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Single-cell mutation identification via phylogenetic
inference

Jochen Singer 12 jack Kuipers1'2, Katharina Jahn"2 & Niko Beerenwinkel® 12

Reconstructing the evolution of tumors is a key aspect towards the identification of appro-
priate cancer therapies. The task is challenging because tumors evolve as heterogeneous cell
populations. Single-cell sequencing holds the promise of resolving the heterogeneity of
tumors; however, it has its own challenges including elevated error rates, allelic drop-out, and
uneven coverage. Here, we develop a new approach to mutation detection in individual tumor
cells by leveraging the evolutionary relationship among cells. Our method, called SCI®, jointly
calls mutations in individual cells and estimates the tumor phylogeny among these cells.
Employing a Markov Chain Monte Carlo scheme enables us to reliably call mutations in each
single cell even in experiments with high drop-out rates and missing data. We show that
SCI® outperforms existing methods on simulated data and applied it to different real-world
datasets, namely a whole exome breast cancer as well as a panel acute lymphoblastic
leukemia dataset.
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ue to recent technological advances it is now possible to

sequence the genome of individual cells!. This allows, for

the first time, to directly study genetic cell-to-cell varia-
bility and gives unprecedented insights into somatic cell evolution
in development and disease.

Having single-cell resolution is especially useful for the analysis
of intra-tumor heterogeneity®. This is due to the central role that
mutational heterogeneity and subclonal tumor composition play
in the failure of targeted cancer therapies, where resistant sub-
clones can initiate tumor recurrence®*. Presently, genetic analyses
of tumors are mostly based on sequencing bulk samples which
only provides admixed variant allele frequency profiles of many
thousands to millions of cells. These aggregate measurements are,
however, only of limited use for the inference of subclonal gen-
otypes and their phylogenetic relationships®®. The two main
issues are that mutational signals of small subclones cannot be
distinguished from noise and that the deconvolution of the
aggregate measurements into clones is, in general, an under-
determined problem.

In contrast, single-cell sequencing data provides direct
measurements of cellular genotypes, thus bypassing the
deconvolution problem of bulk measurements. However, this
advantage comes at the cost of elevated noise due to the limited
amount of DNA material present in a cell and the extensive
DNA amplification required prior to sequencing’. The most
common approach for this initial amplification of single-cell
DNA is multiple displacement amplification (MDA)3. While
this process is very efficient at amplifying the overall DNA
material, high rates of allelic drop-out, i.e., the random non-
amplification of one allele of a heterozygous genotype site, are
observed. Starting with the DNA of a single cell, all evidence of
a heterozygous genotype mutation is lost when the mutated
allele drops out, which happens at a rate of about 10-20%. Also,
false positive artifacts can arise in the MDA amplification
when random errors introduced early in the process end up
with high frequencies due to allelic amplification biases.
Further challenges arise from uneven amplification across the
genome which results in non-uniform coverage that will leave
some sites with insufficient coverage depth for reliable base
calling.

These technical issues result in single-cell-specific noise profiles
for which regular variant callers developed for next-generation
sequencing data, such as the Genome Analysis Toolkit (GATK)
HaplotypeCaller” or SAMtools!?, are ill-suited. Two single-cell-
specific mutation callers, namely Monovar!! and SCcaller'?, have
therefore been recently developed. Both methods take raw
sequencing data (BAM files) and output the inferred genotypes of
the cells. Monovar specifically addresses the problem of low and
uneven coverage in mutation calling by pooling sequencing
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information across cells, while assuming that no dependencies
exist across sites. In contrast, SCcaller detects variants indepen-
dently for each cell and accounts for local allelic amplification
biases. However, the identification of such biases is based on
germline single-nucleotide polymorphisms (SNPs), which might
not be available, for example, for panel sequencing data. Further,
it cannot recover mutations from drop-out events or loss of
heterozygosity.

Here, we present SCI®, a new single-cell-specific variant caller
that combines single-cell genotyping with reconstruction of the
cell lineage tree. SCI® leverages the fact that the somatic cells of
an organism are related via a phylogenetic tree where mutations
are propagated along tree branches. SCI® can reliably identify
single-nucleotide variants (SNVs) in single cells with very low or
even no variant allele support and is robust to copy number
changes. We show that SCI® outperforms Monovar, the only
other tool able to transfers information between cells, on simu-
lated and real data.

Results

SCI® algorithm. We developed SCI®, a probabilistic method
for single-cell mutation calling that involves jointly inferring
the underlying phylogenetic structure of the cell populations.
From the sequencing reads, our inference scheme first
identifies candidate loci based on the posterior probability of
observing one or more mutated cells at the specific locus.
These loci are then used to learn a cell lineage tree employing a
Markov Chain Monte Carlo (MCMC) approach. Based on
the MCMC posterior sampling, mutations are assigned
to cells in a final step. An overview of our method is given in
Fig. 1 and details of our approach can be found in Methods
section.

Analysis overview. In order to investigate the performance of
SCI®, we conducted several experiments on simulated data and
additionally on several real datasets. We compared SCI® to
Monovar!l, the only previously published single-cell mutation
caller sharing information across cells. We start by analyzing the
results of the simulated data.

Benchmarks for simulated data. We first investigated how the
performance depends on the number of cells sequenced in the
experiment. SCI® is more sensitive in calling mutations than
Monovar while showing comparable precision in all settings
analyzed (Fig. 2). Therefore, SCI® outperforms Monovar with
respect to the F1 measure, which is the harmonic mean of
precision and recall. The reason for this is twofold: first, due to
the tree inference, SCI® can assign a mutation to a particular
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Fig. 1 Schematic overview of SCI®. First, candidate loci are identified. These loci are then used to infer the underlying phylogenetic tree and the parameters
of the model. In a last step the mutation to cell assignment is sampled from the posterior distribution
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Fig. 2 Performance of SCI® and Monovar on simulated data with different number of cells. Performance measured as recall (a), precision (b), and

F1 score (¢)
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Fig. 3 Summary statistics of the F1 performance of SCI® and Monovar on simulated data. F1 performance depending on different levels of drop-out events

(a), homozygosity (b), and copy number rates (c)

cell with very low or even missing variant support at a specific
locus. Second, making use of a beta-binomial model to repre-
sent the nucleotide counts and learning its parameters accu-
rately reflects the underlying process generating nucleotide
counts.

Due to the observed large range of drop-out rates, ranging
from 10% to more than 40%° a second experiment was
conducted to explore the dependence of the methods on the
drop-out rate of the experiment. Here we concentrated on
drop-out rates of 10, 20, and 30%. Since the exact drop-out
rate of a dataset is often not known, we used the default values
of the callers, namely 20% for Monovar and 10% for SCI®
(Fig. 3a).

We found SCI® to be more robust to increasing drop-out rates
in comparison to Monovar (Fig. 3a). In addition to using the
phylogenetic tree structure, SCI® also learns the drop-out rate of
the experiment during the MCMC scheme and uses 10% only as a
starting condition.

An additional experiment was conducted to investigate the
effects of loss of heterozygosity. Monovar as well as SCI®
perform better with increasing levels of homozygous mutations
present in the experiment (Fig. 3b). Monovar particularly benefits
from homozygous mutations as these are very unlikely to be
classified as wild type. SCI® experiences a more modest benefit

from homozygous mutations since it already starts with high
performance due to the usage of the phylogenetic tree structure to
accurately call mutations.

Because copy number events play a prominent role in tumor
evolution, we investigated the performance of Monovar and SCI®
in the presence of additional wild type alleles (Fig. 3c). Similar to
the dependence on the homozygosity rate, SCIO shows a fairly
stable performance for copy number events affecting up to 50% of
the mutated loci and outperforms Monovar for all settings. In
addition, the performance of Monovar drops more quickly with
increasing rate of copy number events.

Additional experiments were conducted to compare Mono-
var and SCI®. We found that both approaches are more
suitable to be used on single-cell data than a bulk sequencing
mutation caller (Supplementary Section G) and are robust to
changes in prior parameters (Supplementary Section D).
Further, we show that SCI® achieves high accuracy in the tree
reconstruction (Supplementary Section I) and that its perfor-
mance decreases only moderately in the presence of violations
of the infinite-sites assumption (Supplementary Section H).
Furthermore, a comparison of Monovar and SCI® on
sequencing data of an isogenic fibroblast cell line (Supplemen-
tary Section J]) confirms the abovementioned results for
simulated data.
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Fig. 4 Summary of the mutation calls obtained with Monovar and SCI® on a breast cancer patient dataset' consisting of 16 single tumor cells and a control
normal bulk sequencing dataset. a Cell lineage tree with average number of mutations per inner node as identified by SCI®. The area of a node is
proportional to its number of assigned mutations. b Posterior probability of SCI® mutation calls clustered according to the tree in a. ¢ Probability of
Monovar mutation calls for loci identified as mutated by SCI® and clustered according to the tree in a. d Probability of Monovar mutation calls for loci

identified as mutated by SCI® and clustered hierarchically

Application to real data. We applied SCI® to two human tumor
sequencing datasets. The first dataset is described in ref. 13, where
the authors performed exome sequencing on single cells and bulk
samples of a breast cancer patient. Here we identified somatic
mutations in 16 single cells using bulk-sequenced normal control
dataset to distinguish somatic from germline mutations
(see Supplementary Section C for details). This dataset is parti-
cularly challenging because cells are aneuploid.

We identified around 50% of the mutations to be shared across
all cells and therefore placed them into the root of the inferred
phylogenetic tree (Fig. 4a). The average number of mutations
assigned to different subclones and their phylogenetic relation-
ship are depicted in Fig. 4a. For example, 323 mutations
distinguish cell hl from the other cells and 206 mutations
separate the lineage of cells al, a4, and a6 from the remaining
tree. The posterior probabilities of each cell possessing each

mutation show the grouping into subclones (Fig. 4b). Using the
tree inferred by SCI® to order the mutation calls of Monovar
(Fig. 4c) allows a more direct comparison. The assignment of
mutations to cells is very homogeneous for the subclones using
SCI® (Fig. 4b). In contrast, the mutation assignment based on
Monovar’s inferred probabilities is much more noisy (Fig. 4c).
In order to investigate the impact of using a phylogenetic tree
model on the clustering of the cells we performed hierarchical
clustering to order the mutation calls from Monovar (Fig. 4d).
Hierarchical clustering, which is one of the most widely
visualization techniques, leads to a similar subclonal structure
compared to SCI® (Fig. 4b). However, there are some differences.
For example, h2 is hierarchically clustered with h1, h3, h5, h8, and
a8, rather than with h4, h6, and h7. The hierarchical clustering
does not enforce a phylogenetic tree and weights false negative
and false positive signals equally. However, from SCI® (Fig. 4a)
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Fig. 5 Summary of the mutation calls from SCI® and Monovar on a dataset consisting of 255 cells from a patient (number 3) with acute lymphoblastic
leukemia'. a Monovar mutation calls for loci identified as mutated by SCI® clustered hierarchically. b Monovar mutation calls clustered according to the
tree inferred by SCI®. ¢ SCI® mutation calls clustered according to its inferred tree

we can see that cell h2 is only missing mutations which are in
common in cells h4, h6, and h7. Therefore, its placement earlier
in the tree above those cells is much more evolutionarily
plausible.

The second dataset consists of 255 cells from a patient (number
3) with acute lymphoblastic leukemia sequenced using a panel
sequencing approach!4 The results (Fig. 5) highlight similar
aspects to those mentioned for the previous breast cancer dataset,
especially the much less noisy mutation assignment. It is
interesting to observe that SCI® not only recovered drop-outs,
but also assigned much lower mutation probabilities to likely wild
type positions compared to Monovar (Fig. 5).

We obtained results similar to the aforementioned data
analyses when analyzing two additional real datasets, namely 19
cells of an isogenic fibroblast cell line with corresponding
reference bulk sequencing data and 370 single cells of a high-
grade serous ovarian cancer patient (Supplementary Sections ]
and K). Computational resources are summarized in Supplemen-
tary Section L.

Discussion

Single-cell sequencing allows us to directly study genetic cell-to-
cell variability and gives unprecedented insights into somatic cell
evolution!®. This is of particular interest in cancer genomics
because tumors show heterogeneous cell compositions often
resulting in the failure of targeted cancer therapies. Here, we
introduced SCI®, the first single-cell mutation caller that simul-
taneously infers the mutational landscape and the phylogenetic
history of a tumor sample. SCI® accounts for the elevated noise
levels of single-cell data by appropriately approximating the
genomic amplification process and the high fraction of drop-out
events. In combination with a Markov Chain Monte Carlo phy-
logenetic tree inference scheme, mutations are reliably assigned to
individual cells.

We have compared SCI® to Monovar!! on both simulated and
real datasets. For the simulated data, both SCI® and Monovar
show a precision of almost one, however, SCI® shows a sub-
stantially higher recall and F1 score. Further, SCI® is robust to
increasing drop-out, as well as copy number rates. In addition,
simulating different MDA amplifications we showed that SCI® is
not sensitive to the amplification process. For the real datasets, we
showed that SCI® achieves a much cleaner assignment of
mutations to cells within subclones. In particular, SCI® recovered
mutations from drop-out events using the inferred phylogenetic
tree structure of the sample to share information across cells,

whereas Monovar missed these events. Furthermore, the phylo-
genetic tree inferred by SCI® reflects the evolutionary history
more accurately than a hierarchical clustering from Monovar
results.

Further improvements could be the inclusion of copy number
information into the tree reconstruction. However, this comes at
the cost of losing the independence between mutation assump-
tion, which is computationally expensive to overcome as groups
of mutations would have to be identified.

Mutation calling and lineage tree building are two inter-
dependent tasks and addressing them in a single statistical model
provides both improved mutation calls as well as a better estimate
of the underlying cell lineage tree, and hence a better under-
standing of tumor heterogeneity.

Methods

Overview. Our inference scheme starts with an initial identification of possible
mutation loci and then performs joint phylogenetic inference and variant calling
via posterior sampling (Fig. 1). After introducing the general model for nucleotide
frequencies, we describe these steps in more detail. Supplementary Table N pro-
vides a summary describing the model parameters.

Nucleotide frequency model. We model the nucleotide counts s at a locus with
total coverage ¢ using the beta-binomial distribution which is also commonly
employed for bulk sequencing mutation detection, e.g.'®17, as

¢\ B(s+a,c—s+p)

P(s|c, a, B) <5> B(a, ) ; (1)
with parameters o and 8 and where B is the beta function. For better interpret-
ability in our implementation we will employ an alternative parametrization of the
beta-binomial distribution with f = 7% being the frequency of a nucleotide and
= &+ f an overdispersion term determlmng the shape of the distribution which
decreases with increasing variance.

For locus i and cell j with coverage c;; the probability of the observed count
(support) s;; for a specific nucleotide in the absence of a mutation is

P, (ij) = P(sij\cij,fwt,o.)wt)7

where Dj; = (s, ¢;) and f, is the expected frequency of the observed nucleotide,
which, for example, could have arisen from sequencing error. Large values of w.,
lead to a binomial distribution representing independent sequencing errors. In the
presence of a heterozygous mutation (a mutation affecting one of the two
homologous chromosomes), the probability of the counts is

1 2
P, (Dij) = P<sij‘cij75 — gfm,wa>.

The underlying allele frequency of 1 is corrected by sequencing errors producing
any of the other two bases. Low values of the overdispersion term w, reflect a small

)

3)
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number of initial genomic fragments and any additional feedback in the
amplification. SCI® generally assumes copy number neutrality, but learning w,
allows for additional shifts in the mean variant allele frequency away from 4 due to
copy number changes.

Identification of candidate mutated loci. Likely mutated loci are identified using
the posterior probability of observing at least one mutated cell at a specific locus.
The probability of observing no mutation at locus i across all cells is

P(D;|K = 0)(1 —4)

P(K = 0jp;) = TR IS

4)

where K is a random variable indicating the number of mutated cells and A is the
prior probability of a mutation occurring at the locus. The probability of observing
the mutation in k cells is

P(D,K = k)P(K = k)A

P(K = k|D;) = o

()

We do not need to compute P(D;) as it cancels out when computing the likelihood
ratio or posterior odds.
The likelihood of the data given that exactly k of the m cells possess the
mutation, is given by
1
P(DIK = k) = - 3 II 2(p;) T] Pu (D,.]),

. N\ .
( K ) {xl‘.., %, €{0,1}] E xJ:k} {]\xfrl} {J\xJ:O}
(6)

where x; indicates whether cell i is mutated or not. The term P(D; | K= k) can be
computed efficiently using a dynamic programming approach, as in refs. 18,
The prior probability of a mutation in a phylogeny affecting k descendant cells
is determined by placing mutations uniformly among the edges of the tree
(Supplementary Section A) leading to
2
m
()

(2k—1)(2;]:l>.

Allelic drop-out. Along with the uncertainty in the supporting read counts due to
the amplifications in each cell when a mutation is present, an additional artifact is
drop-out whereby one allele is not amplified at all. To account for allelic drop-out
occurring with probability y, we introduce the following mixture for the likelihood
of the observations for each cell:

P, (DU) = EP(SU‘CUJ;“, wm)
4P (e = Syl fus @) ®)

+(1_.” ( ‘ijrz 3fwt7wa)7

P(K=k) = 7)

where the first term describes the loss of the mutant allele, the second the loss of
the wild-type allele and the third term describes a heterozygous mutation. The case
u =0 reduces to Eq. (3).

Tree likelihood. Different approaches for single-cell phylogeny reconstruction
have been proposed’, including OncoNEM!® and SCITE?. Our model to infer
tumor phylogeny consists of three parts, akin to ref. 20: the tree structure T, the
mutation attachments to edges o, and the parameters of the model 6 (the para-
meters f,,, Wy, and w, previously introduced, the drop-out mixture coefficient y as
well as a homozygosity coefficient which we will introduce later). We represent the
phylogeny of a tumor using a genealogical tree. Here the m sampled tumor cells are
represented by leaves in a binary tree and the mutations are placed along the edges.
There are (2m — 3)!! different tree structures?!, while each of the n mutations can
be attached to the (2m — 1) edges leading to (2m — 3)!!(2m — 1)" possible con-
figurations for the discrete component (7T, 0) of our model. As a result, it is
infeasible to enumerate all solutions. Instead we employ a Markov Chain Monte
Carlo approach to search and sample from the tree space.

In order to do so, we employ the likelihood of a specific tree realization with the
mutation attachment parameter ¢ and the parameters 6 to be

P(DI|T,0,6) = HHP(D,AT) H HPM< ) 9)

i=n+1j=1

where P(Dj; | )= P,(Dy) if the cell j is below mutation i (on the path from leaf j to
the root) and P(Dj; | )= P.(Dj;) otherwise. The first set of products describes the
loci identified to be likely mutated (section Identification of candidate mutated loci)

which are placed on the tree and used together to infer its phylogenetic structure.
The second half represents all loci where no mutation is present which inform the
inference of the sequencing error parameters.

We marginalize out the attachment points of the mutations, analogously
to ref. 20. Assuming each mutation is equally likely to attach to any edge in the tree
and the attachment probability to be independent between mutations we have P(c |

T,0) =g L 7 so that
romo ST r(om) IS 00r). oo
o i=lj= i=1 o; j=I
For each locus, the sum over o; can be written explicitly as
S(OIT) = 55T HP(DU\T)
(11)

= Im- 12“[ 0; <j)P. ( >+I(Ji7<j>Pwt(Dij)}~,

0; j=1

where [ is the indicator function and (o; < j) indicates that cell j sits below the
attachment point ¢; of mutation i in the tree T. The sum can be computed in O(m)
time using the binary tree structure. Employing T, we propagate the probability of
attaching a mutation to a specific node from the leaves toward the root. This can be
implemented using the depth-first search (DFS) algorithm, combining in each node
the probabilities from two previously computed subtrees.

Computing Eq. (10) is therefore in O(mn) while the marginalization has the
benefit of reducing the search space by a factor of (2m — 1)". In addition we
employ the marginalization to focus on the tree structure of the cell lineage rather
than the attachment points of mutations.

Making use of the factorlzatlon of the beta-binomial density function into
Gamma functions, the term [TV 1 H " Pyl D; S in Eq. (9) can be computed in
time linear in the number of different coverages Of the sequencing experiment
(Supplementary Section B). Since that number is typically much smaller than mn,
the overall runtime is dominated by O(mn).

Accounting for zygosity. Because tumor cells show chromosomal abnormalities,
mutations can be observed as homozygous variants even without drop-out events.
In order to also account for loss of heterozygosity, we adapt the scheme introduced
in section Tree likelihood. Instead of computing the likelihood of the data when
attaching a mutation to a node in the lineage tree in the heterozygous state only, we
additionally compute the likelihood when attaching each mutation in the homo-
zygous state, and define the sum
/(o)

S (Dy|T) = %OZ

H:]§

=-L i<j)P +1(i £ )P (D)1,
<8 () 10497 (5)

involving the nucleotide model when only alternative alleles are present
b, (D,-j> = P(c,j — sijlcij,fwt, wm). (13)

Note that homozygous mutations are only attached to inner nodes as the prob-
ability of observing a drop-out event in a single cell is assumed to be higher than a
single homozygous mutation.

Utilizing the tree structure, the sum can again be computed in O(m) time for
each mutation on the tree. The overall likelihood (Eq. (10)) for each mutation
becomes a weighted sum of the two possibilities leading to

P(DIT, 8) o [ [I(1 — 1S, (DIT) + w8, (D),

i=1

(14)

with homozygosity coefficient v. Thus, we allow certain violations of the infinite-
sites assumption?? by capturing homozygous mutations which are not due to drop-
out events.

Markov Chain Monte Carlo sampling. Using the tree likelihood, we employ an
MCMC scheme to sample from the posterior distribution of mutation assignments
as well as tree structures given the data (for simplicity with uniform priors). In
order to do so, we propose a new state (1", §') from the current state (T, §) making
use of properly defined moves, described below, such that the chain is ergodic. We
change one parameter at a time with transition probability q(T", 6’ | T, 6) and
accept the new configuration with probability

[, a(T.01,8)P(T",0'D)
(1, 01T, 0)P(T. 6ID)

(15)

The tree structure can be changed using the prune and reattach move. Here we
randomly draw a node from the tree and re-attach it to a random node not
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contained in the pruned subtree. This move is reversible, irreducible, and aperiodic.
Additionally we include a move which swaps two leaf nodes. For the parameters of
the beta-binomial distribution, the drop-out coefficient y (and the homozygosity
coefficient v) we perform independent random Gaussian walks. The standard
deviations of the steps are adjusted using adaptive MCMC?3 to track an acceptance
rate of 50%.

We sample proportional to P(T, 0 | D) from the posterior distribution after a
burn-in phase. Convergence is achieved after x iterations, with heuristic
arguments suggesting x o m? log(m)?’, and can be verified by computing the
correlation between two runs in practice. The overall runtime complexity is O
(x x max(mn, c¢)) with ¢ being the number of unique coverage values of the
experiment. From the sample of trees and parameters we could also
conditionally sample the placement of the mutations for the full joint posterior
sample. Instead, utilizing the full weights of attaching each mutation to different
edges we record the probability of each cell possessing each mutation. Averaging
over the MCMC chain provides the posterior genotype matrix and hence our
single-cell variant calls.

Simulation of ground truth datasets. In order to benchmark the performance of
SCI®, we simulated tumor evolution by introducing a cell lineage tree and simu-
lated read counts by mimicking the noisy MDA process. For m cells, we created a
random binary genealogical cell linage tree with 100 mutations attached to the
edges. The placement of the mutations defines which cells possess each mutation.
We chose the placement such that each mutation is shared by at least two cells
because mutations in only one cell may be false positives from sequencing errors
and are filtered out in practice as well as in our benchmark. Further, among all the
mutations present in cells a specified fraction y was randomly selected as drop-
outs, i.e,, § of the mutations became wild type and § became homozygous alter-
native genotype.

Then we generated an artificial reference chromosome of 1 million base pairs
(bp) and divided it into segments of ~1000 bp for each cell individually. For these
segments, we generated a coverage distribution following a negative binomial
distribution with a mean of 25 nucleotides and a variance of 50. Additionally, 10%
of the segments were assigned 0 coverage to include missing information. The
coverage c of specific positions was additionally randomized following a discretized
Gaussian distribution with the segment coverage as mean and a standard deviation
of 10% of that mean in order to simulate the uneven coverage profiles of real
single-cell sequencing experiments.

For simulating nucleotides under the MDA process, we drew them from a
Pélya urn model. Because data suggest that the two homologous chromosomes
are amplified independently of one another (ref. 24 and Supplementary Figure
M), we chose to set the initial number of alleles (« and f3) to 1 for heterozygous
genotypes (which would lead to a uniform distribution without errors and drop-
out). For homozygous genotypes either a or 8 were set to 1. An allele is then
randomly chosen, copied, and returned to the urn together with the copy. With a
probability of 5 x 107 the copy will be mutated and an allele different from the
original one is returned, corresponding to the error rate of the MDA polymerase
(1076-10~7 25), This process is repeated ¢ times and the copies are retained. In
order to simulate copy number events, we change the number of initial copies of
the wild type allele for a specific locus. We set the probability of x extra copies to
be 5, since each additional copy is less likely. This strategy assumes all copy
number changes happened prior to mutation events. In reality this is not true,
however, the strategy provides lower bounds on the performance measures
because the variant allele frequency decreases with increasing copy number.
Finally, with probability of 1073, a nucleotide is mutated to account for
sequencing errors, and the resulting simulated data was embedded into a multi-
pileup file.

Since the MDA amplification process is not fully understood and different
models of dependence between homologous chromosomes have been
proposed?* we performed additional simulations (Supplementary Section E) for
the model of dependence reported, for example, in ref. 1°. In addition, since
different amplification techniques, such as MALBAC?® or pure PCR based
methods, are also employed, we simulated different amplification scenarios
(Supplementary Section F). Both experiments were in line with the previously
reported results.

The simulation framework was implemented using Snakemake?” and can be
found at https://github.com/cbg-ethz/SCIPhI. Simulations were replicated 50 times.
All box plots were generated using ggplot2?® and the data points
overlaid.

Code availability. SCI® has been implemented in C-++ using ref. 2° and is freely
available under a GNU General Public License v3.0 license at https:/github.com/
cbg-ethz/SCIPhIL.

Data availability
The human sequencing datasets utilized in this study were downloaded from the
Sequence Read Archive with the accession numbers SRA053195 (for the dataset

generated in ref. 13) and SRP044380 (for the dataset of patient three generated in
ref. 14).
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