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ABSTRACT
The antibody drug field has continually sought improvements to methods for candidate discovery and 
engineering. Historically, most such methods have been laboratory-based, but informatics methods have 
recently started to make an impact. Deep learning, a subfield of machine learning, is rapidly gaining 
prominence in the biomedical research. Recent advances in microfluidics technologies and next- 
generation sequencing have not only revolutionized therapeutic antibody discovery, but also contributed 
to a vast amount of antibody repertoire sequencing data, providing opportunities for deep learning-based 
applications. Previously, we used microfluidics, yeast display, and deep sequencing to generate a panel of 
binder and non-binder antibody sequences to the cancer immunotherapy targets PD-1 and CTLA-4. Here 
we encoded the antibody light and heavy chain complementarity-determining regions (CDR3s) into 
antibody images, then built and trained convolutional neural network models to classify binders and non- 
binders. To improve model interpretability, we performed in silico mutagenesis to identify CDR3 residues 
that were important for binder classification. We further built generative deep learning models using 
generative adversarial network models to produce synthetic antibodies against PD-1 and CTLA-4. Our 
models generated variable length CDR3 sequences that resemble real sequences. Overall, our study 
demonstrates that deep learning methods can be leveraged to mine and learn patterns in antibody 
sequences, offering insights into antibody engineering, optimization, and discovery.
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Introduction

Machine learning is a method of data analysis that allows 
“machines” (i.e., computers) to discover, learn, and extract pat-
terns from data and make predictions. Deep learning, a subfield 
of machine learning that uses multiple “layers” (i.e., a type of 
algorithmic building block) to progressively extract information 
from complex data, has shown impressive results across a variety 
of application domains, such as computer vision and natural 
language processing. In recent years, the biomedical and geno-
mics fields have increasingly adopted machine learning techni-
ques in various applications, such as predicting transcriptional 
enhancers,1–3 splicing,4 and DNA- and RNA-binding 
proteins.5,6 Machine and deep learning have also been applied 
to the antibody field, particularly as massively parallel sequen-
cing technologies contributed to a vast amount of antibody 
repertoire sequencing data.7–9 For example, machine learning 
approaches have used antibody sequencing data to identify 
antibodies against severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2)7 and the dengue virus,8 differentiate 
antibodies arising from healthy or tumor tissues,9 and predict 
antibody-antigen interactions.10–14 Other studies have used 
machine learning to predict antibody developability15,16 and 
improve antibody humanization.17 Along with advances in gen-
eral protein structure prediction using tools such as AlphaFold18 

and RoseTTAFold,19 deep learning approaches have also been 
applied to predict antibody structures.20–22 Beyond predictive 
applications, generative machine learning methods have been 
used to design antibody sequences.23–26

A major challenge for both predictive and generative 
machine learning methods is the scarcity of ground-truth anti-
body-antigen binding datasets. To address this challenge, 
machine learning studies depended on training datasets 
derived from phage display panning of synthetic antibody 
libraries,23,24 in silico generated antibody-antigen binding 
structures,26,27 or public databases such as Structural 
Antibody Database (SAbDab)28 and the international 
ImMunoGeneTics information system (IMGT).29 Deep muta-
tional scanning has also been used to generate training datasets 
for sequence-based machine learning tasks. For example, 
Mason et al. generated mutant libraries of the anti-HER2 
therapeutic antibody trastuzumab, then used mammalian cell 
display and fluorescence-activated cell sorting (FACS) to 
screen for antigen-specific variants. These variants were 
sequenced and the sequencing data were used to train deep 
learning models to predict antigen-specific antibodies among 
a larger computational mutant library.30 Deep mutational 
scanning has also been applied to generate antigen libraries. 
Taft et al. generated SARS-CoV-2 receptor-binding domain 
(RBD) mutagenesis libraries, then used FACS to screen for 
binding to ACE2 or anti-RBD antibodies. Sequencing data of 
both binder and non-binder RBD variants were used to train 
deep learning models to predict the impact of RBD mutations 
on ACE2 binding and antibody escape.31 These studies demon-
strate that deep learning approaches are well suited to inter-
rogate the massive sequence space of mutagenesis libraries. 
However, such mutagenesis approaches leverage antibody or 
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antigen sequences that shared a common parental sequence, 
i.e., the sequences were not highly diverse. Using highly diverse 
antibody training sets is a distinct computational challenge 
from using lower sequence diversity datasets (for example, 
consider the difference between analyzing images of cats versus 
all different kinds of mammals).

Previously, we generated hundreds of highly diverse binder 
and non-binder antibody sequences against the immunother-
apy targets cytotoxic T lymphocyte-associated antigen 4 
(CTLA-4) and programmed cell death protein 1 (PD-1).32 

Here, we used these training data to test whether deep learning 
models could be used to predict antibody binders versus non- 
binders, and we further built generative deep learning models 
to generate synthetic antibody sequences.

Results

Generating binder and non-binder antibody sequences

Previously, B cells from CTLA-4 or PD-1 immunized mice were 
isolated and encapsulated into microfluidics droplets for lysis, 
followed by overlap extension-reverse transcriptase-polymerase 
chain reaction (OE-RT-PCR), to generate libraries of natively 
paired single-chain variable fragments (scFv).32 The scFv 
libraries were expressed in a yeast surface display system and 
multiple rounds of FACS were performed using the respective 
antigens. The scFv libraries were deep sequenced before and after 
FACS enrichment. Both pre- and post- libraries had a diverse 
range of V and J gene identities (Figure S1).32 We defined binders 
as scFv sequences that were ≥ 0.01% of the sequencing reads in 
a post-sort library and were enriched ≥ 1.8 fold when compared 
to its respective pre-sort library. We defined non-binders as 
sequences that were ≥ 0.01% of the sequencing reads in a pre- 
sort library, but were not enriched following FACS (post/pre fold 
change < 1) (Figure 1a). This resulted in 6,003 non-binder and 
1,345 binder sequences for CTLA-4, and 6,052 non-binder and 
1,719 binder sequences for PD-1.

Building and training deep learning models to classify 
binders

To evaluate if antibody sequences can predict antigen binding, 
we set out to develop and train deep learning models to classify 
binder and non-binder sequences for CTLA-4 and PD-1. For 
each target, we randomly split our dataset into a training set 
(80%) and a testing set (20%), maintaining the same binder to 
non-binder ratio in both sets (Figure 1b). As the complemen-
tarity-determining region 3 (CDR3) regions of an antibody are 
the main determinants of binding specificity, we used the con-
catenated CDR3 amino acid sequences for light and heavy 
chains (CDR3K + CDR3H) as input data for the models. To 
predict binders and non-binders, we used a convolutional 
neural network (CNN), a deep learning framework that has 
proven highly effective in image recognition.33 First, we 
encoded the CDR3K + CDR3H sequences into two- 
dimensional numerical matrices (“images”) using the 
BLOSUM matrix,34 which computed the substitution scores of 
each CDR3 residue (rows) with the 20 amino acids (columns). 
We padded variable length CDR3s with “gaps” to ensure that all 

input matrices have consistent dimensions, a prerequisite for 
CNN input data. This resulted in CDR3 images of size 36 × 22 
data points (Figure 1c). These CDR3 images were passed 
through a CNN model with three convolution layers, which 
progressively detect relevant features in the images. The output 
of the final convolution layer was flattened and fed into a dense 
neural network layer, which outputs a final prediction of 
whether a given image belonged to a binder or non-binder 
antibody (Figure 1d). We tuned the models by performing 
a randomized search across various hyperparameters, including 
number of filters, kernel size, dropout rate, and dense layer 
nodes, selecting the best hyperparameter combination for the 
final model architecture (Table S1). We trained both CTLA-4 
and PD-1 models for 30 epochs (i.e., complete runs through the 
CNN algorithm), using the respective training datasets.

Evaluating deep learning models

Next, we evaluated the performance of the fully trained CNN 
models in predicting binders using the reserved 20% testing 
dataset. The CTLA-4 and PD-1 models achieved prediction 
accuracy of 91.2% and 92.6%, and Matthews correlation coeffi-
cient (MCC) of 0.68 and 0.78, respectively (Figure 2a, b). Actual 
binders predicted to be binders (true positives) tended to have 
higher predicted binder probabilities (median = 0.89 for CTLA-4, 
0.93 for PD-1) than non-binders classified as binders (false 
positives; median = 0.67 for CTLA-4, 0.63 for PD-1). Similarly, 
actual non-binders predicted to be non-binders (true negatives) 
had lower predicted binder probabilities (median = 0.08 for 
CTLA-4, 0.12 for PD-1) than binders classified as non-binders 
(false negatives; median = 0.22 for CTLA-4, 0.23 for PD-1) 
(Figure 2c, d). The areas under the curve (AUC) of the receiver 
operating characteristic (ROC) curves for the CTLA-4 and PD-1 
models were 0.90 and 0.94, respectively. As a negative control, we 
trained the neural networks using datasets containing shuffled 
binder and non-binder class labels; these models lost the ability 
to predict binders, as indicated by an AUC of 0.5 (Figure 2e, f).

To understand how the size of the training datasets influ-
enced model performance, we performed downsampling analy-
sis. We trained the CNN models with either the full training 
datasets (5,879 CTLA-4 sequences, 6,218 PD-1 sequences) or 
random sampling of 3,000, 1,000, 500, or 100 sequences. Both 
CTLA-4 and PD-1 models performed worse with decreasing 
training sample size, and completely lost predictive ability when 
trained with only 100 sequences (MCC = 0) (Figure S2). This 
highlights the dependence of model performance on sample size 
and suggests that a deeper dataset might further improve our 
models’ ability to accurately predict binders and non-binders.

Deep learning model interpretability and in silico 
mutagenesis

Deep learning models are often described as black-box 
models because the methods used to derive a certain pre-
diction can be unclear, which can limit their practical 
utility. For example, to use our CNN models’ results for 
antibody engineering campaigns such as affinity matura-
tion, we would need more specific insights regarding 
which amino acids are important or not important for 
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binding. To improve our CNN models’ interpretability, we 
generated sequence logos for the most representative binder 
sequences (predicted binder probability ≥ 0.95) (Figure 3a). 
These sequence logos provided a summary of the neural 
networks’ learned motifs and may inform relevant motifs 
for antigen-specific recognition (in the context of the train-
ing set). To understand which amino acids might be good 
or bad candidates for mutagenesis, we performed in silico 
mutagenesis analysis.5,35 For a given CDR3K + CDR3H 
sequence, we systematically mutated each amino acid resi-
due into one of the 20 amino acids, then measured how 
much each mutation affected predicted binder probability. 
For example, in silico mutagenesis of the anti-CTLA-4 

sequence QQYGSSPWT+AREGSWGRFDY shows that 
mutations of the residues K3 (Y), K8 (W), and H4 (G) 
most severely decreased predicted binder probability, indi-
cating that these residues were important for binder classi-
fication (Figure 3b). Interestingly, for another anti-CTLA-4 
sequence, LQNYNYPRT+ARKGQLGPFDY, mutations of 
the two CDR3K Y residues resulted in increased predicted 
binder probability (Figure 3c). This suggests that substitut-
ing these residues may improve the antibody’s binding 
affinity or specificity to CTLA-4.

Focusing on a CDR3K + CDR3H sequence may guide 
engineering of a single antibody or clonal cluster, but it does 
not provide more “universal” rules for antibody engineering 

Figure 1. Deep learning model for binder and non-binder classification. (a) Experimental workflow to generate antibody sequences. B cells from mice immunized with 
either CTLA-4 or PD-1 were encapsulated into microfluidics droplets to generate scFv libraries. The scFv libraries were expressed as yeast display, FACS sorted, and deep 
sequenced to generate binder and non-binder antibody sequences. (b) Number of CDR3K + CDR3H sequences in the training and testing datasets for CTLA-4 (left) and 
PD-1 (right). (c) A representative example of a CDR3K + CDR3H sequence encoded into a two-dimensional numerical matrix (image). The image displays BLOSUM 
substitution scores of the CDR3K + CDR3H residues (rows) when replaced with one of the 20 amino acids, gap, or X (columns). Both CDR3K and CDR3H were padded 
with “gaps” to ensure consistent dimension across images. (d) Convolutional neural network (CNN) model architecture for classifying binder and non-binder sequences. 
Two identical CNN models were built for PD-1 and CTLA-4 sequences, and they were trained separately.
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given a training set. To develop more universal rules based on 
residue position, for the most common anti-CTLA-4 sequence 
length (9 CDR3K residues + 11 CDR3H residues), we plotted 
average change in binder probability upon mutations for all 
sequences (n = 108) to visualize positional differences across 
sequences. This mutation sensitivity map reveals that different 
residue positions were important for binder classification for 
different sequences (Figure 3d). When comparing CTLA-4 and 
PD-1, we noticed that CTLA-4 binder prediction was sensitive 
to changes in both CDR3K and CDR3H residues, while PD-1 
binder prediction was often sensitive to changes in CDR3H 
residues alone (Figures 3d S3, and S4, S5). This suggests that 
both CDR3K and CDR3H were important for CTLA-4 antigen 
recognition, whereas CDR3H predominantly determined 
binding specificity to the PD-1 antigen. Interestingly, CDR3 
positions with low mutability tended to have distinct amino 
acid motifs present only in the binder sequences, suggesting 
that the mutagenesis analysis had identified important residues 
characteristic of binders (Figures S4, S5).

Overall, the mutation sensitivity analysis provided insights 
into residues that were important for not only the neural net-
works’ binder classification, but also antigen binding specifi-
city. This highlights that our CNN models are useful beyond 
binder/non-binder classification alone; instead, information 
learned from such models may one day be used to guide anti-
body engineering and optimization.

Generating synthetic antibodies using generative deep 
learning

Next, we evaluated if synthetic CTLA-4 and PD-1 antibody 
sequences could be generated using generative deep learn-
ing approaches. Such approaches could be used to guide 
laboratory-based engineering of novel antibody sequences 
with beneficial characteristics. One complication to this 
effort was that the deep learning approach could generate 
nonfunctional, chimeric sequences consisting of multiple 
V gene identities. Therefore, we first visualized the diversity 
of the antibody repertoires by computing the number of 
amino acid differences between each pairwise alignment of 
heavy or light chain sequences, for both CTLA-4 and PD-1. 
We connected sequences with ≤ 6 amino acid differences to 
generate networks of closely related sequences. This 
revealed that Ig sequences generally clustered by their 
germline V gene identity (Figures S6, S7). Then, we set 
out to build individual generative models for different 
V genes. To ensure that we had enough sequences for 
training the generative models, we focused on building 
models for V genes with more than 30 sequences and 
trained heavy and light chain models separately. 
Therefore, we set out to build 8 CTLA-4 models (IGHV3- 
33*01, IGHV1-18*04, IGHV3-20*01, IGHV4-39*01, 
IGKV3-20*01, IGKV1D-39*01, IGKV1-17*01, IGKV1- 

Figure 2. CNN model performance on the testing datasets. (a) Confusion matrix showing the number of CTLA-4 binder and non-binder sequences, as predicted by the 
CNN model or as measured by FACS. (b) Confusion matrix for the PD-1 sequences. (c) Density plot showing the distribution of predicted binder probability for the CTLA- 
4 sequences. The color represents the four different types of predictions: false negative (FN), false positive (FP), true negative (TN), true positive (TP). (d) Density plot 
showing the distribution of predicted binder probability for the PD-1 sequences. (e) Receiver operating characteristic (ROC) curve for the testing dataset (brown) for 
prediction of CTLA-4 binders. The green line represents the performance of the model trained with randomized binder/non-binder labels. AUC, area under the curve. (f) 
ROC curve for the CNN model predicting PD-1 binders.
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16*01) and 7 PD-1 models (IGHV4-4*07, IGHV3-33*03, 
IGHV1-18*04, IGKV1-17*01, IGKV1-6*02, IGKV3-15*01, 
IGKV1-9*01) (Figure S8).

We annotated CTLA-4 and PD-1 light and heavy chain 
sequences using the AHo antibody numbering scheme,36 

which is based on the structural alignments of the 3D struc-
tures of the antibody variable regions. The AHo numbering 
scheme was well suited for our application because it intro-
duced alignment gaps within, instead of after, the CDR3 
sequences. This ensured that amino acid residues that were 
more conserved, typically located at the beginning and the end 
of CDR3 sequences, were aligned across sequences. It also 
generated input CDR3 sequences of the same length, 

a prerequisite for our generative models. We encoded these 
fixed-length CDR3 sequences into 2D images using the 
BLOSUM matrix34 (Figure 4a).

We built 15 identical generative adversarial network (GAN) 
models to generate synthetic sequences for the respective 
V genes of the respective target (Figure 4b). Each GAN model 
consisted of two parts: the generator network and the discrimi-
nator network (Table S2). The generator network served to input 
a random vector and output a random CDR3 image. The dis-
criminator network served to input both real and generated 
CDR3 images and predicted if a given image came from a real 
antibody or was created by the generator network. As training 
went on, the generator network produced increasingly realistic 

Figure 3. (a) Figures showing amino acids present across CDR3K + CDR3H peptides for the most representative binder sequences for CTLA-4 and PD-1. CDR3K amino 
acids are generally shared across peptides whereas CDR3H sequences have many more variable amino acids. (b) Heatmap showing in silico showing change in predicted 
binder probability, relative to the original sequence’s binder probability, when an example CDR3K + CDR3H sequence is mutated to all possible amino acids. The figure 
shows a mix of mutation probabilities, with five amino acid positions particularly disruptive to binding when mutated. (c) Heatmap showing in silico showing change in 
predicted binder probability, relative to the original sequence’s binder probability, when an example CDR3K + CDR3H sequence is mutated to all possible amino acids. 
The figure shows a mix of mutation probabilities, with two amino acid positions particularly disruptive to binding when mutated and two amino acid positions 
particularly beneficial to binding when mutated. (d) Heatmap showing mutation sensitivity for a total of 108 anti-CTLA-4 antibody sequences (9 CDR3K residues + 11 
CDR3H residues). The heatmap shows a mix of mutation probabilities, with no particular pattern across the residues or sequences.
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CDR3 images, while the discriminator gradually improved in 
discerning real and generated images. Both networks were 
trained simultaneously until the generator was able to generate 
realistic CDR3 images indistinguishable by the discriminator 
(Figure 4b). Once the 15 GAN models were fully trained, they 
were each used to generate 100 synthetic CDR3 images, which 
were decoded back to amino acid sequences.

Deep learning generated sequences resembling real 
antibodies

To assess the synthetic CDR3 sequences generated by the GAN 
models, we compared them to real CDR3 sequences from the 
training set. For CTLA-4, real CDR3H sequences ranged from 
8 to 22 amino acids (median = 11), while generated CDR3H 
sequences ranged from 9 to 21 amino acids (median = 11) 
(Figure 5a). For PD-1, real CDR3H sequence ranged from 6 to 
19 amino acids (median = 14), while generated sequences 
ranged from 8 to 19 amino acids (median = 16) (Figure 5b). 
This highlights the ability of the GAN models to generate 
diverse sequences of variable lengths, and the generated 
sequences had length distribution that resembled that of the 
real training sequences. CDR3 sequence logos further show 

that amino acid compositions were similar between the gener-
ated sequences and the real sequences. The models had learned 
to preserve residues that were relatively constant across train-
ing sequences while varying residues at positions with more 
flexibility (Figures 5c, d, S9, and S10). Interestingly, the gener-
ated sequences included residues that were not present in the 
training sequences. For example, for PD-1 antibodies with the 
IGKV1-17*01 V gene, all real CDR3K sequences started with 
either leucine or glutamine, but the GAN model generated 
CDR3K sequences starting with leucine, methionine, isoleu-
cine, valine, or glutamic acid (Figures 5d and S11). This 
demonstrated that the GAN models were able to generate 
unique antibody sequences beyond the training sequence 
space.

Finally, we evaluated the GAN-generated sequences using 
the CNN models independently trained in the first part of the 
study. We generated 100 CDR3K + CDR3H sequences for the 
most common V gene pairs (IGKV3-20*01 + IGHV3-33*01 for 
anti-CTLA-4, IGKV1-17*01 + IGHV3-33*03 for anti-PD-1), 
then used the CNN models to predict if they were binders to 
CTLA-4 and PD-1, respectively. Of the generated anti-CTLA-4 
and anti-PD-1 sequences, 95/100 and 90/100, respectively, 
were predicted to be binders to their targets (Figure S12a). 

Figure 4. Generating synthetic CDR3 sequences using generative deep learning. (a) CDR3 sequences were numbered using the AHo numbering scheme, which 
introduced alignment gaps within the CDR3 sequences. These fixed length CDR3 sequences were encoded into a two-dimensional numerical matrix (image) of size 
32 × 22. A representative CDR3 image is shown. The image displays BLOSUM substitution scores of the CDR3 residues (rows) when replaced with one of the 20 amino 
acids, gap, or X (columns). (b) Generative adversarial network (GAN) model architecture for generating synthetic CDR3 sequences. The generator network generated 
CDR3 images from random noise, while the discriminator network discerned real and generated images.
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Using both the real and generated anti-CTLA-4 and anti-PD-1 
sequences, we subsequently performed in silico mutagenesis 
analysis to identify residues with low mutability, i.e., their 
mutations would decrease a given sequence’s predicted binder 
probability. Interestingly, residues with low mutability were 
shared across both real and generated sequences (Figures S12, 
S13). This suggests that the GAN models had learned key 

residues characteristic of binder sequences and incorporated 
these residues into the generated sequences, thus further vali-
dating the GAN models.

Overall, these results suggest that generative deep learning 
approaches can learn the rules of antibody sequences to gen-
erate novel and diverse synthetic antibodies to complement 
and expand natural antibody repertoires.

Figure 5. Comparing real and GAN-generated CDR3 sequences. (a, b) Histograms showing CDR3H amino acid length distribution for anti-CTLA-4 (a) and anti-PD-1 (b) 
sequences. Top panel show real sequences and bottom panel show GAN-generated sequences. (c, d) Sequence logos for real (top) and GAN-generated (bottom) CDR3s 
for anti-CTLA-4 (c) and anti-PD-1 (d) sequences with the specified V genes. Sequence logos for all models are in Figures S9 and S10.
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Discussion

Here we describe two approaches of deep learning to under-
stand and utilize antibody repertoire sequencing data. First, we 
built deep learning models to predict binder and non-binder 
antibodies to CTLA-4 and PD-1. Our models achieved ≥ 91.2% 
prediction accuracy, demonstrating the ability of deep learning 
models to recognize patterns in antibody sequences. We expect 
that such models can be repurposed to identify antibodies with 
precise binding profiles. For example, it may be desirable to 
identify antibodies that bind to multiple targets (e.g., all patho-
gen variants) or specific combinations of targets (e.g., protein 
isoforms A and B, but not C). Instead of performing laborious 
serial rounds of FACS, one could sort an antibody library 
against single antigens, sequence the binders, and use deep 
learning to predict antibodies with desired binding profiles. 
Once such models are trained, they can also be used to rapidly 
identify candidate antibodies in newly sequenced repertoires. 
To mitigate the black-box nature of deep learning approaches, 
we used in silico mutagenesis to identify amino acid residues 
important for binder versus non-binder classification. This 
demonstrates that beyond making predictions, deep learning 
can provide insights into antibody specificity and aid antibody 
engineering efforts.

Second, we built generative deep learning models to gener-
ate synthetic antibodies against CTLA-4 and PD-1. Our GAN 
models learned the patterns of binder sequences and generated 
novel, variable-length, and diverse CDR3 sequences. It will be 
interesting to synthesize the GAN-generated sequences as dis-
play libraries or monoclonal antibodies to evaluate their bind-
ing activity in vitro. We envision that deep learning-designed 
antibodies, combined with the declining cost of DNA library 
synthesis, will accelerate the fields of synthetic biology and 
antibody discovery.

One of the main challenges of applying machine learning in 
genomics is the difficulty in generating large amounts of labeled 
data to use as training sets. In this study, we used antibody 
library display, FACS, and deep sequencing to generate training 
data, allowing us to link antibody sequences to binding versus 
non-binding. All training sets have some drawbacks; for exam-
ple, our dataset comprises hundreds of sequences, but many of 
the sequences are clonally related. Machine learning clearly 
detects clonality, and therefore many generated sequences have 
similarities to clonal expansions within the training set, limiting 
practical utility to laboratory scientists hoping for novel 
sequences with properties not found in sequences identified 
through experimental work. More diverse datasets could result 
in more diverse generated sequences, and therefore more anti-
bodies with novel properties.

Future efforts could focus on developing high-throughput 
experimental methods to measure antibody properties, such as 
binding affinity, stability, pH sensitivity, neutralization, epitope 
specificity, and developability. For example, machine learning 
could be applied to large sets of SARS-CoV-2 neutralizing 
antibodies to understand potential for viral mutant escape 
from antibody therapies or vaccines. The ability to couple 
these phenotypic data to antibody sequences will greatly 
improve the utility of machine learning-based approaches in 
the antibody field.

Materials and Methods

Generating binder and non-binder sequences

CTLA-4 and PD-1 antibodies were generated as previously 
described.32 Binders were defined as scFv sequences that were 
≥ 0.01% of the sequencing reads in a post-sort library and were 
enriched ≥ 1.8 fold when compared to its respective pre-sort 
library. Non-binders were defined as sequences that were ≥ 
0.01% of the sequencing reads in a pre-sort library but were not 
enriched following FACS (post/pre fold change < 1). Sequences 
that did not meet either criterion were excluded from analysis. 
The sequences were split into training dataset (80%) and test-
ing dataset (20%) using the createDataPartition function of the 
caret package (version 6.0.86) in R. This maintained the ratio of 
binder to non-binder sequences in both datasets.

Encoding CDR3 sequences for binder classification

Encoding refers to the process of converting sequences into 
numeric data for input into a machine learning algorithm. To 
encode the CDR3 sequences, we first padded all CDR3K and 
CDR3H sequences with “gaps” to result in sequences of length 
11 amino acids and 25 amino acids, respectively. The padded 
sequences were concatenated, generating CDR3K + CDR3H 
sequences of length 36. These sequences were encoded into two- 
dimensional numerical matrices (images) using the BLOSUM62 
matrix,34 which computed the substitution scores of each CDR3 
residue (rows) with the 20 amino acids, gap, or X (columns). 
This resulted in CDR3 images of size 36 × 22 data points.

Convolutional neural network model to predict binders 
and non-binder antibodies

The CNN model was built using the Keras (version 2.3.0.0)37 

sequential model as a wrapper for TensorFlow (version 2.4.0)38 

in the R programming environment (version 4.0.3). The model 
architecture and hyperparameters are provided in Table S1. 
Two identical models were built for the CTLA-4 and PD-1 
sequences. We tuned the models by performing a randomized 
search across various hyperparameters, including number of 
filters, kernel size, dropout rate, and dense layer nodes, using 
the tuning_run function of the tfruns (version 1.5.0) package. 
We selected the best hyperparameters and trained both models 
for 30 epochs, using the respective training datasets.

In silico mutagenesis of CDR3K + CDR3H sequences

We performed in silico mutagenesis on CDR3K + CDR3 
sequences to identify residues important for binder versus 
non-binder antibody classification. For a given CDR3K + 
CDR3H sequence, we systematically mutated each amino 
acid residue into one of the 20 amino acids using a custom 
perl script. We then used the trained CNN models to predict 
the probability that each mutant sequence was a binder. We 
calculated the changes in predicted binder probability for the 
mutants relative to their parent sequences and visualized the 
changes as heatmaps. For the mutation sensitivity maps, the 
average (across 20 amino acids) change in predicted binder 
probability for all sequences were plotted.
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Clonal cluster analysis and visualization

We used USEARCH39 to compute the number of amino acid 
differences between each pairwise alignment of antibody single 
chain sequences. We used the R package igraph (version 
1.2.6)40 to generate clustering plots for the pairwise alignments. 
Each node represented a single chain (light or heavy) sequence 
and was colored based on V gene identity. Edges indicate 
pairwise alignments with ≤ 6 amino acid differences.

Encoding CDR3 for generative deep learning

We used ANARCI41 to annotate full-length light and heavy 
chain antibody sequences using the AHo numbering 
scheme.36 CDR3 regions (positions 107–138 for both light 
and heavy chain) were extracted and encoded into 2D 
images using the BLOSUM62 matrix,34 which computed 
the substitution scores of each CDR3 residue (rows) with 
the 20 amino acids, gap, or X (columns). The residue “X” 
was added to ensure that the resulting CDR3 images had an 
even number of columns. The final CDR3 images were of 
size 32 × 22 data points.

Generative adversarial network (GAN) models to generate 
synthetic antibody sequences

We built 15 identical GAN models to generate synthetic CDR3 
sequences. This included 8 CTLA-4 models (IGHV3-33*01, 
IGHV1-18*04, IGHV3-20*01, IGHV4-39*01, IGKV3-20*01, 
IGKV1D-39*01, IGKV1-17*01, IGKV1-16*01) and 7 PD-1 
models (IGHV4-4*07, IGHV3-33*03, IGHV1-18*04, IGKV1- 
17*01, IGKV1-6*02, IGKV3-15*01, IGKV1-9*01). The models 
were built using Keras (version 2.3.0.0)37 as a wrapper for 
TensorFlow (version 2.4.0)38 in the R programming environ-
ment (version 4.0.3). The model architecture and hyperpara-
meters are provided in Table S2. The GAN models were 
trained for 100 rounds each, using a batch size of 20. Once 
fully trained, the generator for each model was used to generate 
100 synthetic CDR3 images. The images were decoded back to 
CDR3 amino acid sequences.

Evaluating GAN-generated sequences using CNN models

Focusing on the most common V gene pairs (IGKV3-20*01 
+ IGHV3-33*01 for anti-CTLA-4, IGKV1-17*01 + IGHV3- 
33*03 for anti-PD-1), we randomly paired the GAN-generated 
CDR3K and CDR3H sequences, then randomly selected 100 
paired CDR3K + CDR3H sequences, for anti-CTLA-4 and anti- 
PD-1, respectively. We padded and encoded these sequences 
using the BLOSUM62 matrix,34 in the same manner we pre-
pared the sequences for training and testing the CNN models. 
The sequences were then input into their respective CNN mod-
els to predict if they were binders or non-binders.

Visualizations

All plots, including CDR3 images and heatmaps, were gener-
ated using ggplot2 (version 3.3.3).42 Sequence logos were gen-
erated using ggseqlogo (version 0.1).43 Multiple sequence 

alignments of CDR3 sequences were visualized using the msa 
package (version 1.22.0)44 in the R programming environment 
(version 4.0.3).

Abbreviations

AUC area under the curve;
CDR3 complementarity-determining region 3
CNN convolutional neural network
CTLA-4 Cytotoxic T Lymphocyte Associated 4
FACS fluorescence-activated cell sorting
FN false negative
FP false positive
GAN generative adversarial network
IMGT the international ImMunoGeneTics information system
MCC Matthews correlation coefficient
OE-RT- 

PCR
overlap extension-reverse transcriptase-polymerase chain reaction

PD-1 Programmed cell Death 1
RBD receptor binding domain
ROC receiver operating characteristic
SAbDab Structural Antibody Database
SARS- 

CoV-2
Severe Acute Respiratory Syndrome Coronavirus 2

scFv single chain variable fragment
TN true negative
TP true positive
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