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Abstract

Background Skeletal muscle is central to locomotion and metabolic homeostasis. The laboratory worm Caenorhabditis
elegans has been developed into a genomic model for assessing the genes and signals that regulate muscle development
and protein degradation. Past work has identified a receptor tyrosine kinase signalling network that combinatorially controls
autophagy, nerve signal to muscle to oppose proteasome-based degradation, and extracellular matrix-based signals that
control calpain and caspase activation. The last two discoveries were enabled by following up results from a functional
genomic screen of known regulators of muscle. Recently, a screen of the kinome requirement for muscle homeostasis
identified roughly 40% of kinases as required for C. elegans muscle health; 80 have identified human orthologues and 53
are known to be expressed in skeletal muscle. To complement this kinome screen, here, we screen most of the phospha-
tases in C. elegans.
Methods RNA interference was used to knockdown phosphatase-encoding genes. Knockdown was first conducted during
development with positive results also knocked down only in fully developed adult muscle. Protein homeostasis, mitochon-
drial structure, and sarcomere structure were assessed using transgenic reporter proteins. Genes identified as being required
to prevent protein degradation were also knocked down in conditions that blocked proteasome or autophagic degradation.
Genes identified as being required to prevent autophagic degradation were also assessed for autophagic vesicle accumulation
using another transgenic reporter. Lastly, bioinformatics were used to look for overlap between kinases and phosphatases re-
quired for muscle homeostasis, and the prediction that one phosphatase was required to prevent mitogen-activated protein
kinase activation was assessed by western blot.
Results A little over half of all phosphatases are each required to prevent abnormal development or maintenance of muscle.
Eighty-six of these phosphatases have known human orthologues, 57 of which are known to be expressed in human skeletal
muscle. Of the phosphatases required to prevent abnormal muscle protein degradation, roughly half are required to prevent
increased autophagy.
Conclusions A significant portion of both the kinome and phosphatome are required for establishing and maintaining
C. elegans muscle health. Autophagy appears to be the most commonly triggered form of protein degradation in response
to disruption of phosphorylation-based signalling. The results from these screens provide measurable phenotypes for
analysing the combined contribution of kinases and phosphatases in a multi-cellular organism and suggest new potential reg-
ulators of human skeletal muscle for further analysis.
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Introduction

Skeletal muscle is required for locomotion and maintaining
posture and gait. These roles are facilitated by the actin/
myosin-based contractile units. Frequently, the clinical focus

on loss of muscle function is on the loss of locomotor function,
for example, with trauma or age or in the muscular dystro-
phies. In the USA, the costs associated with such musculo-
skeletal conditions were estimated at 5.73% of the GDP in
2011, up from 3.43% in 1998, and expected to continue to

rise as the population continues to age.1 However, the estab-
lishment, maintenance, and operation of the contractile
units require substantial metabolic input. This explains why
a muscle is a major contributor to overall metabolic homeo-
stasis both as the major site of glucose storage and disposal

and as the main protein/nitrogen reserve. Disruption of
muscle glucose disposal likely contributes to the larger pub-
lic health crisis of type II diabetes,2 and the loss of muscle
protein seen in various clinical conditions such as burns,
sepsis, and cancer can be the proximal cause of death.3

Thus, muscle has multiple functions of important clinical

relevance.
Like many clinical problems, the establishment and main-

tenance of muscle homeostasis are studied not only in hu-
man subjects but also in laboratory animals. The worm
Caenorhabditis elegans is one such animal. Its small size,
transparency, and rapid development coupled with the ge-
netic and genomic tools available make it an ideal model

for foundational studies.4 The worm has been used to study
muscle development,5 muscular dystrophy,6 fat metabolism,7

sarcopenia,8 spaceflight-induced changes in muscle,9 and
muscle protein degradation (Figure 1A);10–19 in each instance,
the uncovered genes, signals, and/or underlying concepts of
control mechanism(s) have been found to have direct

relevance to the same processes and/or conditions in
humans.

Three recent kinome-wide RNAi screens performed in
C. elegans to identify the kinome requirement for normal
muscle development and homeostasis20 identified roughly
40% of the kinome as being important for establishing
and/or maintaining proteostasis, mitochondrial structure, or

sarcomere structure in muscle. Of these kinases identified
in C. elegans, 80 have identified human orthologues and 53
are known to be expressed in skeletal muscle. To comple-
ment this data set and to study phosphatases on a genome-
wide scale, we undertook a systematic analysis of phospha-
tases required for establishing or maintaining muscle cell

health in C. elegans. For this study, we employed RNAi to
systematically knockdown most individual phosphatases in
the C. elegans genome. RNAi was utilized because of both
the lack of specificity of available protein phosphatase
inhibitors as well as the lack of inhibitors for most of the

phosphatome.

Methods

Nematode handling and RNA interference
screening

Nematode handling, strains utilized, RNAi screening, epistasis
testing of identified genes against known protein degradation
pathways, and assessment of autophagic vesicles via trans-
genic reporter protein were all as previously described and
diagrammed for the RNAi screen of the C. elegans kinome re-
quirement for a muscle.20

A screening list of phosphatase-encoding genes was con-
structed from a C. elegans RNAi phosphatase list of 167 genes
supplied by Source BioScience LifeSciences Ltd. (Nottingham,
UK) and a list of 207 genes supplied by Plowman et al.,21 the lat-
ter of which was based on a genome-wide HMM search for
phosphatase motifs in the C. elegans genome. Comparison of
the lists yielded 106 genes that were represented in both lists.
The remaining genes unique to one of the two lists
were further examined for phosphatase annotation in www.
wormbase.org.22 Thereupon, a further 67 genes from the Plow-
man list and a further 25 genes from the Source BioScience
LifeSciences Ltd. list were found. Thus, a total of 198
phosphatase-encoding genes (106 matches +25 Source
Bioscience Ltd. +67 Plowman) were collated from both. Where
possible, sequence verified RNAi clones against each individual
phosphatase were obtained from either of two previously con-
structed genome-wide RNAi bacterial feeding clones.23,24 These
clones were obtained from Source BioScience (Nottingham,
UK). After sequence verifying all positive results from our
screen, we identified that previously utilized, sequence verified,
RNAi constructs were available for 183 putative phosphatase-
encoding genes (see Supporting Information Data S1).

Quality control of our RNAi screens was as previously de-
scribed and diagrammed for the RNAi screen of the C. elegans
kinome requirement for a muscle.20 By comparing the devel-
opmental phenotypes, such as growth or uncoordinated
movement observed in this study to developmental pheno-
types observed in RNAi experiments by other investigators
using the same RNAi bacteria clone, a potential discrepancy
of RNAi results for 17% of total genes screened was identified.
This is in concordance with published RNAi screens17,20 and
half of these potential discrepancies are cases in which we
identified a developmental phenotype in response to RNAi
but for which a wild-type phenotype was observed in RNAi ex-
periments by others, indicating that either the RNAi was more
effective in this study and therefore these results may be new
findings, or these results are false positives. This is again con-
sistent with published RNAi screens17,20 and most likely repre-
sents our method producing a first discovery of function rate
that is higher than past studies. Technical details, including
why our false positive rates are lower and first discovery rates
are higher than past studies, can be found elsewhere.25
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Figure 1 Current model of control of cytosolic muscle protein degradation in Caenorhabditis elegans and schematic of the RNA interference screen for
genes potentially regulating autophagy in Caenorhabditis elegans muscle. (A) The model is only from studying the degradation of a single
transgenically encoded reporter protein. Far left (green): caspase activation is induced by mitochondrial dysfunction, which can be caused by loss
of degenerin channel contact with collagen in the extracellular matrix.19 Left (violet): degradation by calpains is regulated by integrin attachment
to the basement membrane,18 and a significant portion of the integrin adhesome appears to contribute to this regulation.16 Middle (yellow): autoph-
agic degradation is controlled by a balance of signal from insulin/insulin-like receptor (negative regulator, green lines) and autocrine fibroblast growth
factor signal (positive regulator, red lines).12–14 Calcium overload, signalling via CaMKII, also promotes autophagic degradation17 as does knockdown of
a number of kinases.20 Right (pink): intracellular calcium controlled by a combination of membrane depolarization, and G-protein signalling events are
required to negatively regulate proteasome-based degradation.15,17 Displayed model is adapted from models published in Shephard et al.17 and
Gaffney et al.19 (B) A schematic of the full RNA interference screen can be found in the kinase screen20 which this phosphatase screen is based upon.
Briefly, for identification of phosphatase, genes whose knockdown induced autophagic protein degradation was achieved through four steps: (1) genes
for which RNA interference produced decreased amounts of reporter protein in muscle were identified. (2) RNA interference against genes identified in
(1) was applied to fully developed adult animals to identify RNA interference treatments that produced degradation of the reporter protein in a mus-
cle. (3) RNA interference against genes identified in (2) was applied to fully developed adult unc-51 mutant animals to identify RNA interference treat-
ments that failed to produce degradation in the absence of functional UNC-51. (4) RNA interference against genes identified in (3) was applied to fully
developed adult animals containing GFP tagged LGG-1 to identify RNA interference treatments that produced elevated levels of autophagic vesicles.
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Network analysis

Data from meta-analyses of physical and functional interac-
tions between the genes identified during the chronic and
acute RNAi screen were extracted manually from the
following databases: WormBase,22 GeneMANIA,26 and
PhosphoPOINT.27 Only interactions between the genes iden-
tified to potentially regulate a specific process were
searched to construct process-specific network models. To
use PhosphoPOINT data, a human orthologue for the gene
identified was searched. The assignment of orthology was
taken from a recent meta-analysis28 and review29;
orthologies used are in Data S1 for phosphatases and in
Lehmann et al.20 for kinases. PhosphoPOINT data for the
human orthologues were then converted back to the
C. elegans orthologues. Some of the genes identified had
the same human orthologue and therefore appear as one
node in the networks (see Supporting Information Data S2
and S4); these genes are egl-4 and pkg-2; kin-14 and
frk-1. All extracted interactions were visualized using
CytoScape.30 All extracted data are available for use and
similar visualization (see Supporting Information Data
S2–S4); data are divided by individual networks. Data for
physical networks are from C. elegans genome-wide known
physical interactions and predicted physical interactions
based upon known physical interactions of orthologues in
a different species (human, rodent, fly, yeast) both which
were retrieved from WormBase and GeneMANIA, as well
as on kinome-wide biochemical data for directly interacting
human orthologues, which were retrieved from
PhosphoPOINT. Data for functional networks are mainly
based on kinome-wide biochemical data of shared sub-
strates and/or interacting phosphoproteins for the human
orthologue derived from PhosphoPOINT. These networks
also contain C. elegans known gene product interactions
and predicted gene product based upon known gene prod-
uct interactions for the orthologue in a different species,
both which were retrieved from WormBase and
GeneMANIA.

Western blot

For western blot analysis of MEK phosphorylation, 30 worms
were picked into 20 μl sterile ddH2O and immediately frozen
in liquid nitrogen and stored at �20°C. Later the same week,
8 μL of 3× Laemmli buffer was added to each sample and
heated for 5 min at 95°C in a hot block, whereupon they were
vortexed for 30 s and centrifuged for 1 min and placed on ice.
The entirety of each sample was then loaded into a 12% Bis-
Tris SDS PAGE gel (Bio-Rad, Hemel Hempstead, UK) for
electrophoresis for 1 h at 200 V. Separated proteins were
transferred onto a PVDF membrane (Bio-Rad) for 45 min at

100 v, then placed in 3% bovine serum albumin (BSA) in
Tris-buffered saline and 0.1% Tween-20 (TBST) for 1 h at
room temperature. Membranes were washed 3× for 5 min
in TBST then incubated at 4°C overnight in primary antibody
solution. Anti-P-MEK 1/2Ser 217/221 (no. 9121) (Cell Signalling
Technology, Beverly, MA, USA) was diluted 1:1000 in TBST.
Afterwards, the membrane was washed 3× for 5 min in TBST
before incubation in the secondary antibody solution of 3%
BSA in TBST containing HRP conjugated anti-rabbit secondary
antibody (Cell Signalling Technology), 1:2000 for 1 h at room
temperature. The membrane was then washed 3× in TBST,
before incubation for 5 min in enhanced chemiluminescence
reagent (Millipore, Watford, UK) and visualized using a
Chemidoc XRS system. Band volumes were quantified using
ImageJ (NIH).

Results

Phosphatases required for establishing or
maintaining muscle health

To establish the role of each phosphatase-encoding gene in
the genome of C. elegans in establishing and/or maintaining
muscle homeostasis, we obtained a set of RNAi constructs
against phosphatases from Source BioScience LifeSciences
Ltd. and also RNAi constructs against phosphatases identified
using a hidden Markov model (HMM) search for phospha-
tase motifs in the C. elegans genome.21 This lead us to iden-
tify 198 putative phosphatase-encoding genes of which 106
were identified by both sources, 25 were unique to Source
Bioscience, and 67 were unique to the HMM search; se-
quence verified RNAi constructs were available for 183 of
these genes. Utilizing these 183 RNAi constructs, we re-
peated the RNAi screening protocol used to identify kinases
required for normal muscle proteostasis, protein degrada-
tion, mitochondrial structure, and sarcomere structure
(diagrammed in Lehmann et al.20). Briefly, worms were
treated with RNAi against a single gene throughout develop-
ment, and adults were scored at multiple time points during
adulthood for normal reporter protein levels, mitochondrial
structure, and sarcomere structure. RNAi treatments that
produced lethality or abnormal protein levels or structure
were then applied to previously untreated, normal, adults
to determine if the knockdown produced a defect solely
due to a requirement of the gene during development or if
the gene was also required for continued maintenance of
fully developed muscle. Additionally, a key feature of the
protein degradation screen was that RNAi treatments were
not only identified as inducing altered proteostasis and in-
creased protein degradation but they were also examined
for the requirement of UNC-51/ATG1 in producing the in-
creased protein degradation and, if UNC-51 was required, if
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increased autophagic vesicles were observed. This autophagy
screen is graphically displayed in Figure 1B.

As shown in Figures 2, 3, and 4, RNAi against 97 of 183 pu-
tative phosphatases produced a subcellular defect in a mus-
cle. This suggests that roughly half of all phosphatases are
required for normal development and/or maintenance of
muscle. This percentage requirement is slightly higher than
the roughly 40% of kinases that are required for normal de-
velopment or maintenance of muscle and likely reflects the
fact that because there are fewer phosphatases than kinases,
there is less redundancy. Again, like the kinase requirement
for muscle, more phosphatases are required for normal
proteostasis than for mitochondrial structural homeostasis,
and the least phosphatases are required for normal sarco-
mere homeostasis. This suggests that there are more signals
impinging upon muscle metabolism than upon muscle sarco-
mere structure. Similarly to the kinase requirement for
muscle, most phosphatases identified as required for normal

development of muscle are also required for maintenance of
adult muscle.

Included in the results are the identification of genes that
were already known to regulate a muscle, such as a negative
regulator of fibroblast growth factor receptor (FGFR),
clr-1,14,31 and myosin phosphatase, mel-11, which is known
to be involved in elongation during development.32 These
screens also identified embryonic lethality as expected for
let-92 and cdc-25.1. Although the identification of these
genes appears to validate the RNAi results, not many of the
other genes identified have been studied in detail or are
known to regulate any of the processes examined. This was
confirmed by gene ontology analysis using the online soft-
ware DAVID,33 which failed to recognize a third of the genes
we identified as having previously been assigned a biological
function. This suggests that the approach taken in this study
may be an important first step forward understanding the
functions of previously unstudied phosphatase-encoding

Figure 2 Examples of raw data from the screens for phosphatases required for normal muscle development and/or homeostasis. Images of sample
phenotypes for proteostasis (cytosol), sarcomeres (sarcomere), and mitochondrial morphology (mitochondria). Empty vector control images are shown
at the top with moderate and major defects shown below. Gene for which RNA interference produced the effect is noted below the image. The black
scale bars represent 100 μm. The white scale bars represent 20 μm.
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Figure 3 Phosphatases required for one aspect of normal muscle development and/or homeostasis. The same RNA interference screening protocol as
used for the kinome requirement of a muscle was utilized20 with phosphatase-encoding genes being targeted. Briefly, for chronic RNA interference
treatment, four L4 larvae animals and two following generations of progeny were cultured on RNA interference bacteria clones. For both generations
at 72–96 h after L4 transfer, progeny were observed on two consecutive days using microscopy for sarcomere structure, mitochondrial structure, or
protein homeostasis. For acute RNAi treatment, synchronized adult worms grown on OP50 were transferred to RNAi bacteria seeded plates and ob-
served at 24 h for structure and at 48 h and 72 h for all phenotypes. The impact of knockdown of phosphatases where a defect was noted in muscle is
colour coded and displayed according to the inset legend, instances in which a whole animal defect was noted are indicated in black. Only RNA inter-
ference treatments that produced a defect in either protein homeostasis, mitochondrial structure, or sarcomere structure alone are displayed.
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genes. Interestingly, a little over half of the genes identified in
these screens have homologues expressed in human skeletal
muscle (see Supporting Information Data S1), suggesting that

these genes may be candidates for further study of the regu-
lation of muscle protein degradation, mitochondrial fission,
and sarcomere maintenance in humans.

Figure 4 Phosphatases required for multiple aspects of normal muscle development and/or homeostasis. The same RNA interference screening pro-
tocol as used for the kinome requirement of muscle was utilized20 with phosphatase-encoding genes being targeted. Briefly, for chronic RNA interfer-
ence treatment, four L4 larvae animals and two following generations of progeny were cultured on RNA interference bacteria clones. For both
generations at 72–96 h after L4 transfer, progeny were observed on two consecutive days using microscopy for sarcomere structure, mitochondrial
structure, or protein homeostasis. For acute RNA interference treatment, synchronized adult worms grown on OP50 were transferred to RNA interfer-
ence bacteria seeded plates and observed at 24 h for structure and at 48 and 72 h for all phenotypes. The impact of knockdown of phosphatases where
a defect was noted in muscle is colour-coded and displayed according to the inset legend, instances in which a whole animal defect was noted are
indicated in black. Only RNA interference treatments that produced a defect in at least two of the subcellular phenotypes assayed (e.g. protein homeo-
stasis, mitochondrial morphology, and sarcomere structure) are displayed. Genes for which chronic RNA interference induced an embryonic lethal phe-
notype in all three screens are labelled with asterisk; dagger indicates embryonic lethality only in the proteostasis screen.
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Epistasis testing of potential
degradation-regulating phosphatases versus
known signals

To further identify how the RNAi knockdowns were produc-
ing cytosolic protein degradation, we functionally clustered
the genes identified as required to prevent induction of pro-
tein degradation into those appearing to be required to pre-
vent autophagy or proteasome-mediated degradation. This
was accomplished by treating unc-51 (ATG1) mutants or pro-
teasome inhibitor-treated animals with each RNAi treatment
that induced protein degradation. Additionally, we used mpk-
1 and daf-18 loss of function mutations to cluster these genes
into FGFR-mediated and IGFR-mediated pathways, respec-
tively.13 Half of the phosphatase-encoding genes appear to
be potential regulators of autophagy-mediated protein degra-
dation (Figure 5A), which is similar to the finding when the
kinase-encoding genes were previously knocked down. To
confirm that autophagy was indeed induced in response to
these RNAi treatments, we examined if GFP::LGG-1 autopha-
gic vesicles increased in muscle in response to treatment,
which they did (Figure 5B). These findings suggest that when
protein phosphorylation is perturbed either by increasing
phosphorylation, in phosphatase RNAi knockdowns, or de-
creasing phosphorylation, in kinase knockdowns, that au-
tophagy is triggered. In other words, autophagy appears to
be sensitive to the global balance of numerous signals in
muscle. Interestingly, most of the kinases and phosphatases
that were identified to potentially regulate protein degrada-
tion required MPK-1 (mammalian extracellular signal-regu-
lated kinase (ERK)). This suggests that MPK-1 and other
MAPKs may play a central role in the regulation of overall
protein degradation within a cell. Given that ERK is known
to be expressed and active in human skeletal muscle,34 per-
haps a similar metabolic role for ERK in human skeletal mus-
cle exists.

Identification of let-92 as a putative central node
for protein degradation

To examine if the identified phosphatases and recently iden-
tified kinases that may regulate subcellular processes within
muscle might act within a network regulating muscle homeo-
stasis, we used past C. elegans genome-wide known and pre-
dicted gene product physical interaction maps from
published meta-analyses,35–37 as well human kinome-wide
known gene product physical interaction data from a pub-
lished meta-analysis,27 to construct potential physical net-
works for the kinases identified in each screen. We also
used past C. elegans genome-wide known and predicted
gene product functional interactions from published meta-
analyses,35–37 as well human kinome-wide known gene

product functional interaction data from a published meta-
analysis, to construct potential functional networks for the
kinases identified in each screen. The physical networks are
based upon binding data (e.g. yeast two hybrid, co-
immunoprecipitation) for the C. elegans kinase and/or data
for the yeast, fly, rodent, and/or human orthologue35–37

while the functional networks are based upon limited genetic
interactions for the C. elegans kinase and/or data for the
yeast, fly, rodent, and/or human orthologue35–37 and a large
amount of biochemical data for shared interacting phospho-
proteins for the human orthologue.27 Visualization of these
predicted interactions using cytoscape did indeed reveal
some potential interaction networks (see Supporting Infor-
mation Data S2–S4). Of note, there were not many known
or predicted interactions between the phosphatases identi-
fied here. However, the combination of data on identified ki-
nases and phosphatases resulted in a more integrated
network than kinase or phosphatase-specific networks alone.
Also, within these potential networks emerged a phospha-
tase, let-92, and kinase, abl-1, that appeared to be central
nodes as indicated by the number of connections to other
identified genes (Figure 6A). The identification of such central
nodes suggests one strategy in prioritizing phosphatases and
kinases for further study.

Knockdown of protein phosphatase 2A catalytic or
regulatory subunit-encoding genes results in
increased MEK phosphorylation

Because LET-92 appeared to be a central node and because
PP2A is known to interact with Akt,38 a kinase known to con-
trol mammalian muscle size via both well-appreciated39 and
recently demonstrated mechanisms,40 we decided to further
investigate the role of LET-92 as a regulator of muscle protein
degradation. The data presented in Figure 5 suggest that let-
92 knockdown induces MAPK-dependent autophagy. This is
consistent with early reports of protein phosphatase 2A
(PP2A) being a negative regulator of MAPK both in vitro41

and in cultured cells42 and is also consistent with past reports
of constitutive, autocrine, FGFR activation of Ras-MAPK in
C. elegans muscle being subject to negative regulation.13

Therefore, we tested if knockdown of PP2A catalytic and
regulatory subunits resulted in increased phosphorylation
of MEK, which should increase activation of MAPK. Western
blots (Figure 6B) confirmed increased phosphorylation of
MEK in response to knockdown of let-92, paa-1, and
C06G1.5 as well as the clr-1 positive control. These results,
coupled with those shown in Figure 5, suggest that PP2A
is required to prevent excessive activation of autophagy in
C. elegans muscle by modulating the activity of Ras-MAPK
signalling, which appears to act upstream of UNC-51/
ATG1.13
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Figure 5 Autophagy is the most commonly triggered type of protein degradation in response to knockdown of a phosphatase. (A) Phosphatase-
encoding genes for which knockdown produced protein degradation were clustered into known proteolytic pathways and signalling mechanisms
utilizing the same protocol as for the kinome requirement of a muscle.20 Briefly, knockdowns were examined for suppression of degradation in an au-
tophagy mutant (unc-51), in wild-type animals treated with proteasome inhibitor (MG132), in a fibroblast-growth factor pathway mutant (mpk-1),
and in an insulin-growth factor pathway mutant (daf-18). Colored boxes represent suppression of degradation in the mutant or treatment indicated
at the top of the column. (B) Autophagic vesicles in muscle were assessed in untreated or phosphatase RNA interference-treated animals as previ-
ously described for the kinome.20 Briefly, GFP::LGG-1 containing worms we treated with empty vector or indicated phosphatase RNA interference
and vesicles were counted. Top: sample images of empty vector control (top left) or RNA interference-treated animal (top right and bottom left
and right); white scale bars represent 20 μm. Bottom: quantification of three independent experiments (n = 20 each). Error bars indicate standard
error of measurement. **P < 0.0001, one way ANOVA (graph pad prism).
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Discussion

Functional analysis of the phosphatome of
Caenorhabditis elegans

Post-translational modifications are a widely appreciated
mechanism of modulating protein function. Phosphorylation
is arguably one of the best studied such modifications, and
the ability to modulate phosphorylation status of key pro-
teins is clinically desirable.43–45 Much progress has been
made on understanding the role that protein kinases play
in phosphorylating their targets and in understanding the
specificity of compounds against the kinome.46,47 In con-
trast, the progress on understanding the role the protein
phosphatases play in dephosphorylating their targets has
lagged behind. Here, we have conducted three near full ge-
nome RNAi screen to identify phosphatases that when
knocked down result in abnormal development and/or
maintenance of muscle. Using this approach, we have found
that roughly half of the phosphatome is required for normal
development or maintenance of muscle. These data provide
the first potential functional importance of more than a
third of the C. elegans phosphatome and a preliminary pic-
ture of how many phosphatases are important for the
proper development and maintenance of muscle. Further
work is needed to determine if these phosphatases are re-
quired within muscle or other tissues for normal muscle
health and to understand why and how these phosphatases
are important. Given that putative human homologues of
roughly half of the identified phosphatases are already
known to be expressed in muscle (Supporting Information

Data S1), it is likely that a good portion of the identified
phosphatases act within muscle to modulate development
and/or maintenance. While it is perhaps surprising that so
many phosphatases appear to be required for normal devel-
opment and/or maintenance of a muscle, the requirement is
roughly similar to the kinome requirement for a muscle.20

The combined C. elegans phosphatome and kinome require-
ment for muscle provides a platform for future mechanistic
studies of individual phosphatases and kinases, further
unravelling of the complexity of the regulation of muscle,
and a starting point for further therapeutic modulation of
human muscle health.

Disruption of phosphorylation events frequently
triggers autophagy

Here, we have found that autophagic protein degradation is
triggered in roughly half of individual phosphatase knock-
downs that induce degradation. This result is intriguing for
two reasons. First, as there are four major proteolytic
systems in a muscle,10 this implies that a phosphatase is more
likely to be important to prevent autophagy than to prevent
proteasome-meditated, caspase-meditated, or calpain-
meditated degradation. Second, as knockdown of individual
kinase-encoding genes most frequently triggered autoph-
agy,20 this implies that both increased and decreased phos-
phorylation events are likely to trigger autophagy. This
finding from the combined work on the kinome and
phosphatome suggests that autophagy is controlled by a bal-
ance of positive and negative signals and is consistent with

Figure 6 Functional interaction network of protein kinases and phosphatases required for normal protein degradation in muscle suggest that protein
phosphatase 2A is a central node. (A) Kinases and phosphatases that were identified as required for lack of pathological protein degradation in muscle
were examined for functional interactions in WormBase,22 GeneMANIA,26 and PhosphoPOINT.27 Kinases are indicated in blue and phosphatases in
yellow. (B) Western blot analysis of MEK activation in response to knockdown of phosphatases identified in network analysis and as triggering autoph-
agy. Quantification of MEK phosphorylation from three separate RNA interference experiments is displayed above representative blots. *P < 0.05,
t-test (graph pad prism).
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past suggestions that in C. elegans, muscle autophagy is
controlled by counterbalanced, constitutive pro-degradation
signalling from FGFR, and anti-degradation signalling from
insulin-like growth factor receptor (IGFR).13 While the
current observation is consistent with the past findings, what
is surprising is the large extent to which both individual
kinases and phosphatases appear to be required to prevent
autophagy. One possible explanation for the more extensive
requirement for kinases and phosphatases to prevent
autophagy is that autophagy might be a default state that is
subject to negative regulation in the presence of multiple
signals that indicate favourable growth conditions. Such a
notion is consistent with the previous suggestion that mTor
is an integrator of multiple favourable growth conditions
to modulate both protein synthesis and degradation.48,49

This also raises the question of the relative importance of
autophagic-mediated as opposed to proteasome-mediated
protein degradation for maintaining human muscle
homeostasis.

Mitogen-activated protein kinase as a central
regulator of protein degradation

In addition to finding that autophagic protein degradation is
the type of protein degradation most commonly triggered
in response to knockdown of any individual kinase or phos-
phatase, we have found that functional MPK-1 is very fre-
quently required for the protein degradation that is
triggered in response to knockdown of any individual
kinase20 or phosphatase (Figures 3 and 4). Thus, analysis of
both the kinome and phosphatome suggests a central role
of MPK-1 in modulating muscle protein degradation in re-
sponse to phosphorylation events. This observation, like the
observation of both increased and decreased phosphoryla-
tion events being associated with increased autophagy, sug-
gests that perhaps a central integrator of multiple
favourable growth conditions exists. Our connectivity analysis
of the kinome and phosphatome with respect to protein deg-
radation suggests that LET-92 is a central node and that it ap-
pears to be a modulator of muscle protein degradation with
knockdown producing mpk-1-dependent autophagic degra-
dation. These results, coupled with the fact that ERK is known
to be expressed and active in human skeletal muscle,34 raise
the question of if Raf-MAPK is a central modulator of autoph-
agic degradation, with a significant number of kinases and
phosphatases providing modulatory signals for this central
pathway. This also raises the question of if Raf-MAPK is not
just a central player in controlling protein synthesis but also
of autophagy, perhaps acting to either modulate or comple-
ment a similar role of mTor. Thus, our results from C. elegans
open the door to further mechanistic studies of the regula-
tion of human muscle metabolism.

Potential implications for human health and
disease

We have identified phosphatases that are required for nor-
mal muscle health in a worm. Eighty of these phosphatases
have human counterparts and 53 are already known to be
expressed in human muscle. If they control human muscle
health like they do worm muscle health, then these phos-
phatases are important for normal muscle health and may
contribute to human muscle disease; translational work that
remains to be completed. This has several implications for
the clinic. First, these phosphatases, like the previously un-
covered kinases,20 are potential druggable targets for thera-
peutic intervention in muscle health. For example, as has
recently been reported for mouse muscle, stimulation of
protein kinase A results in increased proteasome-mediated
protein degradation, whereas treatment with protein phos-
phatase 1 decreases proteasome-mediated protein degrada-
tion.50 Thus, with further work, it is highly probable that
protein kinase and phosphatase inhibitors can be used to
modulate protein degradation levels in either direction,
work that will no doubt be accelerated by the cancer
field's push to identify effective protein kinase and
phosphatase inhibitors that are safe for human use.51,52

Inhibition/activation of kinases and phosphatases may also
prove useful in other respects. For example, the phospha-
tase PTPH1 is known to regulate p97,53 which has recently
been suggested to extract proteins from the highly orga-
nized, protein dense sarcomeres.54 Therefore, clinical modu-
lation of multiple molecular processes within human muscle
is likely to be achievable just by targeting these two classes
of druggable proteins. Second, drugs that are used to target
protein phosphatases or kinases in other diseases, for exam-
ple cancer, may produce myopathy as a side effect due to
the normal role of the phosphatase or kinase in muscle
health. For example, inhibition of the protein kinase MEK
produces rhabdomyolysis55 and is known to be important
for worm muscle health.14 Third, mutations in protein phos-
phatases or kinases may account for some rare as yet mo-
lecularly uncharacterized muscular dystrophies. For
example, mutations in the phosphatase myotubularin 1 are
known to cause X-linked myotubular myopathy56 and a mu-
tation in the phosphatase myotubularin-releated protein 14
has been shown to cause centronuclear myopathy.57 Fourth,
declines in expression of phosphatases or kinases with
age may contribute to the onset and/or progression of
sarcopenia. For example, myotubularin-releated protein 14
displays reduced expression with age in mice and its loss ac-
celerates sarcopenia.58 Lastly, alterations in expression of
phosphatases or kinases with activity may contribute to indi-
vidual differences in muscular adaptation to exercise. For
example, the kinase MARCKS and phosphatase PTEN display
increased expression following a programme of resistance
exercise training.59 Given that inactivity is one of the top
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non-communicable diseases in the world,60 this suggests a
substantive new avenue of research into combating the
negative muscular consequences of inactivity, the impact of
phosphatase or kinase modulators on muscular adaptation
to activity.
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