64 12.9 8.9 0.0055 0.719

4 2.84 0.47 2.83 0.61 12.8 8.7 0.0098 0.723

5 2.69 0.36 3.16 0.6 13.3 13.2 0.0024 0.37

LL 2 7.34 0.86 8.45 1.02 13 5.7 <0.0001 0.706

LB6-10 3 3.92 0.65 4.73 0.82 16 10.2 <0.0001 0.592

4 2.88 1.05 3.65 1.55 19.6 9 0.0001 0.647

5 2.61 0.6 3.25 0.68 19.5 7 0.0012 0.881

Average and standard deviation values are given, along with percent change between the two lung volumes. The p value and correlation coefficient of a

linear regression between the two groups is also provided.

https://doi.org/10.1371/journal.pone.0182052.t002
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The average ratio Din/Dh was calculated to be 1.124±0.068 at MLV and 1.108±0.063 at

TLC. Even though only 9 out of the 52 examined bronchi displayed statistically significant dif-

ferences between the two lung volumes (significance given by p<0.01), almost all individual

bronchial segments showed that the ratio Din/Dh is larger in MLV than in TLC.

The Ai and Pi were collected in Table 3 for all uniquely identifiable segmented bronchi in

MLV and TLC (Ai in mm2 and Pi in mm). It can be seen that only 6 out of 19 possible genera-

tion 5 bronchial regions could be analyzed in the MLV images. For that reason, comparisons

between the two lung volumes are only possible in these 5 particular regions. The lower lobes

display higher change in airway caliber after inflation to TLC when compared to the upper

lobes. For generation 3, the Ai change was 3.3% and 4.2% for the right and left lungs, respec-

tively, while similar trends were found for generations 4 (6% and 13.4%) and 5 (4.9% and

12.2%).

Fig 2. The hydraulic diameter MLV vs TLC. (a) The proximal airways, with T shown as blue circles ●, R as red triangles▲,

L as green diamonds ◆ and RMI as purple crosses +. (b) The lobar roots except RL, with RU shown as blue circles ●, RM as

red triangles▲, LU as green diamonds ◆ and LL as purple crosses +, (c) RU lobe generation 3, (d) RU lobe generation 4 and

(e) RU lobe generation 5, with RB1 bronchi shown as blue circles ●, RB2 as red triangles▲ and RB3 as green diamonds ◆.

Airway naming terminology is explained in the Bronchial Geometry Acquisition section. The identity line (continuous line,––)

and the combined data regression line (interrupted line,––) are also shown.

https://doi.org/10.1371/journal.pone.0182052.g002
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The average distensibility per airway, as defined in Eq (2), is recorded in Table 4. A box and

whisker plot of these data for all available bronchi of generations 3 and 4 can be seen in the

supplemental graph of S1 Fig. The distribution of the distensibility data in relation to the nor-

mal density function for generations 3 and 4 for the right and the left lung can be observed in

the supplemental information graph S2 Fig., along with the relevant probability plots, shown

in S3 Fig. A small number of data-points displayed distensibility values exceeding two standard

deviations of the average value. These were considered outliers and removed from the dataset.

The correlation between the lumen area change and lung volume change, as expressed in the

same equation, was also examined and recorded in Table 4 in the form of the correlation coeffi-

cient R2. The plotted results of these correlations can be seen in Fig 4. The segmental airways of

the right upper lobe (RB1-3, generation 3) display similar trends, with average values consis-

tently below unity and close to 0.5, while the R2 values are low, indicating large value dispersions

Fig 3. The hydraulic diameter versus average inner diameter. (a) The proximal airways, with T shown as blue circles ●,

R as red triangles▲, L as green diamonds ◆ and RMI as purple crosses +. (b) The lobar roots except RL, with RU shown as

blue circles ●, RM as red triangles▲, LU as green diamonds ◆ and LL as purple crosses +, (c) RU lobe generation 3, (d) RU

lobe generation 4 and (e) RU lobe generation 5, with RB1 bronchi shown as blue circles ●, RB2 as red triangles▲ and RB3

as green diamonds ◆. Airway naming terminology is explained in the Bronchial Geometry Acquisition section. The identity

line (continuous line,––) and the combined data regression line (interrupted line,––) are also shown.

https://doi.org/10.1371/journal.pone.0182052.g003
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Table 3. The measured lumen area (Ai) and inner perimeter (Pi) for specific airways at mean lung volume (MLV) and total lung capacity (TLC).

Generations 0–2 Geneneration 3

Ai (mm2) Pi (mm) Ai (mm2) Pi (mm)

MLV TLC MLV TLC MLV TLC MLV TLC

T 162.2±47.36 181.43±51.55 47.8±7.1 49.44±7.1 RB1 12.87±7 16.66±6.78 13.27±4.41 14.65±2.96

R 120.5±32.35 141.17±36.57 40.47±5.56 43.4±5.77 RB2 10.1±3.74 14.23±5 11.49±2 13.6±2.31

L 72±24.26 88.06±30.25 30.8±5.42 33.78±6 RB3 16.02±7.16 21.1±8.98 14.31±2.95 16.4±3.29

RMI 66.86±17 77.83±18.66 30.25±3.88 32.53±4.1 RB4 8.51±2.67 11.7±6.64 10.73±1.72 12.26±3.02

RU 47.85±17.94 63.28±19.67 25.84±5.5 30.25±5.05 RB5 11.33±3.48 14.11±3.77 12.32±1.8 13.68±1.85

RM 21.76±6.5 27.3±7.14 16.75±2.52 18.77±2.54 RB6 21.55±22.47 29.52±29.47 17.26±9.09 20±10.09

LU 53.78±17.89 63.39±18.26 26.78±4.41 29.08±4.46 RB7 9.42±3.83 12.36±5.57 11.2±2.43 12.88±3.36

LL 47.87±12.7 62.37±15 25.53±3.99 29.16±3.74 RB8 10.41±2.72 14.91±4.41 11.8±1.45 14.23±2.24

LB4+5 21.64±9.97 28.01±9.6 16.58±4.09 18.89±3.56 RB9 8.09±1.86 11.9±4.21 10.41±1.24 12.64±2.64

LLR 28.59±9.29 40.5±12.43 19.1±2.91 22.56±3.39 RB10 11.36±3.47 16.06±5.9 12.28±1.77 14.43±2.29

LB1 8.26±2.13 11.14±3.47 10.54±1.34 12.11±1.72

LB2 5.8±2.07 7.71±2.95 8.78±1.45 10.11±1.77

LB3 15.03±9.31 17.03±6.78 14.03±3.97 14.69±3.09

LB4 9.23±2.67 11.26±4.14 11.19±1.47 12.23±2.32

LB5 9.14±3.35 11.5±4.46 11.16±1.85 12.28±2.3

LB6 13.26±3.65 23.3±8.55 13.33±1.77 17.7±3.42

LB8 13.45±3.45 16.95±4.44 13.63±1.66 15.24±2.34

LB9 12.47±4.68 16.3±5.75 13.1±2.23 14.8±3.32

LB10 14.25±6.93 18.33±5.52 13.82±3.29 15.6±2.55

Generation 4 Generation 5

Ai (mm2) Pi (mm) Ai (mm2) Pi (mm)

MLV TLC MLV TLC MLV TLC MLV TLC

RB1 6.88±2.11 8.74±3.02 9.61±1.38 10.77±1.75 RB1 6.04±2.58 6.54±2.03 8.99±1.84 9.13±1.8

RB2 5.93±1.39 7.84±2.79 9.05±1.1 10.11±1.65 RB2 6.22±2.04 8.91±1.87

RB3 7.11±2.57 9.44±3.53 9.71±1.56 11.04±1.86 RB3 5.55±1.16 6.98±2.63 8.71±0.84 9.39±2

RB4 5.3±1.49 6.82±2.29 8.61±1.17 9.43±1.66 RB4

RB5 5.98±2.11 7.66±2.33 9.02±1.61 10.06±1.69 RB5 5.95±1.44 9.16±0.95

RB6 6.25±2.09 8.77±3.39 9.2±1.52 10.65±2.05 RB6 4.4±1.06 6.29±2.29 7.75±0.9 9.22±1.67

RB7 6.11±1.4 7.61±2.71 9.2±1.01 9.88±1.79 RB7

RB8 5.81±3.53 8.3±4.95 8.77±2.27 10.39±2.69 RB8 7.54±1.73 9.99±1.71

RB9 4.71±1.9 6.61±2.25 7.9±1.55 9.27±1.51 RB9 4.99±1.02 8.37±0.87

RB10 6.67±3.16 9.44±4.54 9.31±2.25 10.98±2.85 RB10 5.99±1.68 8.12±3.81 8.94±1.19 10.22±2.33

LB1 6.88±1.8 7.48±2.61 9.79±1.28 9.84±1.69 LB1

LB2 6.86±1.85 9.78±1.24 LB2

LB3 2.5±3.15 9.42±4.21 14.03±3.97 10.9±2.38 LB3 6.43±1.61 7.69±2.86 9.44±1.2 10.12±1.78

LB4 6.66±1.73 7.56±2.23 9.43±1.2 9.85±1.68 LB4 5.76±1.37 8.02±2.36

LB5 7.8±1.47 10.36±0.92 LB5

LB6 6.75±1.29 12.09±8.11 9.54±0.81 12.46±4.02 LB6 6.83±2.23 9.4±1.7

LB8 7.55±1.54 9.62±3.32 10.14±0.94 11.34±1.94 LB8 7.5±1.7 9.77±1.36

LB9 7.05±2.73 9.33±4.16 9.75±1.91 11.1±2.36 LB9 9.3±3.83 11.08±2.04

LB10 7.87±3.95 10.59±5.62 10.25±2.56 11.62±3.12 LB10 6.43±2.85 7.98±2.98 9.45±2.11 10.03±2.32

The results are given as mean±std values and only for segments where a sufficient number of samples (n�8) is available.

https://doi.org/10.1371/journal.pone.0182052.t003
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(Fig 4A). Equivalent trends could be observed for the same lung region for the generation 4

data (Fig 4B) with somewhat higher R2 values (R2
RB2-gen4 = 0.4444).

Fig 4C and 4D show generation 3 and 4 data respectively for the right lower lobe. Airways

RB8-10 show trends similar to the ones observed in the right upper lobe. An examination of

generation 4 data indicates that, with the exception of airway RB10 (R2
RB10-gen3 = 0.589), the

change of lung volume does not correlate very well with the changes in lumen area. It can be

observed that the distensibility of bronchus RB7 is consistently lower than that of RB6, 8, 9 and

10, even though statistical significance is only reached at generation 4 (p<0.05). The excessive

variability of airway RB6 is also notable.

A lower dispersion of data can be observed in the left lung for all airways. Many analyzed

bronchi, including LB3 (gen. 3 and 5), LB4, LB5, LB6 (gen. 4) LB9 (gen. 3 and 4) and LB10

(gen. 3, 4 and 5) had R2 > 0.4. Overall, the left lung had higher R2 values when equivalent

regions from both lungs were compared. The influence of the left lung volume is distinct but

relatively similar for bronchi LB8, LB9 and LB10 (Fig 4E). The generation 4 data can be seen in

Fig 4F. Furthermore, statistical analysis revealed greater intra-region variability as compared

to the right lung. For example, airway LB3 has lower distensibility (p<0.05) than both LB1 and

LB2 in generation 3, while most comparisons between generation 4 bronchial distensibilities

also gave statistically significant differences. As opposed to RB6, LB6 has lower variability and

has the highest distensibility of all generation 3 airways of the left lung (p<0.05). Finally, simi-

lar levels of distensibility are observed between generations 3 and 4 in the right lung, while in

the left lung statistical significance is reached only for airways LB1 (gen3>gen4, p = 0.0041)

Table 4. The distensibility and Pearson correlation coefficient between lung volume change and lumen area change, given per airway and

generation.

gen Distensibility R2 gen Distensibility R2

avg. std avg. Std

RB1 3 0.41 0.34 0.0016 LB1 3 0.49 0.24 0.1498

4 0.47 0.27 0.3198 4 0.12 0.17 0.9170

5 0.32 0.19 0.0608

RB2 3 0.51 0.29 0.2117 LB2 3 0.49 0.30 0.1691

4 0.54 0.42 0.4444

RB3 3 0.37 0.17 0.3620 LB3 3 0.32 0.23 0.4119

4 0.43 0.21 0.1681 4 0.44 0.32 0.0628

5 0.39 0.29 0.0500 5 0.33 0.33 0.7561

RB4 3 0.35 0.23 0.1098 LB4 3 0.36 0.31 0.5752

4 0.44 0.27 0.2999 4 0.31 0.22 0.3183

RB5 3 0.28 0.15 0.4362 LB5 3 0.35 0.20 0.6899

4 0.33 0.28 0.2910

RB6 3 0.37 0.62 0.2261 LB6 3 0.83 0.31 0.326

4 0.6 0.45 0.2129 4 0.91 0.51 0.5461

RB7 3 0.29 0.22 0.2289

4 0.26 0.14 0.3904

RB8 3 0.51 0.32 0.0623 LB8 3 0.27 0.22 0.0710

4 0.47 0.21 0.2720 4 0.37 0.22 0.3233

RB9 3 0.49 0.23 0.3592 LB9 3 0.51 0.33 0.6615

4 0.71 0.41 0.1232 4 0.63 0.15 0.5838

RB10 3 0.57 0.22 0.5890 LB10 3 0.48 0.31 0.4362

4 0.56 0.33 0.1485 4 0.52 0.24 0.4303

5 0.39 0.31 0.7208 5 0.64 0.22 0.6476

https://doi.org/10.1371/journal.pone.0182052.t004
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and LB3 (gen3<gen4, p = 0.0419). The Pearson correlation coefficient was found to be R2 =

0.4793 (full dataset) and R2 = 0.7401 (LB1 excluded). The distensibility of generation 3 vs gen-

eration 4 can be seen in Fig 5.

Discussion

Even though several studies in the past have investigated the morphometry of the human

bronchi during deep inspiration, only one study was found containing data on the Dh, calcu-

lated for airways at TLC and normalized to predicted trachea diameter [38]. If the TLC data of

Table 2 are normalized to the value of the trachea for the purpose of comparison with Choi

et al. [38], it is observed that our Dh values are within their overall range covering healthy, non

severe and severe asthmatic patients, but do not strictly match the asthmatic range (S1 Table).

Fig 4. The influence of the change in lung volume between MLV and TLC on the lumen area. Data are shown for generations

3 and 4 for the right upper lobe (a and b), right lower lobe (c and d) and left lower lobe (e and f). (a, b) RB1 blue circle ●, RB2 red

triangle▲, RB3 green diamond ◆. (c, d) RB8 blue circle ●, RB9 red triangle▲, RB10 green diamond ◆. (e, f) LB8 blue circle ●, LB9

red triangle▲, LB10 green diamond ◆. The plotted regression lines are the following: RB1, RB8 and LB8 continuous line (blue––).

RB2, RB9 and LB9 interrupted line (red––). RB3, RB10 and LB10 dotted line (green. . ..). The identity line (diagonal black continuous

line, black––) is also shown.

https://doi.org/10.1371/journal.pone.0182052.g004
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Also, somewhat larger discrepancies appear in the left lung. This could be attributed to the

known measurement artifacts in the left lung due to heart motion. Another explanation could

be that the results of the Mch challenge administered to the patients in our study induce higher

spatial variability within the lung in terms of broncho-constrictive effects.

Our results indicate that lower lobe bronchi change more in caliber than the upper lobe air-

ways (Tables 2 and 3, Fig 4) at maximal lung inflation, especially in the left lung. In general,

differences between lung regions have been reported in the literature for both healthy subjects

[53] and COPD patients [54]. In the case of asthma, this difference may indicate that the effects

of the methacholine challenge are more prominent in the upper regions of the lung. For exam-

ple, Kotaru et al. [55], in a study examining the possible locations and patterns of airway

response after different types of broncho-provocation on asthmatic subjects, did not report

any regional differences but did find significant variability, especially with respect to the airway

depth where the challenge is more effective. Furthermore, they observed complex morphomet-

ric alterations, not uniform nor graded, with mixed pattern dilation-constriction within and

among anatomical regions. Another possibility is that the upper lobes of the human lung are

more prone to disease, similar to COPD, as opposed to the lower lobes, the latter exhibiting

more endurance during challenge but being faster to decline in function when more serious

symptoms are observed [56]. This would be in line with the findings of [38], i.e. preferential

regional occurrences of wall thickening in the upper lobes and airway narrowing in the lower

lobes.

In addition to the above, larger diameter and luminal area changes between MLV and TLC

exist in the more distal airways of the left lung (generations 4–5) rather than more proximally

(generations 2–3, Tables 2 and 3). While investigating the effects of inspiration on airway

dimensions of healthy subjects, Petersen et al. [53] pointed out that airways distend fully from

generation 5 and deeper since their tissue is dominated by smooth muscle. Hoshino et al. [37]

confirmed that there is an increasing correlation between Ai and clinical indices of disease as

we penetrate deeper into the lung, confirming that airway remodeling takes place more dis-

tally. A similar study by Shimizu et al. [57] had comparable conclusions. Our results seem to

Fig 5. The average distensibility of individual region generation 3 and generation 4 airways. Right lung

bronchial regions are plotted as blue circles ●while left lung regions are plotted as red triangles▲. The outlier

LB1 is represented as a green diamond ◆. The identity line (continuous line,––) and the combined data

regression line (interrupted line,––) are also shown.

https://doi.org/10.1371/journal.pone.0182052.g005
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partially agree with those of Brown et al. [58], who detected higher distensibilities (measured

as %Ai change) in airways with diameter<3mm after Mch challenge. This could be attributed

to the higher edema present in the smooth muscle, which may attenuate the radial traction

produced by the inflation [59] or to airway remodeling of the extra-cellular matrix [45].

The high correlation coefficients and combined data regression lines of Fig 2 demonstrate

a relatively mild and stable linear relationship for Dh between MLV and TLC, persistent

throughout the lungs with some minor local variations. It is interesting to note that there is a

relatively small number of bronchi displaying either no change or even a reduction of Dh at

TLC (samples below the identity line). This dilation failure, or even the constriction, after

inspiration at TLC might be statistically insignificant appositely to airway tree morphology

but being located at proximal bronchi can have a considerable effect on symptoms [55,60].

Recently, Kim et al. [10] while investigating a coupled model of tissue deformation and net-

work airflow observed that small airway constrictions can disturb flow patterns over large

areas, reinforcing the findings of Venegas et al. [28,61] who showed that sudden closures of

small airways break the system balance, leading to catastrophic shifts. They also found that the

constriction in large airways that feed large volumes can profoundly affect lung function, an

event that is not uncommon as we have discovered in this and a previous study by our group

on asthmatic patients [36], where severe broncho constrictions were discovered as proximally

as generation 3. The ventilation heterogeneity observed in asthma is therefore connected to

regional anatomic heterogeneity, a fact confirmed by [7], making the use of average values

over an entire generation misleading. Unfortunately, no method for the prediction of location

and degree of proximal airway constrictions is currently available. Thus, morphometric mod-

els of disease that fail to give accurate representations of these defects, both geometrically and

spatially, would result in functional models that could not exhibit important phenomena.

The comparison between the Dh and the Din demonstrated that the latter is almost uni-

formly larger than the former (Fig 3) by 12.5% at MLV and 10.8% at TLC, with the difference

between lung volumes displaying statistical significance (p<0.01). In some airways, this differ-

ence can be considerably higher; for example, it was found to be 23±18% in the RB6 generation

3 airway. While these differences in diameter are relatively minor, functionally it should be

remembered that for laminar and fully developed flow in a tube, the pressure drop is directly

proportional to the flow rate but inversely proportional to the fourth power of diameter. Thus,

a decrease in diameter by 10% would result in a 52% increase in pressure drop, all else being

equal [48]. It is unclear if this systematic difference is a result of the measurement method

used by the segmentation software or if it reflects a physical reality of the diseased human lung.

If non-circular sections are considered throughout the segmented airway tree, as is implied by

our results and also by [18,38], finding the Dh should be a priority over the measurement of

Din for reasons concerning both airway shape and overall airflow resistance.

Since airway resistance depends on the Dh [48], the effect of this difference has a multiplica-

tive effect on overall tree resistance calculations as the number of airways doubles with each

successive generation distally into the lung [62]. Furthermore, even though the Din/Dh dis-

played statistically significant differences between MLV and TLC in only 9 out of 52 examined

segments, the ratio was found to be consistently larger at MLV, indicating a trend for higher

airway resistance at this breathing condition. The analysis of HRCT, due to the limited spatial

resolution, was not sufficient to reveal the full complexity of the bronchial perimeter shape,

providing an elliptical cross-section approximation. For that reason, the difference in the Din/

Dh ratio between the two lung volume states probably represents a small increase in airway cir-

cularity at TLC; i.e., there is an anisotropic airway expansion across its circumference during

inspiration. This is probably related to the elastic properties of the lung parenchyma, which is

an important feature of the mechanics of breathing in disease conditions [10,63].
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Several previous studies have reported the bronchial lumen area, either directly or as per-

centage of total area, for various uniquely identified airways and for various states of health

and disease. The results were mostly presented either as average values per airway generation

[38,64] or are given only for specific, easily identifiable generation 3 airways that may act as

surrogate markers of lung function and tree morphology [34,54,65–67], or both [37,53,57]. In

this study, Ai and Pi measurements were provided in Table 3 for all segmented bronchi for

generations 3–5 for both MLV and TLC and without any normalization. This was done mostly

because, as mentioned earlier, concentrating on specific airways may ignore localized charac-

teristics of disease or disease progression due to the intense intra-subject variability of asthma.

Furthermore, as Bakker et al. [54] suggested, bronchial measurements should not be presented

as an average value for the whole lung, a statement supported by the findings of Fain and

coworkers [68] who found that normalization of airway measures did not eliminate depen-

dence on airway segment and other patient specific factors in a group of normal and asthmatic

subjects. Finally, individualized airway morphometric information can be really useful for

lung modeling applications [11,21]

Many techniques have been used in the past to determine what is the influence of lung

inflation, if any, on the airway geometry [13,54,58,69]. In this study, a definition of airway dis-

tensibility that explores relative changes in Ai and ΔV was adopted. The results are reported

for all bronchial segments in Table 4. The influence of volume change per lung on Ai change

was also reported as the Pearson correlation coefficient and is displayed in the graphs of Fig 4.

These data suggest that volume changes in the right lung only moderately affect the Ai in the

relevant airways, while better correlations exist when the left lung is considered. This might be

due to the fact that the morphometric measurements conducted in this study where made on

static images (HRCT) while the airway distensibility has been shown to be primarily affected

by the dynamic ability to change lung volumes in asthma [70].

The formulas of distensibility suggested by Bakker et al. [54] and Diaz et al. [35] were also

examined. Even though the best correlations between ΔAi and ΔV were observed with the defi-

nition adopted by [35], we believe that the definition of Eq (2) makes the assessment of bron-

chial distensibility easier both within and between different airways and different generations.

This is because, if the value of distensibility in Eq (2) is unity, one can claim that the change in

area is the same as the change in lung parenchyma, i.e. the airway and the parenchyma display

similar compliance. In the group of patients analyzed in this study, the distensibility was calcu-

lated almost unilaterally below unity, with an average of 0.45±0.28, displaying variation bet-

ween different lung regions. This failure of the central airway lumen to dilate to an equivalent

degree with the inflation of the lung should be expected due to the tissue composition of these

bronchi. For example, [53] considers that full airway distensibility is only achievable after gen-

eration 5 in healthy lungs, where soft tissue is dominant. However, in asthma extra bronchial

rigidity might be expected due to mechanical influence of the bronchial wall edema,. Further-

more, airway wall contractility should also be affected by the increased tone effected by the

methacholine challenge. Unfortunately, no healthy subjects were included in this study for

comparison purposes. It has to be noted that if the effects of respiration and lung volume-

change on airway size are to be comparable across studies, similar definitions must be univer-

sally adopted.

In the context of mathematical modeling of the bronchial tree, the results provided in this

paper can potentially be valuable, especially when parent-daughter relationships are used to

calculate bronchial geometry information of distal lung regions [2,8,11,41]. The high correla-

tion between Din and Dh allows for a straightforward linear conversion while the data of

Tables 2, 3 and 4 provide sufficient information on Dh, Ai and Pi for the relevant adjustments

to be made to the models, depending on respiratory conditions, initial information and other
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system requirements for the modeling application. Many modern tracheo-bronchial tree mod-

els utilize medical images of the lung acquired at TLC to obtain the initial conditions for air-

way tree propagation to the acinar level [11,21,71]. These models, in turn, are used to simulate

conditions at regular breathing without the geometric (circularity, resistance, non-persistent

stenoses) and ventilation discrepancies being taken into account. This misconception has

recently been recognized by researchers using such models of the lung. For example, in a CFD

study on aerosol deposition in bronchial tree models extracted from HRCT images at MLV

and TLC, Katz et al. [27] concluded that lung volume should be explicitly considered when

using deposition models. Bordas et al. [21], lacking relevant information for a population of

asthmatic patients, used the minimum inner diameters of the segmented airways in conjunc-

tion with a circular cross-section assumption to predict airflow in the lung. Another method

was used by Kim et al. [10], who implemented their dynamic ventilation model only after uni-

formly scaling down the bronchial tree model obtained at TLC by a scale factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FRC=TLC3

p
.

One limitation of this study is the lack of sufficient resolution in the medical imaging

modality used to assess the real shape of airway internal cross-section perimeter. Especially in

disease, this perimeter might have a complex geometry due to swelling, hyperplasia of goblet

cells, mucous excretions etc. [72] which, in turn, could considerably affect airflow and particle

deposition. Therefore, these changes in circularity between MLV and TLC that are reported

here could be connected to the “unfolding” of the bronchus as the pressure changes in the lung

drive the airways to obtain higher volumes. Furthermore, comparisons between MLV and

TLC could only concentrate on airways that could be segmented in both lung volumes. This

undoubtedly biases the data in favor of larger airways, especially in more distal lung regions

where image resolution is not sufficient for airway segmentation at MLV. Finally, as stated ear-

lier, no dynamic effects of respiration could be taken into account as there is no temporal com-

ponent in the medical images used herein.

In conclusion, this study was concerned with the examination of the hydraulic diameter

human bronchial tree as calculated from the lumen area and inner perimeter at both mean

lung volume and total lung capacity. The relationships between several morphometric features

were investigated, along with the effects of lung volume change on airway shape. The airway

hydraulic diameter was found to be consistently higher than average inner diameter at both

investigated lung volumes, a fact that can have considerable effects on resistance and pressure

loss at proximal lung regions. Furthermore, differences in caliber changes were observed

between upper and lower lobe bronchi, which might be indicative of differences in asthma

expression in different lung regions. A failure of some airways to dilate at TLC was also docu-

mented, confirming the mixed constriction-dilation patterns of asthmatic airways that lead to

the patchiness of lung ventilation characteristic of this disease. Finally, generation 3 distensibil-

ity was predictive of distensibility at generation 4. These results could be used for adapting

models of the human trachea-bronchial tree and the interpretation of results for ventilation

and aerosol deposition simulations.

Supporting information

S1 Fig. Distensibility box and whisker plot. A box-plot of the distensibility for all the avail-

able airways of generations 3 and 4. Outliers are observed at above and under 1.5 Inter-Quar-

tile range.

(TIF)

S2 Fig. Distensibility data distribution. This is a histogram of the distribution of the disten-

sibility data of the right and left lung for the airways of generation 3 and 4. The best-fit normal
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density function is also shown as a red line.

(TIF)

S3 Fig. Distensibility probability plot. The probability plot comparing the distensibility data

to the normal distribution (reference line—-), created for the right and left lung generation 3

and 4 data. It can be observed that the fit of the data to the reference line deteriorates when dis-

tensibility values exceed one.

(TIF)

S1 Table. Normalized hydraulic diameter data. The hydraulic diameter data are normalized

to the hydraulic diameter calculated for the trachea and are collected for the same airway tree

bronchial regions as the ones considered by Choi et al. [38] (where available). The data are

give as average values ± standard deviation values.

(DOCX)

S1 File. Data processing file. This is the excel file used to gather and statistically analyze the

bronchial tree morphometric information that are investigated in this study. The file contains

the average inner diameter, average lumen area, average inner perimeter, calculated hydraulic

diameter and several definitions for airway distensibility. The data are gathered in a variety of

ways including per individually identified airway and per generation. The file also contains sta-

tistical analysis.

(ZIP)
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