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Purpose: In spite of its enhanced efficacy and reduced side effects in clinical hepatocellular

carcinoma (HCC) therapy, the therapeutic efficacy of antitumor angiogenesis inhibitor

sorafenib (SFB) is still restricted due to short in vivo half-life and drug resistance. Here,

a novel SFB-loaded dendritic polymeric nanoparticle (NP-TPGS-SFB) was developed for

enhanced therapy of HCC.

Methods: NP-TPGS-SFB was fabricated by encapsulating SFB with biodegradable dendri-

tic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene

glycol 1000 succinate (PAM-PBLG-b-TPGS).

Results: NP-TPGS-SFB exhibited excellent stability and achieved acid-responsive release

of SFB. It also exhibited much higher cellular uptake efficiency in HepG2 human liver cells

than PEG-conjugated NP (NP-PEG-SFB). Furthermore, MTT assay confirmed that NP-

TPGS-SFB induced higher cytotoxicity than NP-PEG-SFB and free SFB, respectively.

Lastly, NP-TPGS-SFB significantly inhibited tumor growth in mice bearing HepG2 xeno-

grafts, with negligible side effects.

Conclusion: Our result suggests that NP-TPGS-SFB may be a novel approach for enhanced

therapy of HCC with promising potential.

Keywords: dendritic block copolymer, sorafenib, enhanced therapy, TPGS, hepatocellular

carcinoma

Introduction
Hepatocellular carcinoma (HCC), the third most lethal type of cancer worldwide,1

has been frequently diagnosed as a highly graded hemangioma.2 To combat this

disease, anti-angiogenic strategies have been put forward as a potential therapy for

HCC. Sorafenib (SFB), a multikinase inhibitor, is an angiogenesis inhibitor used to

treat advanced liver cancer, with the potential to greatly improve the survival rate of

liver cancer patients.3–5 However, there are still some problems with SFB, since it

has poor water solubility and a short half-life in vivo.6 Besides, liver cancer can

evade anti-angiogenic therapy and become resistant to SFB, causing a high recur-

rence rate.7–9 Therefore, new methods to solve these problems are urgently

required.

Biodegradable polymeric nanocarriers have been widely studied to improve the

solubility of hydrophobic drugs, prolong the half-life, and improve the targeted

enrichment efficiency of drugs to tumors through the enhanced permeation and

retention (EPR) effect.10–18 For example, the nanodrug Genexol®-PM, which has
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been on the market, is loaded with anti-tumor drug paclitaxel

using amphiphilic biodegradable block copolymer mPEG-

b-PDLLA.19 The nanodrug has been shown to enhance the

efficacy and reduce the side effects of paclitaxel in some

cancer cases, including breast cancer, non-small cell lung

cancer and ovarian cancer. However, as with most

PEGylated polymeric micelles self-assembled from block

copolymers, nanodrugs face several problems. First, poly-

meric micelles self-assembled from amphiphilic polymers

may disassociate rapidly because of the vast dilution after

being injected into the body, although they are very stable

above the critical micelle concentration (CMC) in vitro.20–22

Second, nanocarriers may be released prematurely during

circulation, reducing delivery efficiency, since their stability

also depends on the interaction between hydrophobic seg-

ments and drug. Currently, the interactions between many

chemotherapy drugs and polymers are weak, leading to

premature release during circulation and reduced delivery

efficiency.22,23 Finally, common PEG-based nanocarriers

can hardly overcome cancer drug resistance. Therefore, it

is of great value to develop new nanocarriers that can

improve the stability of the vector in vivo, effectively load

drugs and overcome the cancer drug resistance.

Owing to their covalent nature, multi-arm dendritic block

copolymers boost excellent structural stability in vivo, draw-

ing a lot of attention.24–27 As the first commercialized den-

drimer family, poly(amidoamine) (PAMAM) dendrimers

with tens of terminal functional groups have been widely

used as macroinitiators to synthesize dendritic polymers.28–31

For example, the biocompatible and biodegradable

PAMAM-based poly(γ-benzyl-L-glutamate) (PBLG) was

synthesized from directly initiating the ring-opening poly-

merization of γ-benzyl-L-glutamate-N-carboxyanhydride

(BLG-NCA) monomers by amino-terminated PAMAM.

Recently reports show that aryl group-containing drugs like

paclitaxel are efficiently loaded by nanoparticles fabricated

from aromatic groups-containing polymers via noncovalent

pi-pi stacking interaction, with significantly improved stabi-

lity in vivo.32–34 Another unique advantage of PBLG is that it

can be hydrolyzed into hydrophilic PGlu in acid environment

such as endosome and lysosome of cancer cells, leading to

accelerated drug release. Thus, we anticipated that PAMAM-

PBLG-based SFB-loaded nanoparticles would be quite

stable and avert the premature drug release during circula-

tion, and achieve accelerated drug release after cellular

uptake.

The soluble vitamin E derivative D-α-tocopheryl poly-
ethylene glycol 1000 succinate (TPGS), esterified from the

acid group of vitamin E succinate and polyethylene glycol

(PEG) 1000, has been listed as a safe pharmaceutical exci-

pient by the Food and Drug Administration (FDA).35–37 It is

well known that TPGS could improve the cellular uptake,38

and prevent P-glycoprotein from circumventing drug resis-

tance by interfering with the structure and function of

mitochondria.39 Mei group has reported that surface modifi-

cation of PLGA nanoparticles (NPs) with TPGS prolonged

the half-life of drugs in vivo and facilitated their cellular

uptake.27 Thus, we confirmed that through conjugation of

TPGS with PAMAM-PBLG-based nanoparticles rather than

PEG, the stability of the nanoparticles is maintained, cellular

drug uptake is improved and drug resistance is overcome. As

far as we know, no such TPGS-conjugated PAMAM-PBLG

was yet reported to prepare SFB-loaded nanoparticles.

Thus, to prepare SFB-loaded nanoparticle, we designed

a novel design of TPGS-containing dendritic polymeric

PAM-PBLG-b-TPGS. This nanoparticle, referred as NP-

TPGS-SFB, consisted of dendritic molecule PAMAM-G3,

aryl-containing segment PBLG and a TPGS polymer

(Figure 1). We then tested the physicochemical properties

such as size, zeta potential, drug loading content, encapsu-

lation efficiency, in vitro stability and drug release beha-

viors of NP-TPGS-SFB. Furthermore, the cellular uptake

and in vitro cytotoxicity of NP-TPGS-SFB were evaluated

in the human liver cancer cells HepG2. Finally, the

SFB

+
TPGS

PBLG

PAM

PAM-PBLG-b-TPGS NP-TPGS-SFB

Figure 1 Schematic representation of the SFB-loaded polymeric nanoparticles (NP-TPGS-SFB) fabricated from SFB and PAM-PBLG-b-TPGS by nanoprecipitation method.
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antitumor efficacy and safety of NP-TPGS-SFB in mice

bearing HepG2-derived tumor xenografts were evaluated.

Materials and Methods
Materials
N-carboxyanhydride of γ-benzyl-L-glutamate (BLG-NCA)

was purchased from J&K Chemical Ltd. (Shanghai, China).

PAMAM-G3-NH2 (PAM-NH2, Mw = 6900 Da) was pur-

chased from Aladdin Industrial (Shanghai, China).

N-Hydroxysuccinimide terminated PEG2k (PEG2k-NHS)

and N-Hydroxysuccinimide-modified D-α-tocopheryl poly-

ethylene glycol 1000 succinate (TPGS-NHS) were pur-

chased from Ponsure Biotechnology (Shanghai, China).

Sorafenib was obtained from Cayman Chemical Ltd.

HepG2 human liver cancer cell and LO2 normal liver cell

line were purchased from American Type Culture Collection

(ATCC). Fetal bovine serum (FBS) was purchased from

Lonza Walkersville. The Dulbecco’s Modified Eagle

Medium (DMEM) growth medium and penicillin/streptomy-

cin were both purchased from Invitrogen. Balb/C nude mice

(5–6 weeks old), purchased from Guangdong Province

Medical Animal Center, were maintained in an SPF (specific

pathogen-free) class experimental animal room.

Synthesis of Dendritic Polymer

PAM-PBLG-b-TPGS
PAM-PBLG-NH2 was synthesized through the ring-

opening polymerization according to references.29 Six

grams of BLG-NCA and 0.54 g of the dendrimer PAM-

NH2 were dissolved in CH2Cl2 respectively and then

mixed for polymerization (Figure 2) at 35°C for 2 d. The

repeat units of PBLG in PAM-PBLG-NH2 were quantified

by 1H-NMR spectroscopy using CDCl3 as solvent. Next,

16 N TPGS-NHS was reacted with PAM-PBLG-NH2 in

CHCl3 at 25°C for 2 h to obtain the dendritic polymer

PAM-PBLG-b-TPGS. PAM-PBLG-b-PEG was synthe-

sized by a similar method as the control. The critical

micelle concentration (CMC) of the polymers PAM-

PBLG-b-TPGS and PAM-PBLG-b-PEG was measured

according to a previously reported method using pyrene

as fluorescent probe.32

Fabrication of SFB-Loaded Polymeric

Nanoparticles
The drug-loaded polymeric nanoparticles NP-TPGS-SFB

were fabricated as follows. Polymer and pre-weighed

amount of SFB powder were both dissolved 10 mL DMF

Figure 2 Synthesis of PAM-PBLG-b-TPGS.
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and then added dropwise into 100 mL DI water under

stirring. After that free SFB and DMF solvent in the

mixture were dialyzed away through a dialysis bag in DI

water (MWCO: 5 kDa). Lastly, the purified nanoparticle

solution was lyophilized and preserved for further use.

NP-PEG-SFB and coumarin 6-loaded NPs were both fab-

ricated similarly and all the lyophilized NPs were redis-

persed in PBS before use.

Size, Zeta Potential and Morphology
The size and zeta potential of NPs were determined using

a Malvern Mastersizer 2000 and the tests were finished

triplicate for calculating the average values. Scanning

electron microscopic (SEM) images were obtained on

a field-emission SEM.

Drug Loading Content and Encapsulation

Efficiency
The drug loading content (LC) and drug encapsulation

efficiency (EE) of the SFB-loaded NPs were both quanti-

fied in line with the previous work.40 After centrifuging at

15,000 rpm for 15 min, the supernatant of SFB-loaded

NPs solution was collected and measured by UV–Vis

spectrophotometer at 270 nm. Then, the background of

NPs was subtracted by testing the supernatant of non-

drug-loaded NPs. The test was performed three times,

followed by calculating the LC and EE according to:

LC %ð Þ ¼ Weight of SFB in the NPs

Weight of the NPs
� 100

EE %ð Þ ¼ Weight of SFB in the NPs

Weight of feeding SFB
� 100

In vitro Stability and Drug Release Study
The stability of NP-TPGS-SFB in PBS and DMEM + 10%

FBS over 7 days was tested by DLS. The SFB release rate

from it under different pH conditions (pH 7.4 and 5.0) was

studied through dialysis. Five milliliters of NPs solution

(1 mg/mL) was added in a dialysis bag (MWCO: 5 kDa)

and then immersed in a tube containing 50 mL of cell

culture media at pH 7.4 and 5.0, respectively. The tube

was vibrated in an orbital shaker water bath at 200 rpm

and 37°C. At defined periods 1 mL of the solution outside

the dialysis bag was fetched to determine the concentra-

tions of SFB by UV–Vis spectrophotometer at 270 nm.

Then, the cumulative release of SFB from NPs at each

time point was calculated.

Cellular Uptake Study of NPs
The cellular uptake behaviors of coumarin-6 loaded NPs

were studied by confocal laser scanning microscopy

(CLSM). Firstly, HepG2 cells (1×105 cells/well) were seeded

in 12-well culture plates and cultured in serum-containing

DMEMmedium overnight. Next, after washed one time with

PBS, the cells were added with coumarin 6-loaded NP-PEG

and NP-TPGS (coumarin 6 concentration as 2 μg/mL) and

incubated for another 3 h. Then, the cells were washed three

times with cold PBS and fixed by methanol for 20 min. After

that, the cells were observed by CLSM (Olympus Fluoview

FV-1000, Japan). Coumarin 6-loaded NPs and the DAPI-

stained cell nuclei were, respectively, observed through

green channel (coumarin 6) at 485 nm excitation and blue

channel (DAPI) at 430 nm excitation.

For quantitative analysis, HepG2 cells (1×105 cells/well)

were seeded in 12-well culture plates and cultured in serum-

containing DMEM medium overnight. The cells were

balanced with Hank’s buffered salt solution (HBSS) at 37°

C for 1 h. Then, coumarin 6-loaded NPs at concentrations of

100, 200 and 500 μg/mL, respectively, were added into the

cells and incubated for 3 h. After that, the cells were washed

three times with cold PBS followed by putting 50 mL of

0.5% Triton X-100 in 0.2 N sodium hydroxide into each

sample well to lyse the cells. Cellular uptake efficiency,

expressed as fluorescence intensity (%), was calculated as

the percentage of fluorescence in the cells versus the amount

of fluorescence present in the feed medium.

In vitro Cytotoxicity of SFB-Loaded

Polymeric Nanoparticles
The 50% growth inhibitory concentrations (IC50) of SFB, NP-

PEG-SFB and NP-TPGS-SFB on the HepG2 cells were deter-

mined through MTT assay. HepG2 cells (1×104 cells/well)

were seeded in 96-well culture plates and incubated for 24

h. Then, SFB, NP-PEG-SFB and NP-TPGS-SFBwith equiva-

lent drug concentrations ranging from 0.1 to 12.5 μg/mL or

Drug-free NP-TPGS with the same polymer concentrations

were added into the wells and incubated for another 24 and 48

h, respectively. The cell viability was quantified by formazan

absorbance at 490 nm using a Bio-Rad 680 microplate reader.

The viability study of different drug formulations on LO2 cells

was carried out as controls in similar methods.

Hemolysis Assay
In the hemolysis assay, red blood cells (RBCs) were sepa-

rated from plasma by centrifugation at 1600 rpm for
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5 min, washed with saline, and resuspended at a 2% (v/v)

cell concentration. Then, SFB-loaded NPs (5–50 μg/mL)

were added into the RBC suspension and the samples were

incubated at 37°C for 3 h. Deionized water was added as

a positive control, and saline solution was added for the

negative control group. Then, the mixtures were centri-

fuged at 1600 rpm for 5 mins and the supernatants were

collected. After incubating for 30 min at room temperature

to allow haemoglobin oxidation, oxyhemoglobin absor-

bance was measured by a UV–Visible spectrophotometer

at 576 nm as an indication of RBC lysis. The hemolysis

ratio (%) was calculated using the following formula:

hemolysis %ð Þ ¼ A sampleð Þ � A negativeð Þ
A positiveð Þ � A sampleð Þ � 100

here, A(sample), A(negative), and A(positive) are the

absorbances of the samples, negative control, and positive

control, respectively.

In vivo Antitumor Efficacy
The protocols for animal assays were approved by the

Administrative Committee on Animal Research in

Shenzhen Municipal People’s Hospital. All of in vivo

experiments complied with the guidelines of the institu-

tional animal ethics committee. The mice were divided

into five groups randomly (n = 5) followed by establishing

the HepG2 xenograft model by the subcutaneous injection

of 5*106 HepG2 cells (100 μL) into the right flank of each

mouse. The tumors were all allowed to grow to 50 mm3 in

volume before treatment. Then, the mice were injected

intravenously with Saline, SFB, NP-PEG-SFB and NP-

TPGS-SFB (5 mg/kg as the dose of SFB) via the tail

vein three times on days 0, 4 and 8. After 14 days of

treatment, mice were sacrificed by cervical decapitation.

To evaluate the antitumor activity, tumor volume (V) was

calculated using the following equation:

V ¼ a�b2=2

where a and b are the length and width of the tumor,

respectively, which were measured by a caliper. The

mice were weighted simultaneously to evaluate the sys-

temic toxicity.

Histopathology Evaluation
The histopathology of tumor and major organs was eval-

uated by optical microscopy following treatments with

hematoxylin and eosin (H&E). On the 14th day, after the

mice were sacrificed, their tumor, heart, lung, liver, spleen

and kidney were collected, dehydrated in PBS with 10%

formaldehyde overnight. Next, paraffin was used for the

tissues embedding followed by cutting them into 5 μm
slices. Then, the slices of tissues were observed by optical

microscopy and the photographs were taken.

Statistical Analysis
All the experiments were finished at least triplicate. Unless

noted otherwise, the Data are stated as mean ± SD and

analyzed for significance using Student’s t-test.

Statistically significant was indicated when probability

value (P) <0.05. *P < 0.05; **P < 0.01; ***P < 0.001.

Results and Discussion
Synthesis and Characterization of

Dendritic Block Copolymer
The synthesis of dendritic block copolymers PAM-PBLG

-b-TPGS and PAM-PBLG-b-PEG was performed accord-

ing to previous work (Figure 2).29 The chemical structure

of copolymer can be verified by 1H-NMR. Figure 3A

shows the 1H-NMR spectrum of PAM-PBLG-NH2,

where a is the characteristic peak of PAMAM methylene,

b, c, d and e are the characteristic peaks of -CHCH2CH2

C(O)-, -CHCH2CH2C(O)-, -C(O)CH(CH2)NH- and C6H5

CH2- in PBLG, respectively. By calculating the peak area

of a, c, d and e, it can be concluded that the unit number of

BLG in each dendritic molecule is 240. As PAMAM-G3

contains 32 primary amines, the average PBLG segment

repeat unit initiated by each primary amine is 7.5. Peak

g in Figure 3B corresponds to -CH2CH2O- of TPGS,

which indicating the successful synthesis of PAM-PBLG

-b-TPGS. 12 TPGS was calculated to be conjugated on

each dendritic molecule. According to previous reported

method,32 CMC data of PAM-PBLG-b-TPGS and PAM-

PBLG-b-PEG were measured as 0.56 and 0.85 μg/mL,

respectively. These CMCs were substantially lower than

conventional block copolymers,33 which is likely attribu-

ted to dendritic structure of polymers, strong π-π stacking

and hydrophobic interactions between the polymer chains.

Characterization of SFB-Loaded

Nanoparticles (NPs)
After PAM-PBLG-b-TPGS and PAM-PBLG-b-PEG were

obtained, we used them to prepare the SFB-loaded and drug-

free polymeric nanoparticles. DLS results showed that NP-

TPGS-SFB was narrow and monodispersed and the average

hydrodynamic diameter was about 118.3 nm (Figure 4A),
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similar to the surface PEG-modified NP-PEG-SFB

(Table 1). The size of both NPs is slightly larger than drug-

free NPs. SEM results showed that NP-TPGS-SFB, NP-

PEG-SFB and drug-free NP-TPGS were all uniformly

distributed spherical NPs with particle size around 100 nm

(Figure 4B, C and D), consistent with DLS results. NP-

TPGS-SFB and NP-PEG-SFB had 15.5% and 13.8% LC

and more than 80% EE, respectively, indicating that

BA

Figure 3 1H-NMR spectra of PAM-PBLG-NH2 (A) and PAM-PBLG-b-TPGS (B) in CDCl3.

BA

DC

500 nm 500 nm

Figure 4 Characterization of NP-TPGS-SFB. (A) DLS size distribution of NP-TPGS-SFB. SEM images of NP-TPGS-SFB (B), NP-PEG-SFB (C) and drug-free NP-TPGS (D).
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dendritic polymers based on PBLG could efficiently load

SFB. These results were consistent with other previous

reports.33

In vitro Stability and Drug Release Profiles
After the preparation of NP-TPGS-SFB, we tested its stability

in vitro. As shown in Figure 5A, the particle size of NP-TPGS-

SFB in PBS remained stable for 7 consecutive days, which

was in line with our hypothesis. We then tested the drug

release of NP-TPGS-SFB in vitro. We compared the release

ofNP-TPGS-SFB in cell culturemedium at pH7.4 and 5.0. As

shown in Figure 5B, only a small amount of SFBwas released

at pH 7.4, with 20.3% after 12 days. This is consistent with the

results reported in the literature and indicates that NP-TPGS-

SFB is stable under physiological conditions, effectively

retaining SFB.33 However, SFB was released faster from the

NP at pH 5.0 and more than 47% after 12 days. This is due to

the gradual hydrolysis of PBLG under acidic conditions, thus

accelerating the release of SFB.41 These results indicate that,

under physiological conditions, NP-TPGS-SFB impairs the

premature release of SFB and promotes the fast and efficient

release of SFB in cancer cells.

Cellular Uptake of Coumarin 6-Loaded

NPs
To investigate whether NP-TPGS-SFB can be uptaken by

cancer cells, we used CLSM to observe the cellular uptake

of coumarin 6-loaded NP-PEG and NP-TPGS in HepG2 cells

after 3 hrs of culture. As shown in Figure 6, coumarin 6-loaded

NP-TPGS cultured cells showed clear coumarin 6 fluores-

cence, indicating that NP-TPGS was efficiently ingested by

HepG2 cells. In contrast, cells cultured with coumarin

6-loaded NP-PEG showed significantly lower fluorescence.

These results demonstrated that TPGS-modified on the NP

surface significantly increased the uptake of NPs by cancer

cells.

Furthermore, we quantified the cellular uptake efficiency

of coumarin 6-loaded NP-TPGS. As shown in Figure 7,

after 3 hrs, the uptake level of NP-TPGS and NP-PEG was

75.5% and 42.7%, respectively, for a concentration of NPs

of 100 μg/mL. This result shows that the uptake level of

NP-TPGS is significantly higher than that of NP-PEG.

However, as the NP concentration increased, the uptake

efficiency of TPGS-modified NP decreased. This may be

due to the cellular limit for the uptake of NPs. While the

Table 1 Characterization of SFB-Loaded Polymeric Nanoparticles

NPs Size (nm) PDI ZP (mV) LC (%) EE (%)

NP-PEG-SFB 121.2 ± 5.3 0.13 −4.5 ± 0.5 13.8 82.1

NP-TPGS-SFB 118.3 ± 5.1 0.15 −3.3 ± 0.4 15.5 86.5

NP-PEG 110.3 ± 4.7 0.11 −6.2 ± 0.4 / /

NP-TPGS 109.7 ± 4.1 0.13 −5.6 ± 0.3 / /

Abbreviations: ZP, zeta potential; PDI, polydispersity index; LC, loading content; EE, encapsulation efficiency.

BA

Figure 5 (A) Size changes of NP-TPGS-SFB incubated in PBS and DMEM + 10% FBS over 7 d. (B) Cumulative SFB release from NP-TPGS-SFB in different pH conditions

over 12 days.
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uptake of NPs in high concentrations may be almost the

same as that in low concentration, the uptake efficiency in

high NP concentrations is reduced. Nevertheless, these

results confirm that conjugation of TPGS can remarkably

increase the uptake of NP by cells.

In vitro Cytotoxicity of SFB-Loaded NPs
MTT assay was used to test the cytotoxicity of NP-TPGS

-SFB in HepG2 cancer cells. The same concentrations of

free SFB and NP-PEG-SFB and non-drug loaded NP-

TPGS were used as controls. As shown in Figure 8A,

after 24 hrs of cell culture, SFB induced significantly

higher cell death than NP-PEG-SFB. However, NP-

TPGS-SFB was significantly more lethal than SFB and

NP-PEG-SFB. The IC50 values of SFB, NP-PEG-SFB

and NP-TPGS-SFB were 6.8, 9.5 and 0.75 μg/mL,

respectively (Table 2). After 48 hrs of culture, the cell-

killing effect of NP-TPGS-SFB was significantly

increased (Figure 8B), with a IC50 of 0.26 μg/mL,

which was much lower than the IC50 of SFB and NP-

PEG-SFB. This suggests that conjugation of TPGS can

significantly enhance cytotoxicity, which is consistent

with the results of cellular uptake. It also indicates that

the NP can release enough SFB after entering the cell. In

addition, the results of toxicity experiments showed that

non-drug-loaded NPs had no effect on cell viability, indi-

cating biosafety and potential for practical applications.

Conversely, all drug formulations showed much weaker

cytotoxicity in the LO2 normal liver cells than HepG2

cells, indicating their specific antitumor efficacy (Figure

8C). This might be attributed to the specificity of SFB to

liver cancer cells as well as less cellular uptake of normal

cells than cancer cells.42

Hemolysis Assay
The hemolysis assay was conducted to address the blood

biocompatibility of NP-TPGS-SFB. As shown in Figure 9,

N
P

-
T

P
G

S

Coumarin-6 MergeDAPI

N
P

-
P

E
G

Figure 6 CLSM images of HepG2 cells after 3 h incubation with coumarin 6-loaded NPs at 37°C.

Figure 7 Cellular uptake efficiency of coumarin 6-loaded NPs by HepG2 cells

under different NPs concentration over 3 h.
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the hemolytic results of SFB-loaded NPs including

NP-TPGS-SFB and NP-TPGS-SFB were both low and

negligible (<5%), within a SFB range of 5–50 μg/mL.

This may be due to the electrorepulsion between neutral

charge of the TPGS and PEG surface-modified NPs and

the negatively charged blood cells. Generally, a hemolysis

percentage of 5% is regarded as nontoxic and safe.43

These results indicated that SFB-NPs had good hemocom-

patibility for further biomedical applications.

In vivo Antitumor Efficacy
In light of the positive results obtained in the previous

experiments, we assessed the anticancer efficacy of NP-

TPGS-SFB in vivo. When the tumor volumes of HepG2

xenograft-bearing nude mice grew to 50 mm3, saline, SFB,

NP-PEG-SFB and NP-TPGS-SFB were injected three

times every 4 days. As shown in Figure 10, after treatment

with saline, SFB and NP-PEG-SFB, the tumor volumes of

mice increased to about 360, 228 and 181 mm3 for the 14

days after the initial injection. In contrast, treatment with

NP-TPGS-SFB inhibits tumor growth to a maximum of

87 mm3. This indicates that NP-TPGS-SFB can inhibit

tumor growth, and its effect significantly higher that of

SFB and NP-PEG-SFB, which is consistent with the pre-

vious cytotoxicity results. Moreover, NP-TPGS-SFB trea-

ted mice showed no significant body weight changes

compared to the other three control groups (Figure 8B),

suggesting that the NPs were not significantly toxic.

In order to study the tumor and tissue damage after

treatment, tumor and major organs (heart, lung, liver,

spleen and kidney) were collected after the mice were

sacrificed. Tissue sections were stained with H&E and

analyzed by optical microscopy. In H&E, normal tissues

display a indigo blue-dyed nuclei by hematoxylin pur-

ple, and pink-dyed cytoplasm and extracellular matrix

by eosin. The damaged cells had no obvious cellular

morphology. As shown in Figure 11, all tumor tissues in

SFB group were seriously damaged, while that in the

two SFB-loaded NPs groups were even more damaged,

with no obvious cell morphology observed. These

results coincided with tumor inhibition results in vivo.

In addition, the H&E results of major organs demon-

strated that there were no obvious side effects of SFB-

loaded NP administration on mice, implying the pro-

spect of practical applications.

A B C
24 h 48 h 48 h

HepG2 HepG2 Lo2

Figure 8 Viability of HepG2 and LO2 cells cultured with the SFB, NP-PEG-SFB and NP-TPGS-SFB at the same SFB dose and that of the drug-free NP-TPGS with the same

polymer concentrations: (A) 24 h and (B) 48 h for HepG2 cells and (C) 48 h for LO2 cells.

Table 2 IC50 Values of SFB, NP-PEG-SFB and NP-TPGS-SFB on

HepG2 Cells Following 24 and 48 h Incubation, Respectively

Time (h) IC50 (μg/mL)

SFB NP-PEG-SFB NP-TPGS-SFB

24 6.8 ± 1.4 9.5 ± 0.73 0.75 ± 0.13

48 4.0 ± 0.52 1.9 ± 0.18 0.26 ± 0.05

Figure 9 In vitro hemolysis assay of SFB-loaded NPs.
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Conclusions
A novel SFB-loaded polymeric nanoparticle NP-TPGS-

SFB was successfully developed for enhanced therapy of

liver cancer. We demonstrated NP-TPGS-SFB holds

robust stability and achieves greater efficacy by releasing

the anticancer drug SFB in a pH-dependent manner. The

TPGS-conjugated NP also exhibited much higher cellular

uptake than PEG-conjugated NP, thus causing much

greater cytotoxicity than NP-PEG-SFB and free SFB.

In vivo results confirmed that NP-TPGS-SFB significantly

inhibits tumor growth without obvious side effects.

Therefore, this polymeric nanoparticle shows promising

potential as a novel platform for enhanced liver therapy.
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