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BACKGROUND: Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein strongly associated with coronary artery disease (CAD). 
Lp(a) concentrations are chiefly determined genetically. Investigation of large pedigrees with extreme Lp(a) using modern 
whole-genome approaches may unravel the genetic determinants underpinning this pathological phenotype.

METHODS: A large family characterized by high Lp(a) and increased CAD incidence was recruited by cascade screening. 
Plasma lipids, lipoproteins, and apolipoproteins concentrations, as well as the size of apo(a) isoforms, were determined 
enzymatically by high-resolution mass spectrometry and Western blot, respectively. Whole-exome sequencing was performed 
to search for rare defects in modifier genes. Genetic risk scores (GRS) for Lp(a) and CAD were calculated and their 
discriminative power was assessed.

RESULTS: Seventeen individuals displayed extreme Lp(a) levels including 6 with CAD. Whole-exome sequencing showed 
no hint for genetic defects outside the LPA locus. The extreme Lp(a) phenotype segregated with the presence of a short 
apo(a) isoform containing 21 Kringle IV domains. This allele was characterized by the presence of three rare strongly 
Lp(a) increasing single nucleotide polymorphisms and a significantly increased load of oxidized phospholipids per Lp(a) 
particle. An Lp(a) GRS consisting of 48 single nucleotide polymorphisms that represent 2001 genome-wide significant LPA 
single nucleotide polymorphisms, efficiently captured the hyper-Lp(a) phenotype and discriminated affected and nonaffected 
individuals with great accuracy. The genome-wide GRS for CAD, encompassing 6.6 million single nucleotide polymorphisms, 
was very high for most family members (>97.5 percentile of the reference population), but this observation was no longer 
valid when the contribution of the LPA locus was omitted.

CONCLUSIONS: High-Lp(a) phenotypes can be successfully captured using the Lp(a) GRS even among closely related family 
members. In hyper-Lp(a) individuals, LPA can be a major locus driving a very high CAD GRS. This underpins the large 
contribution of the LPA locus to the cardiovascular genetic risk in families.
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Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein 
causatively, independently, and significantly associated 
with cardiovascular diseases and calcified aortic valve 

stenosis.1,2 The major structural difference between Lp(a) 
and LDL (low-density lipoproteins) is that Lp(a) contains a 
unique signature protein, apolipoprotein(a) (apo[a]) cova-
lently linked to apo B100.

3 The atherogenicity of Lp(a) does 
not only stem from its LDL moiety rich in cholesterol but 
also because it is a sink for oxidized phospholipids (oxPL).3,4

Apo(a) is the product of the LPA gene located on 
chromosome 6q26-27.1 It presents a highly repetitive 
structure consisting of 10 subtypes of the plasminogen-
derived KIV (kringle IV) domains (KIV-1 to KIV-10), 
followed by one kringle V and one inactive protease 
domains. Two enhancer regions (named DH-II and DH-III 
[DNase Hypersensitive sites II and III]) have been identi-
fied ≈20 to 30 kb upstream of LPA,5 and the promoter 
region extends for at least 4 kb upstream of LPA.6,7 The 
KIV-2 domain is encoded by a pair of exons that can 
be repeated 1 to 40 times per allele.8 The major conse-
quence of this copy number variation is that the size of 
apo(a) is highly polymorphic, its molecular weight ranging 
from 300 to 800 kDa. Apo(a) isoforms size is inversely 
correlated with plasma Lp(a) concentrations, as it cor-
relates with endoplasmic reticulum retention time, and 
explains 30% to 70% of Lp(a) variability.1 Overall, the 
whole LPA locus explains up to 90% of Lp(a) variabil-
ity,9 indicating that additional strong modulators of Lp(a) 
concentrations reside within the LPA locus and account 
for the fact that Lp(a) levels can vary by 200-fold even 
among carriers of apo(a) isoforms of identical sizes.10

In line with this, same-sized LPA alleles still differ in 
the haplotypes of the single nucleotide polymorphisms 
(SNPs) they carry.11,12 For instance, SNPs rs10455872 
and rs3798220 are largely used in the field, as they allow 
partial tagging of small apo(a) isoforms.1,13 In addition, 
specific SNP haplotypes associate with Lp(a) concentra-
tions that can be much lower or much higher than what 
would be expected from the sole size of the isoforms.11,12

Some examples of such variants have been reported,14–16 
but many more probably exist. Genome-wide associa-
tion studies (GWAS) have identified hundreds of variants 

associated with Lp(a) levels.17,18 A majority of these variants 
are distributed over a ≈2 megabases region around the LPA 
locus,17,18 but causality for modulating Lp(a) levels has been 
established only for a handful. The important contribution 
of additional SNPs to Lp(a) concentration is also illustrated 
by the fact that within families, same-sized apo(a) isoforms 
are associated with a much narrower Lp(a) variability (2- to 
3-fold) than in the general population.10 The occurrence of 
high LPA expressing alleles can thus confer a highly pen-
etrant cardiovascular risk to individuals and families,19–22 
similar to what is seen in familial hypercholesterolemia.23,24

Although LPA is the major determinant of Lp(a) 
in the population, it is unclear whether rare defects 
in other genes25 can also be at the origin of some  
hyper-Lp(a) phenotypes. Investigations of pedigrees with 
extreme phenotypes using modern whole-genome tech-
nologies might help unravel the genetic determinants of 
hyperlipoprotein(a)emia. To test this possibility, we have 
undertaken a comprehensive investigation of a unique 
pedigree recruited through cascade screening from an 
individual with no cardiovascular risk factors other than an 
extreme Lp(a) concentration who underwent recurrent cor-
onary syndromes,20 using whole-exome sequencing, tar-
geted analysis of the LPA locus, genetic risk score (GRS) 
computation for Lp(a) and coronary artery disease (CAD), 
as well as extensive biochemical assessment of their Lp(a).

METHODS
Detailed methods are available in the Supplemental Methods 
and Tables S1 through S5 in the Supplemental Material. 
Ethics approval was granted by the Comité de Protection 
des Personnes Sud Méditerranée (ID: 2020-A00196-33). 
Informed consent was obtained from all participants, and all 
studies were performed in accordance with the Declaration 
of Helsinki. All participants gave written informed consent for 
genetic testing and research. The data that support the findings 
of this study are available from the corresponding author upon 
reasonable request.

RESULTS
Unique Multigenerational Pedigree
Seventeen related family members and five spouses 
were recruited through the index patient (III-A3) by 
cascade screening (Figure 1, Table S1 in the Sup-
plemental Material). The 17 relatives descend from 
unrelated grandparents from La Réunion Island. The 
grandfather (I-1), who was a heavy smoker, had myo-
cardial infarction (MI) at age 60 years and died from 
lung cancer at 80 years. The grandmother (I-2) died at 
82 from recurrent episodes of MI and stroke. Among 
their 5 children (3 males/2 females), 2 sons (II-B1 and 
II-D1) had MI at ages 52 and 50 years, respectively. 
One was and still is overweight (body mass index, 29.4 
kg/m2) and both smoked. One daughter (II-C2), also 

Nonstandard Abbreviations and Acronyms

CAD coronary artery disease
GRS genetic risk score
GWAS genome-wide association study
KIV Kringle IV
LDL low-density lipoprotein
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overweight (body mass index, 26.9 kg/m2), devel-
oped diabetes in her forties. Her husband (II-C1) had 
severe MI at 38 and also presented with type 2 diabe-
tes (body mass index, 26.4 kg/m2) as well as elevated 
cholesterol levels (5.79 mmol/L).

Among the 14 family members of the third genera-
tion, in addition to the index case patient (III-A3) who 
had recurrent MI episodes at age 32 years,20 two of his 
male cousins had severe MI at ages 27 (III-C4) and 35 
(III-B1), respectively. The first smoked occasionally and 
had slightly elevated total cholesterol (6.52 mmol/L) and 
triglycerides (2.20 mmol/L). The second was hyperten-
sive (systolic blood pressure/diastolic blood pressure 
150/90 mm Hg) and overweight (body mass index, 29.3 
kg/m2). Among the 16 family members who have not 
developed any cardiovascular event yet, 8 were over-
weight, 3 were hypertensive, and 1 smoked. Seven had 
elevated total cholesterol levels (>5 mmol/L). Not a 
single family member displayed impaired renal function 
or aortic valve stenosis. Strikingly, plasma Lp(a) concen-
trations were found above the threshold of 125 nmol/L 
(ranging from 156 to 775 nmol/L) in all but one (III-B3) 
relatives as well in one out of 5 spouses (II-C1).

Noteworthy, LDL-C (LDL-cholesterol) levels were on 
average undistinguishable between family members with 
or without Lp(a) above 125 nmol/L (3.03±0.73 versus 

3.00±0.78 mmol/L). When LDL-C values were corrected 
for Lp(a) cholesterol (assuming a cholesterol content 
in Lp[a] of 30%), there was a trend for lower corrected 
LDL-C levels in family members with Lp(a) above 125 
nmol/L (1.94±0.90 versus 2.86±0.99 mmol/L, respec-
tively, P=0.064; Table S1 in the Supplemental Material). 
Most individuals in this large pedigree, therefore, display 
hyperlipoprotein(a)emia without true elevated LDL-C levels.

Whole-Exome Sequencing
We first hypothesized that a yet unidentified putative or 
regulator defect might cause the extraordinarily high-
Lp(a) concentrations observed in a majority of pedigree 
members. Although anecdotal reports about hyper-Lp(a) 
pedigrees are known in the field, a comprehensive genetic 
evaluation of such a pedigree has not been performed 
before. We thus performed whole-exome sequencing in 
13 family members (9 with high Lp[a]) (the other pedigree 
members joined the study after completion of this analysis). 
This yielded 316 251 SNPs and 52 676 indels. Ninety-one 
thousand six hundred sixty-two SNPs and 6709 variants 
were retained after filtering for a minimum coverage of 4× 
and localization within ±50 base pairs from any exon anno-
tated in National Center for Biotechnology Information 
Reference Sequence Database Release 105. Seventeen 

Figure 1. Pedigree of the family.
Twenty-two individuals (17 related family members and 5 spouses) were recruited by cascade screening through the index patient (blue arrow). 
Black symbols denote a high-Lp(a) (lipoprotein [a]) phenotype (>150 nmol/L) and white symbols normal Lp(a) phenotypes (≤90 nmol/L). Below 
each symbol, the first line displays individual ID numbers, the second line plasma Lp(a) concentrations (in nmol/L), and the third line the size 
of their apo(a) isoforms (number of KIV [kringle IV] domains). Individuals with established premature coronary artery disease are framed. Not 
avialable, as isoform expression is too low for detection. For each individual (n=22), plasma lipids and lipoproteins concentrations, including 
Lp(a) were assessed in plasma samples at least three times independently. Western blots used to determine apo(a) isoform sizes were 
performed twice on each plasma sample in 2 independent experiments. A representative Western Blot is displayed (inset).
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SNPs in 13 genes (8 missense variants, seven 3′ untrans-
lated region SNPs, 2 5′ untranslated region SNPs) and no 
indels segregated exclusively with the high-Lp(a) pheno-
type (assuming a dominant mode of inheritance; Table S6 
in the Supplemental Material). None of these genes except 
LPA has any known connection to lipid metabolism and/
or were plausible candidates (Supplemental Notes). Also, 
relaxation of filtering parameters by allowing for one indi-
vidual being a phenocopy or up to 3 individuals being also 
homozygous for causal variants (in case the causal variant 
is unexpectedly frequent) as well as manual inspection of 
the candidate Lp(a) receptors recently reported26 did not 
reveal additional candidate variants (Table S7 in the Sup-
plemental Material, Supplemental Notes).

Taken together, whole-exome sequencing data found 
no clear hint for a receptor defect, which was also sug-
gested by similar cellular uptake of Lp(a) observed in 
lymphocytes isolated from family members with high ver-
sus normal Lp(a) phenotypes (Supplemental Results and 
Figure S1 in the Supplemental Material).

LPA Gene Locus
Elevated Lp(a) levels were systematically associated with 
the presence of one apo(a) isoform containing 21 KIV 
domains in this family, except for 2 individuals: II-C1 who 
entered the pedigree by marriage and presents another 
isoform combination associated with high Lp(a) (15 KIV 
and 20 KIV) as well as his daughter III-C3 who inher-
ited the 15 KIV allele (Figure 1). The high expressing 21 
KIV allele was characterized by concomitant occurrence 
of the rare LPA SNPs rs3798220 (protease domain), 
rs186696265 (enhancer region; ≈26 kb upstream of 
LPA), and rs140570886 (KIV-6, intronic; Tables S6, 
S8, and S9 in the Supplemental Material). Among car-
riers of that allele, the expression of the 21 KIV isoform 
was predominant, accounting on average for 86±14% of 
total Lp(a) (Table S9 in the Supplemental Material). The 
rare variants rs186696265 and rs140570886 were the 
strongest Lp(a) increasing SNPs in a recent GWAS.17 The 
LPA allele with 21 KIV of individual II-A2 was isolated 
by long-range pulsed-field gel electrophoresis and the 
LPA enhancer region was subjected to Sanger sequenc-
ing. This confirmed that rs186696265 is located on 
the 21 KIV allele (Table S8 in the Supplemental Mate-
rial). Phased genotypes from imputation indicate that the 
minor alleles of rs3798220 and rs140570886 are on the 
same chromosome as the minor allele of rs186696265. 
This is in accordance with the observed SNP segrega-
tion patterns (Table S9 in the Supplemental Material). 
In the general population, these SNPs are in only par-
tial linkage disequilibrium and have been independently 
linked to considerably increased Lp(a) concentrations 
(+43 to +64 mg/dL)14,17 and, in case of rs3798220, also 
increased OxPL load.27 All 3 SNPs were also significantly 
associated with increased LPA mRNA expression in liver 

in The Genotype-Tissue Expression Project (rs3798220: 
P=4.7×10-8; rs186696265: P=0.00073; rs140570886: 
P=1.2×10-7). Additionally, we observed at least one G 
allele of rs9347440 (minor allele frequency: 43.6% in 
Europeans; 59.4% in South Asians) in all hyper-Lp(a) 
individuals (Tables S8 and S9 in the Supplemental Mate-
rial). This SNP has been previously linked to +250% in 
enhancer activity and +70% Lp(a) production.28 Its cor-
relation with GWAS hits has not been reported. Other 
previously reported enhancer SNPs were inconclusive28 
(Tables S8 and S9 in the Supplemental Material). No other 
variants segregating with the allele 21 were observed in 
a ≈5 kb around the enhancer regions DH-II and DH-III5 
(except the frequent variant rs59872631, minor allele 
frequency=0.278) and in the >4 kb promoter region.6,7 
Previously reported functional LPA SNPs are shown in 
Table S9 in the Supplemental Material. Of note, no role 
for rs10455872 was found, as this SNP was present 
only in two individuals carrying the 20 KIV allele that 
entered the pedigree by marriage (spouse II-C1 and his 
daughter III-C2; Table S9 in the Supplemental Material). 
Taken together, these results indicate that high-Lp(a) lev-
els observed in this family are caused by a single high 
expressing LPA allele with 21 KIV characterized by the 
concomitant presence of multiple Lp(a)-increasing SNPs 
(rs3798220, rs186696265, rs140570886).

Oxidized Phospholipids
LPA rs3798220 (Ile4399Met) has been associated with 
elevated oxPL in apoB containing lipoproteins.27 We thus 
measured the content of oxPL specifically associated 
with Lp(a) in all family members (Table S1 in the Supple-
mental Material). The levels of oxPL/Lp(a) were signifi-
cantly higher in individuals carrying the 21 KIV isoform 
compared with the other family members (8.77±0.68 
versus 7.45±1.65 nmol/L, respectively, P=0.01), indicat-
ing that the high expressing 21 KIV allele thus also car-
ries an increased amount of OxPL onto Lp(a).

GRS for Lp(a)
Principal component analysis using whole-genome 
microarray data indicated that most pedigree members 
clustered close to European, as well as Middle Eastern 
and South Asian groups (Figure S2 in the Supplemental 
Material), in line with the diverse and complex popula-
tion history of La Réunion Island. In the present article, 
we, therefore, used the population-based European 
KORA F4 study (Kooperative Gesundheitsforschung in 
der Region Augsburg Follow Up Survey [F4]; n=3756) 
as primary reference population, as well as for validation 
the super populations Europeans (n=504) and South 
Asians, n=481) of the 1000 Genomes (1000G) project.

Because the SNPs mentioned above only explain 
a portion of the observed Lp(a) variance (see below), 
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we hypothesized that multiple Lp(a)-increasing vari-
ants may sum up to create the observed high express-
ing phenotype in this family. We thus assessed the 
overall contribution of LPA variation to the observed 
phenotype using a 48-SNP GRS based on our recent 
GWAS on Lp(a),17 which captures the effects of 2001 
genome-wide significant variants within the LPA 
locus. The Lp(a) GRS showed similar distribution in 
all 1000G super population and, most importantly, was 
centered at the same value (Figure S3 in the Supple-
mental Material).

All pedigree members with high Lp(a) presented GRS 
values close to or above the 95th percentile of the GRS 
distribution of all 3 reference groups (Figure 2), except 
for individual III-C3, who carries only the isoform 15. In 
regression analysis, the GRS for Lp(a) explained 58.1% 
(P=9.341×10-5) of inverse-normal transformed Lp(a) 
concentrations. This was almost twice the variance 
explained by rs186696265 or rs140570886 alone 
(28.8%, P=0.0147). A model including the size of the 
shorter apo(a) isoform, age, sex, the presence of the 
KIV-2 splice site 4925G>A mutation,15 and the GRS for 

Lp(a) explained 75.9% of the Lp(a) variance (P=0.0006) 
in this family. This strongly argues for a cumulative impact 
of several Lp(a)-increasing variants that together create 
an overly high expressing isoform 21 allele.

Impact on the GRS for CAD
Although most family members show increased Lp(a), 
not all have experienced premature CAD. To assess the 
polygenic CAD risk background and the impact of the 
LPA locus on it, we computed the polygenic CAD GRS 
recently published by Khera et al29 for the pedigree and 
all reference groups. The CAD scores showed very similar 
distribution in 1000G Europeans, 1000G South Asians, 
and KORA F4. All CAD cases but one (II-C1) showed a 
CAD score above the 97.5th percentile of KORA F4 (Fig-
ure 3). Similar observations were made using the 1000G 
Europeans and South Asians reference groups (Figure 
S4 in the Supplemental Material).

Most notably, despite the fact that the genome-wide 
GRS for CAD encompasses 6.6 M SNPs, removal of the 
broader sense LPA locus (defined as the ≈1.76 megabases 

Figure 2. Lp(a) (lipoprotein [a]) genetic risk scores.
A, Correlation between the Lp(a) Genetic risk scores (GRS) and Lp(a) plasma concentrations in family members with high (orange dots) and 
normal (black dots) Lp(a) levels. B, Distribution of LPA GRS in the general KORA F4 reference population. C, Distribution of Lp(a) GRS of the 
1000 Genomes European (EUR) continental group. D, Distribution of Lp(a) GRS of the 1000 Genomes South Asian (SAS) continental group. 
Dark and light blue areas indicate bottom/top 5th and 2.5th percentiles, respectively. Lp(a) GRS of family members with high and normal Lp(a) 
levels (assessed in plasma samples three times in three independent experiments) are indicated by orange and black dots below each chart, 
respectively. For Lp(a) GRS, the effects of the 48 genome-wide significant single nucleotide polymorphisms (SNPs) were used. They represent 
2001 genome-wide significant SNPs in a 1.76 Mb large region spanning LPA locus.
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region that showed genome-wide significant hits in Mack 
et al17) strongly reduced the genetic CAD risk in this family, 
bringing most of their CAD GRS below the 95th percentile 
of the respective distribution in KORA F4 (Figure 3).

Finally, we also hypothesized that a higher propensity 
to thrombotic events might enhance the effects of Lp(a) 
on CAD and used a GRS for venous thromboembolism 
(VTE) as a proxy for a putative thrombophilic genetic 
background in this family. No increased genetic risk for 
venous thromboembolism was seen in this family using 
the GRS of Klarin et al30 (Figure S5 in the Supplemental 
Material), even if some family members carry the pro-
thrombin variant G20210A previously reported for the 
index patient20 (Table S10 in the Supplemental Mate-
rial). Taken together, these results demonstrate the major 
contribution of the LPA locus to the elevated genetic risk 
of CAD in this family.

DISCUSSION
The Lp(a) trait is mostly controlled by the complex LPA 
gene locus,17,18 but the metabolic pathways governing 
Lp(a) plasma concentrations remain elusive.1 Neither 
biochemical nor large GWAS studies have conclusively 
identified a catabolic receptor nor other genes with a 

major impact on Lp(a) concentrations.17,18,26 Despite this 
nearly monogenic regulation, most Lp(a) epidemiology 
currently focuses on population studies whereas family 
studies using whole-genome approaches have not been 
pursued. Indeed, although LPA has been clearly estab-
lished as the primary locus regulating Lp(a) concentra-
tions in the population, it is unclear whether also other 
rare gene defects exist that may cause hyper-Lp(a). We, 
therefore, performed a comprehensive genetic charac-
terization of a unique pedigree characterized by high 
Lp(a) and increased CAD incidence. The hyper-Lp(a) 
phenotype in the present pedigree was found to segre-
gate with a strongly expressed LPA allele with 21 KIV 
(isoform 21) with no obvious contribution of coding varia-
tion in other genes (Supplemental Notes).

The isoform 21 that segregated with the pheno-
type was characterized by presence of three LPA 
SNPs rs186696265, rs140570886, and rs3798220. 
Rs186696265 is located close to both known enhancer 
regions upstream of LPA5 and is the SNP with the stron-
gest effect in the GWAS of Mack et al17 (+64.7 mg/dL 
and +49.1 mg/dL in base and isoform-adjusted model; 
+47.6 mg/dL and +24.8 mg/dL in respective joint models 
with all other independent GWAS hits). Rs140570886, 
located in the intron of KIV-6, was the second strongest 

Figure 3. Coronary artery disease (CAD) genetic risk scores.
A, Distribution of CAD genetic risk scores (GRS) in the general KORA F4 reference population. B, Distribution of CAD GRS in the general 
KORA F4 reference population when the LPA locus is removed from the score. Dark and light blue areas indicate bottom/top 5th and 2.5th 
percentiles, respectively. CAD GRS of family members who have and have not had CAD are indicated by orange and black dots below each 
chart, respectively. For CAD GRS, the effects of >≈6.6 million single nucleotide polymorphisms throughout the genome were used. The 
modified CAD GRS without the LPA locus was calculated by excluding all variants in the interval chr6:159 991 850–161 753 083.
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SNP in the same study after adjusting the GWAS for 
apo(a) isoforms measured by Western blot to detect 
SNPs that modify Lp(a) beyond the isoform effect (single 
SNP model: +43.3 mg/dL; joint model: +23.8 mg/dL). 
Both SNPs contributed independently to Lp(a) concen-
trations even if included in the same regression model,17 
indicating an at least partially additive effect. The third 
SNP rs3798220 was associated with a high expressing 
apo(a) short isoform in an Austrian family.31 The observa-
tion in Arai et al27 and in the present work that this mis-
sense variant is associated with an increased oxPL load 
per Lp(a) particle is probably the mechanism by which 
this variant might contribute to increased atherogenicity. 
All 3 SNP have been reported by several GWAS stud-
ies on Lp(a), dyslipidemias, CAD risk, and related pheno-
types.32 An overly strongly expressed 21 KIV allele of the 
LPA locus, carrying a high load of Lp(a)-increasing vari-
ants might thus suffice as primary cause for the hyper-
Lp(a) phenotype in this family.

We used a GRS to additionally quantify the cumu-
lative contribution of the genetic variability at the LPA 
locus (≈2000 SNPs captured via linkage disequilibrium) 
to the hyper-Lp(a) phenotype in this family. All but one 
individual with high Lp(a) showed an Lp(a) score close to 
or above the top 5th percentile of the reference popula-
tions. The hyper-Lp(a) individuals could thus be efficiently 
discriminated from their relatives with normal Lp(a) using 
an Lp(a) GRS. Interestingly, the only individual with high 
Lp(a) but a low Lp(a) GRS was an individual who had 
not inherited isoform 21, but isoform 15. Despite being 
shorter, isoform 15 was associated with somewhat lower 
Lp(a) than isoform 21, supporting the notion that genetic 
variants modify Lp(a) concentrations beyond what is 
determined by the sole size of the isoforms.11,12,15 Our 
observations are in line with recent reports from the 
UK Biobank, where the Lp(a) GRS resembled closely 
the directly measured Lp(a) values33 and offered com-
parable improvement in risk prediction as directly mea-
sured Lp(a).34 In datasets with genetic information but 
not directly measured Lp(a), the Lp(a) GRS might thus 
be a valid surrogate for Lp(a) plasma levels, as the effect 
of the GRS on cardiovascular risk appears fully mediated 
by its effect on Lp(a) concentrations.34–37

However, these studies were done in a large popula-
tion-based study and it is unclear how well an Lp(a) GRS 
might be discriminative between closely related individu-
als. Our data shows that an Lp(a) GRS is discriminative 
even within families, capturing at least the most highly 
expressing alleles like the present 21 KIV isoform.

The pedigree was also characterized by a high inci-
dence of CAD at relatively young age. Hypothesizing 
that the role of Lp(a) in determining the CAD risk may 
be further modified by an unfavorable polygenic back-
ground, we quantified the genome-wide polygenic con-
tribution to CAD risk using a recently published genomic 
CAD GRS.29 All CAD cases but one showed CAD GRS 

above the 97.5th percentile of the score distribution in 
KORA F4. Most notably, however, exclusion of the LPA 
region from the score computation significantly lowered 
the CAD risk in these individuals, putting mostly all of 
them below the 95th percentile. Given that the LPA locus 
chiefly determines Lp(a) plasma levels, this observation 
indirectly establishes that Lp(a) concentrations are a 
driving factor for CAD in this family. Considering that the 
CAD GRS contains 6.6 M SNPs, this is noteworthy and 
underscores the large contribution of the LPA locus to 
the genetic risk in this pedigree. A similar observation 
in UK Biobank has been posted recently on medRxiv,38 
supporting that in high-Lp(a) individuals the CAD GRS 
is indeed strongly determined by the LPA locus. Accord-
ingly, an additive and even partially multiplicative effect 
of high Lp(a) and family history of CAD was recently 
reported.39 Conversely, we did not observe any increase 
in VTE GRS in this pedigree. This may appear surpris-
ing, given the assumed prothrombotic effects of Lp(a) 
but recent large Mendelian randomization studies about 
Lp(a) and VTE have also been negative.40–42 Only one 
study has reported an association between very high 
Lp(a) and VTE,43 but this effect might not be properly 
captured using a VTE GRS. Although Lp(a) might not 
play a substantial role in systemic thrombosis, local pro-
thrombotic effects at the site of atherosclerotic lesions 
are conceivable.

GRS may be rapidly approaching applications in the 
clinics, and a high GRS for CAD found in any given per-
son or family will lead to the question “Which gene loci 
are primarily driving this risk?” In individuals with very 
high–Lp(a) plasma concentrations, it will also be relevant 
to determine which other genetic factors are contribut-
ing to their CAD GRS. The sharp reduction in the CAD 
GRS after exclusion of the LPA gene region observed in 
this pedigree pinpoints the LPA locus as the major cause 
in this pedigree and provides a strong rationale to use 
Lp(a)-lowering therapies currently into development that 
specifically target LPA mRNA and thereby reduce Lp(a) 
plasma levels.44

Limitations
We acknowledge that our investigation focused on a 
single yet large pedigree. Our approach can, however, be 
generalized in cohorts including either many pedigrees or 
a large number of unrelated hyper-Lp(a) individuals and 
matching controls. Sequencing studies in such cohorts 
have the potential to provide considerably larger datas-
ets than single family–based studies. The present work 
may guide such endeavors. We also acknowledge that 
the selection of appropriate reference populations for 
genetic studies is inherently difficult, given the diverse 
ethnic background of La Réunion Island, with roots in 
Europe, Middle East, Africa (including Madagascar), 
East and South Asia. Nevertheless, European ancestry 
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at least of the LPA locus is supported by the observa-
tion that rs3798220 segregated with a short apo(a) iso-
form, an association seen in Europeans but not in South 
Asians.45 This variant is not found at all in Africans.45 
Likewise, rs140570886 and rs186696265 are 2.5× to 
5× rarer in South Asians than in Europeans and absent 
in Africans. We thus consider that our reference popula-
tions were appropriate, even if more ethnically diverse 
reference groups would have been ideal. Finally, our 
study assumes a causal SNP that is segregating within 
the pedigree in a Mendelian fashion. We are aware that 
we would not have sufficient power to detect allelic het-
erogeneity, that is, different mutations at the same locus 
causing the same phenotype, albeit this seems a rather 
unlikely possibility in the present pedigree.

Conclusions
Although some case reports about hyper-Lp(a) individu-
als and pedigrees have been published, none displays 
a thorough genetic characterization with whole-genome 
and whole-exome technologies. We here demonstrate 
that the Lp(a) GRS can successfully capture a hyper-
Lp(a) phenotype also within pedigrees, despite the con-
siderably higher relatedness they present compared 
with the general population. We also demonstrate in 
high-Lp(a) individuals that the CAD GRS can be strongly 
determined by the LPA locus. Although direct Lp(a) 
quantification is the preferred measure, in a future with 
individual genomic data being broadly available, routine 
determination of Lp(a) GRS may provide an actionable 
screening tool for cardiovascular risk prediction both in 
pedigrees and population.
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