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A B S T R A C T   

Recent experimental evidence on patients with disorders of consciousness revealed that observing brain-heart 
interactions helps to detect residual consciousness, even in patients with absence of behavioral signs of con-
sciousness. Those findings support hypotheses suggesting that visceral activity is involved in the neurobiology of 
consciousness, and sum to the existing evidence in healthy participants in which the neural responses to 
heartbeats reveal perceptual and self-consciousness. More evidence obtained through mathematical modeling of 
physiological dynamics revealed that emotion processing is prompted by an initial modulation from ascending 
vagal inputs to the brain, followed by sustained bidirectional brain-heart interactions. Those findings support 
long-lasting hypotheses on the causal role of bodily activity in emotions, feelings, and potentially consciousness. 
In this paper, the theoretical landscape on the potential role of heartbeats in cognition and consciousness is 
reviewed, as well as the experimental evidence supporting these hypotheses. I advocate for methodological 
developments on the estimation of brain-heart interactions to uncover the role of cardiac inputs in the origin, 
levels, and contents of consciousness. The ongoing evidence depicts interactions further than the cortical re-
sponses evoked by each heartbeat, suggesting the potential presence of non-linear, complex, and bidirectional 
communication between brain and heartbeat dynamics. Further developments on methodologies to analyze 
brain-heart interactions may contribute to a better understanding of the physiological dynamics involved in 
homeostatic-allostatic control, cognitive functions, and consciousness.   

1. Theoretical background on the role of the heart in cognition 

The physiological substrates of emotions and consciousness remain 
under debate. Emotions are seen as physiological phenomena promoting 
certain behaviors based on instincts (Adolphs et al., 2019) and previous 
experiences (Barrett, 2017). While emotions involve the physiological 
changes, feelings correspond to the subjective meta-representation of 
these perceived physiological changes (Damasio, 1999). Consciousness, 
from a very minimalistic point of view, refers to the awareness of the self 
and the external world (Chalmers, 1995). Long lasting theories of human 
emotions support that feelings involve the brain monitoring and repre-
sentation of bodily activity, i.e., the brain reads the ongoing signaling 
from visceral inputs (for a review, see Pace-Schott et al., 2019). In the 
same direction, recent theoretical developments on consciousness have 
rooted the neurobiology of conscious experiences to the monitoring of 
bodily activity as well (Azzalini et al., 2019; Park and Blanke, 2019a; 
Park and Tallon-Baudry, 2014). However, in consciousness research the 
questions outnumber the answers, and a consensus on whether visceral 
activity is required for consciousness is not in place yet, together with 
the debate on what consciousness exactly is (Del Pin et al., 2020), 

whether consciousness is required for emotions (Engelen and Mennella, 
2020; LeDoux and Brown, 2017), and what are the functions of con-
sciousness (Cleeremans and Tallon-Baudry, 2022). In this paper, the 
theory and the experimental evidence on the role of the heart in 
cognitive functioning are discussed, together with the links to different 
theories on the neurobiology of consciousness. 

The monitoring of visceral activity is part of the processes that 
contribute to adaptation to changes in the environment (Öhman and 
Wiens, 2003). For instance, this monitoring can stimulate specific be-
haviors that would allow to find shelter or food in extreme conditions. 
The processes involved in the physiological adjustments to maintain 
optimal functioning are referred as homeostasis, whereas allostasis in-
volves the processes in which the systems anticipate future needs (Smith 
et al., 2017). Therefore, allostasis requires cognitive functions, such as 
subjective perception, understanding, learning and memorizing (Smith 
et al., 2017). Hence, homeostatic-allostatic regulations require of the 
different processes involved in the sensing of the state of the body. The 
correlations in cognitive functioning and changes in autonomic tone 
have been considered in neurovisceral integration models (Thayer et al., 
2009; Thayer and Lane, 2009), in which autonomic nervous system 
markers reflect the self-regulation and adaptability to changes in the 
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environment (Thayer and Lane, 2000). In this direction, the polyvagal 
theory states that the substrates of adaptative behavior are grounded in 
the autonomous nervous system, where vagal activity is involved in 
higher-order responses associated to emotion regulation or social 
engagement, whereas sympathetic activity regulates stressful “flight or 
fight” responses (Porges, 2007). 

According to Damasio’s somatic marker hypothesis, the meta- 
representation of bodily states in the brain may constitute feelings, 
which may influence our decision making, and contribute to form the 
self (Damasio, 1999). Research on interoception aims to describe the 
mechanisms involved in the sensing of inner bodily signals and their 
influence on brain dynamics (Azzalini et al., 2019; Khalsa et al., 2018). 
Interoception includes the sensing of cardiac, respiratory, and gut 
signaling (Cameron, 2001). In a broader definition, interoception con-
siders the physiological condition of the entire body (Craig, 2002), 
which may comprise as well thermosensation, pain, and affective touch. 
The functions associated with interoceptive processes include 
homeostatic-allostatic regulations, but also low and high order cognitive 
functions (Tsakiris and Critchley, 2016). In this direction, theoretical 
neuroscience proposals state that the brain makes predictions based on 
the integration of exteroceptive and interoceptive information (Seth, 
2013), i.e. from inner and outer body, and these interoceptive processes 
may shape exteroceptive and metacognitive awareness, and vice versa 
(Nikolova et al., 2021). From this embodied view of cognition, the 
ascending inputs are required for allostatic regulations, as stated in 
theories of predictive coding (Allen and Friston, 2018; Barrett and 
Simmons, 2015; Seth, 2013; Seth and Tsakiris, 2018). In this framework, 
the brain is constantly adjusting a prediction model to minimize unex-
pected inputs (Friston, 2010). 

Interoceptive mechanisms and pathways have been studied, with 
some theoretical disagreements. Some are associating bodily states as a 
contribution to cognitive states, but not necessarily having a central role 
in consciousness, and these mechanisms would converge in the insula 
(Craig, 2002, 2009). However, experimental evidence suggests that the 
insula is not necessary for cardiac interoception and it may be mediated 
by somatosensory pathways (Khalsa et al., 2009). Therefore, inter-
oception would be part of a multi-pathway and multi-sensory integra-
tion (Seth and Tsakiris, 2018), in which sensory, proprioceptive, 
vestibular, and visceral signals are used by the brain for self-awareness. 
Further hypotheses have been raised, in which bodily states may be 
considered as central factors to constitute the self, in which the neural 
monitoring of ascending visceral inputs would be inherent for subjec-
tivity (Azzalini et al., 2019; Park and Tallon-Baudry, 2014; Tallon--
Baudry et al., 2018). 

These assumptions would mean that bodily regulation is not sepa-
rated from cognition, and certainly, that the mind is not separate from 
the body. The following sections present an overview on the experi-
mental evidence supporting that visceral inputs, in particular heart-
beats, have an active participation in cognition and consciousness. In 
addition, recommendations are provided on how to measure, from a 
methodological point of view, the brain-heart interactions that may shed 
light on the role of visceral activity. 

2. Behavioral correlates with cardiac phase and interoceptive 
abilities 

The theoretical developments involving cardiac activity in cognition 
are supported by the increasing evidence on the role of the heart in 
cognitive functioning. The cardiac cycle consists of two phases; the 
diastole, in which the heart muscle relaxes and refills with blood; and 
the systole, the period of muscle contraction and blood pumping. 
Existing evidence on the behavioral correlates with the phase of the 
cardiac cycle suggest that the heart timings may serve as inputs in the 
brain for optimization processes. For instance, some studies have shown 
group-wise reduced perception/detection when stimuli are presented at 
systole, as compared to diastole. For instance, in visual (Salomon et al., 
2016), auditory (Schulz et al., 2020), and somatosensory detection tasks 
(Edwards et al., 2009; Motyka et al., 2019). This evidence supports that 
the brain enhances sensory processing at diastole, suggesting that 
afferent signals from the baroreceptors occurring at systole attenuate 
cortical excitability (for a review, see Skora et al., 2022). Nevertheless, 
there is evidence in the other direction. For instance, saccades during 
visual search (Galvez-Pol et al., 2020; Ohl et al., 2016), visual attention 
(Pramme et al., 2014, 2016), active information sampling (Kunzendorf 
et al., 2019), and reaction/motor excitability (Al et al., 2021b; Larra 
et al., 2020; Palser et al., 2021; Rae et al., 2018; Ren et al., 2022) are 
enhanced when stimuli are presented at systole. This evidence depicts 
that the brain switches to optimize different cognitive processes, 
depending on cardiac phase. In this direction, passive perception may be 
enhanced at diastole, and active processes such as attention, active 
sampling, and action, may be enhanced at systole. Therefore, intero-
ceptive signals might contribute to optimal plasticity. Still, whether the 
timing of perception or action relates to the cardiac cycle remains 
speculative. 

Interoceptive awareness refers to the capability to access, recognize, 
and respond to visceral signals, and interoceptive ability refers to the 
performance of a subject when endeavoring interoceptive awareness. 
The evidence linking interoceptive abilities, or damaged interoceptive 
brain networks, and their impact in behavior support the relevance of 
visceral activity in cognition (Craig, 2003). However, part of this liter-
ature has been challenged because of the biased measurements of 
interoceptive abilities. The level of interoceptive awareness has been 
mostly quantified through different tasks of heartbeats’ sensation (Fit-
tipaldi et al., 2020; Legrand et al., 2022; Schandry, 1981; Suksasilp and 
Garfinkel, 2022). The validity of some of those tasks has been questioned 
because of different biases related to the specificity of the measurements 
(Brener and Ring, 2016; Zamariola et al., 2018), and because of con-
founding factors (Buot et al., 2021; Candia-Rivera et al., 2022c). The 
reported links between atypical or disrupted interoceptive ability 
include different pathological conditions (Barrett and Simmons, 2015; 
Khalsa et al., 2018), but also in abnormal emotion regulation (Füstös 
et al., 2013), emotion sensitivity/recognition (Terasawa et al., 2014), 
emotion categorization (Murphy et al., 2018), and overall emotional 
processing (Adolfi et al., 2017). The insula has been widely associated to 
interoceptive awareness networks (Craig, 2009). The involvement of the 
insula in perceptual awareness is supported by the evidence from neu-
rodegeneration and its consequences, such as disrupted affective touch 
(Kirsch et al., 2020), visual awareness (Salomon et al., 2018) and 
emotional processing (Adolfi et al., 2017). Furthermore, relationships 
have been reported between the insula with decision making perfor-
mance (Werner et al., 2013) and interoceptive abilities and decision 
making performance (Herman and Tsakiris, 2021). It has been hypoth-
esized as well that there is a close interaction between interoception and 
our interactions with the external world, for instance, in 
perspective-taking and impulsive behavior (Baiano et al., 2021a, 
2021b). 

Whether the ability to accurately sense visceral activity can be used 
as a marker of health remains to be confirmed (Desmedt et al., 2022). 
Before this can be done, an important challenge in current interoception 
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Heartbeat-evoked responses HERs 
Heartbeat-evoked potentials HEPs 
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research is to design methods to enable more comprehensive assess-
ments of interoception based on behavior and self-reported measures, 
which may in turn lead to uncover their relationships with physiological 
processes (Crucianelli et al., 2022; Suksasilp and Garfinkel, 2022). 

3. Heart-shaped brain dynamics: from interoception to 
conscious processing 

Given the acknowledged limitations of behavioral and self-reported 
measures to quantify interoceptive abilities, the search of objective 
interoceptive markers through neural correlates has been extensively 
performed (Coll et al., 2021). The neural responses to heartbeats, 
namely heartbeat-evoked responses (HERs for generic use, or HEPs for 
heartbeat-evoked potentials as measured from EEG), have been pro-
posed as measures of interoception, and repeatedly associated to inter-
oceptive abilities since their proposal as a methodology (Pollatos and 
Schandry, 2004; Schandry et al., 1986). HERs are associated as well to 
the focus of attention, either exteroceptive or interoceptive (Petzschner 
et al., 2019). Recent evidence on heart-transplanted patients depicts that 
HERs correlate with the ability of heartbeats’ sensation, which is 
initially reduced after surgery, and recovered after one year (Salamone 
et al., 2020). Hence, that functional relationship supports that HERs can 
be used as markers of brain-heart interactions because of their rela-
tionship with the recovery of the brain-heart communication. 

Beyond interoceptive abilities, HERs have been associated to 
perceptual awareness. HERs predict perception in a visual detection task 
(Park et al., 2014), indicating that neural responses to heartbeats shape 
visual conscious experience, and provide a differential activation in 
cortical areas. Similarly, HERs correlate with somatosensory perception 
in a tactile detection task (Al et al., 2020, 2021a), confirming that HERs 
reflect the integration of internal signals during conscious perception. 
HERs also relate to the conscious detection of auditory irregularities 
(Banellis and Cruse, 2020; Candia-Rivera et al., 2021d), showing that 
cortical potentials locked to heartbeats reflect human expectations of the 
external world. HERs covary with different aspects of self-related 
cognition, including self-relatedness of spontaneous thoughts (Babo-R-
ebelo et al., 2016a, 2016b), self vs other distinction in imagination 
(Babo-Rebelo et al., 2019), bodily-self-identification of the full body 
(Park et al., 2016), and face (Sel et al., 2017). Finally, HERs contribute to 
consistency in choices in a preference-based task (Azzalini et al., 2021), 
suggesting that HERs reflect different dimensions of subjectivity. 

Emotions and feelings have been historically thought to involve the 
processing of bodily activity (Pace-Schott et al., 2019), and more 
recently, to depend on the brain’s ability to infer the ongoing changes in 
the environment using inner and outer-body information, namely active 
inference (Seth, 2013). Various studies have tried to explain different 
aspects of emotions through HERs, with most of them pointing to a 
possible relationship with arousal, but without a clear convergence (Coll 
et al., 2021; Park and Blanke, 2019b). However, evidence from a large 
cohort showed that HERs modulations in healthy controls, as compared 
to a diversity of neurodegenerative conditions, correlate with the 
enhanced emotion recognition performed after a heartbeats sensation 
task (Salamone et al., 2021). Those results may indicate that HERs and 
interoception have a functional contribution in the priming of emotions 
processing. 

The existing experimental evidence on HERs is found at a high di-
versity of latencies with respect to the cardiac cycle, as well as from 
different brain or scalp locations (Coll et al., 2021). These differences 
may be the result of the multiple mechanisms for the transduction of 
cardiac information to the brain. These mechanisms can occur at 
different phases of the cardiac cycle, but also through different 
anatomical pathways (Azzalini et al., 2019). The ascending communi-
cation from the viscera comprises two core pathways: One is the para-
sympathetic or vagal afferent through the jugular ganglia that projects 
to the nucleus tractus solitarii in the brainstem (Craig, 2002), which 
mostly carries information from mechanic and chemical signaling 

(Saper, 2002). The second is the sympathetic afferent through dorsal 
root ganglia that projects to the brain through the spinal cord (Craig, 
2002), usually associated to thermal and pain signaling (Barone et al., 
1995; Saper, 2002). At the brain level, the information can be trans-
duced directly to the cortex (Park and Blanke, 2019b), or processed in 
subcortical structures such as the medial nucleus tractus solitarii, the 
parabrachial nucleus, and the ventromedial nucleus of the thalamus, to 
later project to higher brain regions, such as the hypothalamus, insula, 
anterior cingulate cortex, and somatosensory cortex (Critchley and 
Harrison, 2013; Jänig, 1996; Saper, 2002; Shinder and Newlands, 
2014). The descending communication from the central nervous system 
has the function of control and regulation of different visceral processes, 
often triggered by an initial ascending signaling (Jänig and Häbler, 
2000; Taggart et al., 2016). The descending pathways include vagal and 
spinal efferents, but also non-neural pathways, such as vascular or 
lymphatic, and these neural and non-neural pathways may interact as 
well (Chen et al., 2021). 

4. The neurobiology of consciousness: biomarkers comprising 
the heart 

Finding valid neural correlates of consciousness is challenging, 
starting from the identification of the neural process specific to the 
subjective experience of a particular content (Aru et al., 2012). Here-
after, the validation of biomarkers has several obstacles, especially for 
clinical use. Optimal biomarker identification may comprise the use of 
pattern-recognition for the brain signatures of interest; an assessment of 
the biomarker’s prediction ability; and a long exploration for replica-
bility and generalization at independent contexts, with independent 
samples (Woo et al., 2017). 

Many theories have been established to hypothesize the origin of 
consciousness. The theoretical landscape is broad, with a lack of 
convergence between theories (Del Pin et al., 2021; Signorelli et al., 
2021). Theories of consciousness range from the sole existence of inner 
mental states, to the access to higher-order cognition (detailed discus-
sions can be found elsewhere, e.g., Block, 2005; Blumenfeld, 2021; 
Brown et al., 2019; Chalmers, 1995; Dehaene and Naccache, 2001; 
Lamme and Roelfsema, 2000; Nieder, 2021; Oizumi et al., 2014; Park 
and Tallon-Baudry, 2014; Thompson and Varela, 2001). From an 
embodied point of view, Varela’s work suggested a radical–embodiment 
approach to study the neuroscience of consciousness, highlighting that 
the crucial processes for consciousness come across the brain–body in-
teractions with the environment, rather than being exclusively in the 
brain (Shear and Varela, 1999; Thompson and Varela, 2001). In this 
direction, the Neural Subjective Frame (Park and Tallon-Baudry, 2014; 
Tallon-Baudry et al., 2018) considers that the constant neural update of 
the inner visceral states constitute a first-person perspective for 
conscious experiences. Experimental evidence shows that the heart is 
functionally involved in emotions, perception and self-related cognition: 
HERs prime emotions processing (Salamone et al., 2021), predict 
perceptual consciousness (Al et al., 2020; Park et al., 2014), reflect 
bodily consciousness (Park et al., 2016; Sel et al., 2017) and the self vs. 
other distinction (Babo-Rebelo et al., 2019), self-relatedness of sponta-
neous thoughts (Babo-Rebelo et al., 2016a, 2016b), and shape action 
and decision (Al et al., 2021b; Azzalini et al., 2021). As cardiac signals 
are intrinsically originated within the body, they would contribute for 
this first-person perspective. Therefore, cardiac signals would contribute 
to consciousness. 

Whether a biomarker can reflect or relate to the neurobiology of 
consciousness can be tested experimentally in patients with disorders of 
consciousness, after severe brain damage (Hermann et al., 2021). In 
these patients, the gray zone of (un)consciousness is between Unre-
sponsive Wakefulness Syndrome (UWS) and Minimally Conscious State 
(MCS) diagnosis. While both diagnoses correspond to noncommuni-
cating patients, UWS presents only reflex-like responses to stimuli 
(Laureys et al., 2010), though MCS presents fluctuating but reproducible 
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signs of non-reflex behavior (Giacino et al., 2002). Therefore, dis-
tinguishing MCS from UWS patients is the main challenge because 
consciousness does not necessarily translate into overt behavior (Her-
mann et al., 2021; Tsuchiya et al., 2015). Experimental evidence in 
disorders of consciousness showed that automated classifications based 
on brain-heart interactions can distinguish between 
states-of-consciousness after severe brain damage (Raimondo et al., 
2017). It was later confirmed that indeed HERs detect residual con-
sciousness in these patients (Candia-Rivera et al., 2021a). Moreover, 
HERs can discriminate patients with metabolic cerebral activity 
compatible with consciousness but showing no behavioral signs of 
consciousness, namely non-behavioral MCS (Candia-Rivera et al., 
2021a). Further evidence showed that MCS patients may show a 
distinctive HER in resting state, which could be visually differentiated to 
the average of EEG segments non-locked to heartbeats, whereas UWS 
patients may not show this distinction (Candia-Rivera and Machado, 
2021). Comparing HERs in the most extreme cases, such as brain dead or 
coma vs locked-in patients or healthy participants, has shown charac-
teristic differences suggesting that the presence of consciousness may 
cause well-defined HERs, as compared to the absolute absence of con-
sciousness (Candia-Rivera and Machado, 2021). MCS patients also show 
differentiated HERs compared to UWS patients under the processing of 
auditory irregularities, suggesting that the integration of external and 
internal information can reflect states-of-consciousness (Candia-Rivera 
et al., 2021d). 

The raising evidence on HERs in disorders of consciousness supports 
that visceral activity may be involved in the neurobiology of con-
sciousness (Park and Tallon-Baudry, 2014; Tallon-Baudry et al., 2018), 
but also potentially linking different theories of consciousness (Safron, 
2020; Sattin et al., 2020). HERs can distinguish states-of-consciousness 
in resting state (Candia-Rivera et al., 2021a; Candia-Rivera and 
Machado, 2021), probing again that consciousness does not translate 
into overt behavior (Tsuchiya et al., 2015), and that consciousness could 
be detected with biomarkers reflecting the existence of inner mental 
states. HERs reflect consciousness after processing auditory irregular-
ities (Candia-Rivera et al., 2021d). This would mean that the heart is 
involved in the conscious processing of information, in which long-term 
memory access occurs according to the Global Neuronal Workspace 
(Dehaene and Naccache, 2001). But also, consciousness would involve 
information integration from the available interoceptive and extero-
ceptive inputs for anticipation processes (Nikolova et al., 2021). The 
theoretical work on consciousness and complexity states that the pres-
ence of complex brain activity is specific in space and time (Sarasso 
et al., 2021); this statement certainly applies as well to the specificity of 
heartbeats providing a differentiated cortical activation limited to the 
cardiac cycle. 

In addition to the evidence on brain-heart interactions reflecting 
states-of-consciousness (Candia-Rivera et al., 2021a, 2021d; Candia-R-
ivera and Machado, 2021; Raimondo et al., 2017; Riganello et al., 2019), 
abundant experimental evidence shows that the integration of extero-
ceptive and interoceptive information, beyond the heart, relate to 
perceptual and self-awareness (Al et al., 2020; Banellis and Cruse, 2020; 
Boehme et al., 2019; Candia-Rivera et al., 2021d; Ciaunica et al., 2022; 
Crucianelli et al., 2018; Grund et al., 2021; Marshall et al., 2020, 2022; 
Park et al., 2014; Pfeiffer and Lucia, 2017; Suzuki et al., 2013). The 
biomarkers of brain-heart interactions have a great potential to measure 
and understand the different dimensions leading to a subjective, 
conscious experience. Future research has to uncover the relationships 
of brain-heart interactions with other mechanisms of interoception, as 
well as with other existing markers of consciousness. 

5. Consciousness and complexity in the brain-heart 
communication scheme 

On the brain side, brain complexity is rather high in presence of 
consciousness, as compared to different altered states-of-consciousness 

(Demertzi et al., 2019; Sarasso et al., 2021). The thalamus has been 
hypothesized to arbitrate the complex neural interactions that may give 
rise to cognition and awareness, given the thalamocortical connections 
that may promote feedforward/feedback processing modes (Shine, 
2021), as well as where the dynamic balance between segregation and 
integration in the brain would be crucial (Shine, 2019). The role of the 
thalamocortical and corticocortical communications in the loss of con-
sciousness has been shown through deep brain stimulation to the thal-
amus, which triggers a consciousness recovery in anesthetized 
non-human primates (Tasserie et al., 2022). Validated experimental 
evidence has supported the hypothesis that brain complexity-related 
measures can describe different states-of-consciousness, for instance, 
the consciousness indices based on the neural responses to transcranial 
magnetic stimulation (Casali et al., 2013; Casarotto et al., 2016), or 
information complexity measures (Engemann et al., 2018; Sitt et al., 
2014). These evidences suggest that altered consciousness would be 
translated in changes of the complexity of brain signaling, or in changes 
in the regions in which these complex patterns are found (Sarasso et al., 
2021). 

On the heart side, the existence of complex patterns on heart-rate 
variability (HRV) has been reported at different contexts (Sassi et al., 
2015). Experimental evidence has shown HRV complexity as a potential 
marker of states-of-consciousness (Riganello et al., 2018a, 2018b; Sattin 
et al., 2021). The brain structures associated with autonomic activity, 
and part of the central autonomic network, span from high-order regions 
(e.g., medial prefrontal cortex and insula), the forebrain (e.g., hypo-
thalamus and amygdala), and several nuclei in the medulla (e.g., nu-
cleus of tractus solitarius, nucleus ambiguous, parabrachial Kolliker fuse 
nucleus) (Beissner et al., 2013; Silvani et al., 2016; Valenza et al., 2019). 
More recently, additional brain regions have been associated to heart-
beat control, as shown in brain imaging correlates with HRV complexity 
patterns at rest (Riganello et al., 2018b; Valenza et al., 2020). Interest-
ingly, approximate entropy, a measure of HRV complexity, correlates in 
both temporal gyrus in resting state (Valenza et al., 2020), which 
right-lateralization has been associated with overt vs covert conscious-
ness in MCS patients (Candia-Rivera et al., 2021a), but also with the 
regions distinguishing between self vs social touch (Boehme et al., 
2019). Yet, whether those correlations have a functional relationship 
remains to be confirmed. 

Beyond the experimental evidence discussed in the previous section, 
showing the contribution of heartbeats in consciousness, the raising 
evidence on brain-heart interactions suggest that HRV may play a role in 
consciousness as well. Autonomic activity can shape and constrain the 
ongoing brain dynamics supporting changes in conscious awareness 
(Munn et al., 2021; Wainstein et al., 2021). Importantly, the changes in 
sympathetic activity precede the brain network organization, suggesting 
causal interactions (Munn et al., 2021). Sympathovagal modulations 
towards brain oscillations shape emotional and physical arousal (Can-
dia-Rivera et al., 2022a, 2022b). The locus coeruleus in the brainstem, 
which regulates arousal and autonomic function, also shapes neuronal 
excitability across the brain (Oyarzabal et al., 2022; Tumati et al., 2021; 
Wainstein et al., 2022), suggesting further links between autonomic 
activity and the orchestrating of neuronal dynamics during conscious 
processing. The links of high order structures with HRV have been 
shown in multiple experimental conditions. For instance, the changes in 
HRV can be encoded in the prefrontal cortex (orbitofrontal cortex and 
dorsal anterior cingulate cortex), as registered in non-human primates 
(Fujimoto et al., 2021), but also in humans, as shown in changes of HRV 
after prefrontal transcranial magnetic stimulation (Iseger et al., 2020). 
The parallel fluctuations in heart rate and prefrontal activity relate to 
decision time in a reward-guided task in non-human primates (Fujimoto 
et al., 2021). Furthermore, the conscious processing of auditory stimuli 
leads to synchronized HRV patterns across different participants (Mad-
sen and Parra, 2022; Pérez et al., 2021), and a desynchronized HRV may 
be associated to unconsciousness or reduced attention to stimuli (Pérez 
et al., 2021). The experimental evidence supports as well the 
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involvement of parallel HRV and brain dynamics to identify disorders in 
consciousness (Candia-Rivera et al., 2021a, 2021d; Raimondo et al., 
2017; Riganello et al., 2019, 2021). 

Functional brain-heart interactions are considered to involve com-
plex interactions because both cardiac and brain oscillations are time- 
variant, frequency-dependent, and follow non-linear fluctuations 
(Schiecke et al., 2019). Considering neural correlates of complexity and 
consciousness, a compatible hypothesis would be that there is a complex 
interaction between brain activity and ascending bodily signals which 
would causally give origin to conscious experiences. These causal in-
teractions potentially imply that ascending inputs contain coded infor-
mation, for instance in HRV. In the first-person perspective of 
consciousness, the heart is rather seen as a pacemaker, in which the 
heartbeats are the signals sent to the brain indicating that there is a 
body, but such signals would not carry coded information, meaning that 
bodily states (e.g., high or low heart rate) would not have a specific 
contribution in implementing consciousness (Azzalini et al., 2019; Park 
and Blanke, 2019b). Note that some emotion theories support that the 
brain reads and decodes the information provided from bodily inputs 
(Pace-Schott et al., 2019). One could hypothesize that changes in the 
heart rate are related to a posteriori process, therefore to the content of 
consciousness, and that conscious processing modulates the changes in 
HRV. However, consciousness may be necessary to feel emotions 
(Engelen and Mennella, 2020; LeDoux and Brown, 2017), and emotional 
processing is initiated by changes in cardiac vagal activity in emotion 
elicitation, as shown through mathematical modeling (Candia-Rivera 
et al., 2022b). Upcoming research in the field needs to discern whether 
brain-heart interactions have a causal role to subjective experiences; or 
whether brain-heart interactions correspond to a consequence of the 
brain processing for the contents of consciousness. 

6. Uncovering brain-heart interactions through physiological 
modeling 

Experimental evidence has shown that the heart is continuously 
providing information to the brain, and the importance of analyzing 
cardiac signals in parallel with brain activity has been acknowledged in 
recent years (Azzalini et al., 2019; Petzschner et al., 2021; Quigley et al., 
2021). The brain structures involved in brain-heart interactions 
comprise two relevant brain networks: the central autonomic network, 
including the insula, which is involved in autonomic control (Silvani 
et al., 2016; Thayer and Lane, 2009; Valenza et al., 2019, 2020), and the 
default mode network, which participates in the neural monitoring of 
cardiac activity for self-related cognition, and conscious perception 
(Babo-Rebelo et al., 2016a; Park et al., 2014). Moreover, both networks 
present some overlap (Thayer et al., 2012), which would support the 
idea of bidirectional brain-heart interactions. Indeed, the connections 
between the ascending and descending pathways are yet unknown, but 
also the interactions with non-neural pathways (Critchley and Harrison, 
2013). The ascending interplay, from body to brain, is associated to the 
neural monitoring of bodily activity, which may contribute from basic 
physiological functions to high order cognition (Quigley et al., 2021). 
The descending interplay, from brain to body, is associated to neural 
control of bodily activity including voluntary and non-voluntary action. 
In particular, heartbeats are able to reach extensive brain regions, not 
only the brainstem nuclei but also cortical and subcortical regions (Park 
and Blanke, 2019b), at the same time heartbeat control from the central 
autonomic network includes cortical, forebrain and medullar regions 
(Beissner et al., 2013; Silvani et al., 2016; Valenza et al., 2019). The 
pathways for a bidirectional communication are diverse (Critchley and 
Harrison, 2013), and the main source of communication is through the 
autonomic nervous system pathways, either sympathetic or para-
sympathetic branches (Chen et al., 2021). 

As discussed in previous sections, machine learning algorithms 
detect residual consciousness using from HERs (Candia-Rivera et al., 
2021a). Nevertheless, in some specific cases HERs do not reflect the state 

of the brain-heart communication because of the high presence of delta 
oscillations that may hide the responses to heartbeats when computing 
HERs (Candia-Rivera and Machado, 2021). Despite the correlation be-
tween high delta power and unconsciousness, the absence of con-
sciousness cannot be confirmed based on delta power (Frohlich et al., 
2021). This may imply that ancillary analysis on brain-heart interactions 
has to be performed in cases of high delta power in brain oscillations. 
The research on the neural circuits involved in brain-heart interactions 
is limited given the challenge of the methodological strategies (Chen 
et al., 2021). Some have tried to measure brain-heart interactions 
through hemodynamics, as mutual information flow between prefrontal 
cortex and the brain stem suggest bidirectional interactions with the 
autonomous nervous system (Pfurtscheller et al., 2021), specifically 0.1 
Hz hemodynamic oscillations has shown to precede changes in HRV 
(Pfurtscheller et al., 2017, 2018). For EEG, a plethora of methods has 
been proposed to study brain-heart interactions in a non-invasive 
manner: From different strategies to quantify the transient neural re-
sponses to heartbeats; brain-heart oscillations synchronization mea-
sures; to mathematical modeling inferring possible causality and 
directionality of the parallel brain-heart oscillations (for a review, see 
Candia-Rivera et al., 2021c). While the neural responses to heartbeats 
are assumed to measure of ascending brain-heart interactions, the syn-
chronization measures do not consider possible directionality of 
brain-heart interactions. Consequently, some methods to infer the 
directionality of brain-heart interactions have been proposed, such as 
Granger Causality (Faes et al., 2015; Greco et al., 2019), Transfer En-
tropy (Catrambone et al., 2021), and Conditional Entropy (Kumar et al., 
2020). However, these methodologies rely on the measurements of 
causal modulations without considering the physiological priors, which 
could emerge from casual and not causal co-varying of brain-heart os-
cillations, as occurs in machine learning models trained with a 
pattern-based logic (Ramezanian-Panahi et al., 2022). A proposed so-
lution is the modeling of bidirectional interactions through a generative 
approach (Ramezanian-Panahi et al., 2022; Ramstead et al., 2022), 
considering the ongoing modulations between brain and cardiac oscil-
lations (Candia-Rivera et al., 2021b, 2022a), in which two 
physiologically-inspired models of synthetic ECG and EEG series are 
coupled considering their mutual influences in the ongoing oscillations 
at different latencies, on the basis of a generative signal. 

The study of functional bidirectional brain-heart interactions is of 
interest given the typical assumptions on ascending and descending 
interplay. For instance, the descending interplay to the heart is usually 
associated to arousal only (Azzalini et al., 2019). However, the analysis 
of the bidirectional interactions of the brain with peripheral cardiac 
activity showed that the reported arousal was correlated with ascending 
modulations from cardiac vagal activity (Candia-Rivera et al., 2022b). 
The hypothesis introduced here is that the physiological and cognitive 
processes involved in interoception, and subjectivity, would involve a 
dynamic and cyclic information exchange. In Fig. 1 the proposed 
framework for the analysis of bidirectional brain-heart interactions for 
the analysis of interoceptive-exteroceptive integration is presented. The 
brain processes the information coming from exteroceptive inputs: 
senses, social interactions, and environment. The information process-
ing occurs in parallel with the ongoing bidirectional interoceptive 
communications between the brain and other organs. The information 
integration from the available sources, exteroceptive and/or intero-
ceptive inputs, occurs in the brain. The integration results in complex 
brain responses, but also HRV complexity because of the ongoing bidi-
rectional brain-heart interactions. The presence of complex activity 
patterns in brain and heart may not be arbitrary but coordinated with 
possible causal interactions. The proposed alternative approach con-
siders the estimation, through mathematical modeling, of the possible 
causal interactions between the two complex systems. 

Methodological advancements are needed for understanding the 
dynamic physiological processes involved in the integration of multi-
sensory information emerging from within and outside the body– which 
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may be necessary to form the sense of self, others, environment, and 
potentially consciousness. Whether consciousness arises from the inte-
gration of information, or whether consciousness facilitates integration 
remains under debate (Brogaard et al., 2021). Certainly, the integration 
of interoceptive signals plays a key role in subjective experiences, 
constituting the self and bodily self-consciousness (Azzalini et al., 2019; 
Ciaunica and Crucianelli, 2019; Klein et al., 2021; Park and Blanke, 
2019a). From a theoretical and philosophical perspective, the predictive 
processing framework proposes that experiences of embodied selfhood 
emerge from interoceptive afferents and top-down inferences (Seth and 
Tsakiris, 2018). Grasping to understand the perceptual and 
self-awareness processes could contribute to enlighten the nature of 
minimal forms of being perceptually aware of oneself, inner mental 
states, and being conscious. 

7. Conclusions 

The bidirectional brain-heart interactions involve the collection and 
integration of information, interpretation, and control of bodily activity. 
Many of these processes are inherent in physiological and cognitive 
functions, from homeostatic and allostatic control to high order cogni-
tion. The theoretical perspectives that consider heartbeat dynamics 
propose different mechanisms, but whether brain-heart interactions are 
involved in the neurobiology of consciousness, from its origin to its 
contents, remains to be broadly acknowledged. The developments in the 
understanding of the communication pathways and mutual modulation 
mechanisms between central and visceral systems may unravel some of 
these matters. As stated by Francisco Varela more than two decades ago: 
“The processes crucial for consciousness cut across the brain–body–world 
divisions rather than being located simply in the head. Evaluating this pro-
posal could set the agenda for embodied cognitive science in coming years”. 
Certainly, the evaluation of consciousness from an embodied cognitive 
science perspective could set the agenda of the neuroscience of con-
sciousness research. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

I would like to thank Paula C. Salamone, Francesco Massimo, and the 
two anonym reviewers, for their invaluable feedback to produce this 
manuscript. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.crneur.2022.100050. 

References 

Adolfi, F., Couto, B., Richter, F., Decety, J., Lopez, J., Sigman, M., Manes, F., Ibáñez, A., 
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