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SUMMARY

As immune checkpoint inhibitor use is expanded to liver
transplant candidates, questions on their effectiveness, effect
on graft rejection and impact on graft tolerance arise. With
tumor cellsS’ immune microenvironment modulation and

development of resistance to therapy, liver tumor recurrence
post liver transplantation can happen, which poses a challenge
for systemic therapy treatment in the setting of immunosup-
pression. Current evidence on multimodal therapies and on
balance with immunosuppression may make use of immune
checkpoint inhibitors permissible after liver transplantation.

Immune checkpoint inhibitors (ICIs) have revolutionized
cancer therapy, including the two most common liver tu-
mors, hepatocellular carcinoma and cholangiocarcinoma,
but their use in the peri-transplantation period is contro-
versial. ICI therapy aims to heighten cytotoxic T lympho-
cytes response against tumors. However, tumor recurrence
is common owing to tumor immune response escape
involving ablation of CTL response by interfering with an-
tigen presentation, triggering CLT apoptosis and inducing
epigenetic changes that promote ICI therapy resistance. ICI
can also affect tissue resident memory T cell population,
impact tolerance in the post-transplant period, and induce
acute inflammation risking graft survival post-transplant.
Their interaction with immunosuppression may be key in
reducing tumor burden and may thus, require multimodal
therapy to treat these tumors. This review summarizes ICI
use in the liver transplantation period, their impact on
tolerance and resistance, and new potential therapies for
combination or sequential treatments for liver tumors.
(Cell Mol Gastroenterol Hepatol 2025;19:101407; https://
doi.org/10.1016/j.jcmgh.2024.101407)
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Since the promising results of immune checkpoint
inhibitor (ICI) ipilimumab for treatment of advanced
melanoma in 2010 and its United States Food and Drug
Administration approval the following year, the field of
systemic therapy in oncologic tumors has changed.1 Not
only melanoma, but also other solid organ tumors such as
lung, bladder, and triple-negative breast cancer have also
shown tumor burden reduction and increased overall

survival with the use of ICIs.””* In liver tumors, the story is
no different; ICI therapy has replaced traditional tyrosine
kinase-based therapy as first-line treatment for hepatocel-
lular carcinoma, exemplified by atezolizumab administered
with bevacizumab, and durvalumab and tremelimumab.>®
Additionally, durvalumab has becoming a major compo-
nent in the standard-based therapy for cholangiocarcinoma
(CCA) in combination with gemcitabine and cisplatin.”

Abbreviations used in this paper: «KG, a-ketoglutarate; ACR, acute
cellular rejection; AFP, a-fetoprotein; AMR, antibody-mediated rejec-
tion; APC, antigen presenting cell; Arg1, arginase-1; (2M, (2-
microglobulin; CCA, cholangiocarcinoma; CAF, cancer-associated
fibroblast; CAR, chimeric antigen receptor; CEACAM1, carcinoem-
bryonic antigen-related cell adhesion molecule 1; CNI, calcineurin
inhibitor; CTL, cytotoxic T lymphocyte; CTLA-4, cytotoxic T-lympho-
cyte-associated protein 4; CMV, cytomegalovirus; DAMPs, damage-
associated molecular patterns; DC, dendritic cell; DNMT1, DNA
methyltransferase 1; EBV, Epstein-Barr virus; EGFR, epidermal growth
factor receptor; EGF, epidermal growth factor; EZH2, enhance of zeste
homolog 2; FAK, focal adhesion kinase; FasL, Fas ligand; FasR, Fas
receptor; FAP, fibroblast activating protein-«; FGF, fibroblast growth
factor; FMT, fecal microbiota transplant; Gal-9, galectin-9; G-MDSC,
granulocytic myeloid-derived suppressor cells; GITR, glucocorticoids-
induced TNF receptor; GPC3, glypican-3; HCC, hepatocellular carci-
noma; HLA-I, human leukocyte antigen; HMGB1, high mobility group
protein B1; H3K27, histone 3 lysine 27; ICl, immune checkpoint in-
hibitor; ICB, immune checkpoint blockade; IDO, indoleamine 2,3
dioxygenase; IFN, interferon; Ig, immunoglobulin; IGF1, insulin growth
factor 1; IL, interleukin; iNOS, nitric oxide synthetase; ITIM, immu-
noreceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor
tyrosine-based switch motif; JAK, Janus kinase; KIR3DL3, killer cell
Ig-like receptor, three Ig domains and long cytoplasmic tail 3; Lag-3,
lymphocyte activation gene-3; LOX, lysine oxidase; LPS, lipopolysac-
charide; MDSC, myeloid-derived suppressor cells; MHC-I, major his-
tocompatibility complex-l; MTA, 5-methylthioadenosine; NK, natural
killer cell; mTOR, mammalian target of rapamycin inhibitor; Nktr1,
natural killer cells triggering receptor 1; PAMPs, pathogen-associated
molecular patterns; PD-1, programmed death 1; PDAC, pancreatic
ductal adenocarcinoma; PDGF, platelet-derived growth factor; PDL-1,
programmed death 1 ligand; PtdSer, phosphatidylserine; ROS, reac-
tive oxygen species; S1P1, sphingosine 1 phosphate; SAM, S-adeno-
sylmethionine; SOCS, suppressor of cytokine signaling; STAT3, Signal
transduce and activator of transcription 3; TAA, tumor-associated
antigen; TAM, tumor-associated macrophages; TCM, central memory
T cell; TCMR, T-cell medicated rejection; TCR, T-cell receptor trans-
duced; TEM, effector memory T cell; TEx, exhausted T cell; TGFg, tu-
mor growth factor beta; TIGIT, T cell immunoreceptor with
immunoglobulin and ITIM domain; TIME, tumor immune microenvi-
ronment; Tim-3, T-cell immunoglobulin mucin-3; TLR, toll-like re-
ceptors; Tmem, memory T cell; TNF, tumor necrosis factor; TRAIL,
tumor necrosis factor-related apoptosis-inducing ligand; Treg, regu-
latory T cell; TRM, tissue resident memory T cell; VEGF, vascular
endothelial growth factor; VISTA, V-domain Ig suppressor of T-cell
activation.
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Despite the major breakthroughs of ICIs in immune-
oncology treatment, some patients present tumor resis-
tance to immunotherapy. This resistant cancer cells often
necessitate ICI rechallenge or alternative systemic therapy
with second- or third-line treatments to reach clinical
response.8 Tumor progression or acquired resistance can
still happen, either on initial ICI treatment, after stable
disease, or after a period of durable clinical response.’

ICI therapy poses additional challenges concerning
transplantation. Significant toxicity from immune-related
adverse events such as colitis, skin reaction, and pneumo-
nitis, to name a few, can happen at any point of therapy,
even post-treatment regimen.10 Degrees of toxicity presen-
tation may vary in a dose-independent manner, and symp-
toms may persist beyond 12 weeks, especially if exhibiting
arthritis, endocrinopathies, ocular symptoms, xerostomia,
and neurotoxicities."' Even though ICIs are not metabolized
by the liver, ICIs have limited utilization in patients with
cirrhosis, and are namely reserved for those without
advanced liver disease or with Child-Pugh A degree of he-
patic dysfunction out of concern for decompensating events
such as ascites and gastrointestinal bleed from esophageal
varices. ICI use during the peri-transplantation period is
controversial. Indeed, inflammatory effects of ICIs can affect
graft function and overall post-transplant survival. Howev-
er, efficiency of ICI therapy in cancer has the potential for
preventing tumor dissemination before transplantation and
improve recurrence-free survival post transplantation. This
review will first summarize the use of ICIs before and after
liver transplantation, and the mechanisms of tumor immune
resistance elicited by ICIs as they relate to the two most
common hepatic tumors, hepatocellular carcinoma (HCC)
and CCA,*? and the future therapies to reduce recurrence of
these tumors.

Liver Tumors and Immune Checkpoint

Inhibitors

Primary liver cancer is the third leading cause of death
worldwide, despite being sixth in cancer incidence.'? HCC is
the most common type of liver cancer followed by CCA.
Early detection of these two tumor types is challenging and
often requires systemic therapy to control tumor progres-
sion in the advanced stages. Although both tumor types can
grow in nonfibrous environments, HCC is often associated
with advanced hepatic fibrosis. Tumor resection in the
presence of high fibrosis can lead to decompensations of
liver disease such as ascites and hepatic encephalopathy, for
which liver transplantation is a therapeutic option for early
and nonresectable disease. Systemic therapy with ICIs is
reserved for patients with evidence of local spread or
distant metastasis in the setting of preserved liver func-
tion."> However, given concerns of portal hypertension-
related events driving mortality, ICI clinical trials have
been limited to those with Child-Pugh A disease, and
tolerance of ICIs in more advanced hepatic dysfunction has
not been fully explored."* Only 3% to 6% of those receiving
first-line therapies atezolizumab-bevacizumab or
tremelimumab-durvalumab achieve full response, whereas
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at least 20% of patients show progression of HCC.>® For
patients with a high risk of HCC recurrence after resection
or ablation, atezolizumab-bevacizumab improved
recurrence-free survival, but did not eliminate progression
of disease.” Similarly, patients with CCA treated with the
combination of therapy plus durvalumab or pembrolizumab
display overall improvement, but only 25% to 27% of pa-
tients achieved partial response.'® This suggests ICI resis-
tance or acquisition of resistance to ICI therapy overtime.

Immune checkpoint is an important tumor immune
resistance mechanism that suppresses anti-tumor immune
response. ICIs target the major immune checkpoint path-
ways such as cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed death 1 (PD-1), or its ligand pro-
grammed death 1 ligand (PDL-1). Both CTLA-4 and PD-1 are
transmembrane glycosylated proteins of the CD28 family
member. Their expression at the cell membrane represses
cytotoxic T lymphocytes (CTLs), which are central in anti-
tumor response.17

The purpose of ICIs is to unleash the CTL response.
Tumor cells display a distinct antigen signature from their
normal counterpart called tumor-associated antigens
(TAAs). These TAAs are recognized and internalized by
antigen presenting cells (APCs), which subsequently present
the antigen to naive CD8" T cells via major histocompati-
bility complex I (MHC-1).*® In the meantime, APCs provide a
second signal through CD80/86 that binds CD28 expressed
on CD8™' T cells to stimulate their proliferation and differ-
entiation into CTLs. Anti-tumor response efficiency relies on
the capacity of the TAAs to activate CTLs and the ability of
these activated CTLs to infiltrate the tumor. CTLA-4, an
immune checkpoint protein constitutively expressed on
naive T cells and on FOXP3 regulatory T cells (Tyg), is
upregulated in activated T cells, and competes with CD28
for the accessibility of CD80/86 on the APC to repress CTLs
stimulatory signal.'” PD-1 is a monomer expressed on the
surface of T lymphocytes, and natural killer (NK) cells.
Similar to its homologous receptor, PD-1 cell surface
expression is upregulated on CTLs, and induces T cells
exhaustion when bound to its cognate ligand PD-L1
expressed on APC and tumor cells. T cell exhaustion
induced by PD-1 activation is characterized by the phos-
phorylation of the N-terminal immunoreceptor tyrosine-
based inhibitory motif (ITIM) and C-terminal tyrosine in
an immunoreceptor tyrosine-based switch motif (ITSM).*°
In response to this phosphorylation, SHP1 and SHP2 phos-
phatases are recruited to dephosphorylate and block ZAP70
and CD3{ proteins, which are involved in TCR signal
transduction of T cells. This results in inhibition of CTL
activity, interferon (IFN)-y and tumor necrosis factor (TNF)-
« secretion, and proliferation while promoting CTL
apoptosis via PI3K/AKT pathway inhibition.?*

The characterization of these immune inhibitory path-
ways led to the development of ICIs for CTLA-4, PD-1, and
PD-L1 immunoglobulin (Ig) to foster CD28 costimulatory
signal and restore CTLs differenciation.” Interestingly, im-
mune checkpoint blockade (ICB) does not only restore CTLs
differentiation, but also reactivate previously “exhausted”
CTLs, induce T,.q depletion, and increase memory T cells
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(Timem)->" Though monotherapy can achieve response such
as nivolumab in melanoma,”? combination ICI therapy has
begun to be explored. The phase III clinical trial, HIMALAYA,
showed efficacy in HCC by targeting both CTLA-4 and PD-1
with durvalumab-tremelimumab to enhance antitumor im-
mune response in unresectable HCC.”

ICI Use in Liver Transplantation

Liver transplantation is a treatment strategy for HCC and
CCA."*?3 The Milan criteria and University of California San
Francisco (UCSF) scores were proposed to better select
patients with HCC for liver transplantation based on tumor
size and findings on liver explant.”**® Achieving Milan
criteria and an «-fetoprotein (AFP) target allows patients
with HCC to get exceptions and place them at a higher pri-
ority for liver transplantation.’® Although the utilization of
these scores has led to successful outcomes in liver trans-
plantation, the HCC recurrence rate has been reported of at
least 15%.%%%7 Recently, data has shown 12.5% HCC
recurrence with 17-month median time to recurrence and a
10-year post-transplant HCC recurrence-free survival of
13.3% based on patients who underwent successful down-
staging pre-transplantation in 5 academic centers in the
United States.”® Thus, the risk estimation of tumor recur-
rence after transplant (RETREAT) score has been proposed
to detect earlier post-transplant HCC recurrences and
enable earlier treatment through local regional therapy,
surgical resection or systemic therapy.”” With regards to
CCA, there are no predictive scores for recurrence pre- or
post-transplant yet. Recurrence rate in the literature have
been reported as low as 18% 5-year recurrence risk for
early intrahepatic CCA, and 13% for perihilar CCA after
undergoing neoadjuvant chemoradiation therapy followed
by transplantation.”> However, recent data also demon-
strated 5-year disease-free survival of 50.2% in those un-
dergoing liver transplantation for perihilar CCA after
undergoing chemoradiation protocol regardless of under-
lying presence of primary sclerosing cholangitis.*’

ICI use as an adjuvant therapy prior liver transplant has
been more permissible to control tumor burden and main-
tain transplant eligibility in accordance with Milan
criteria.’* Case reports have demonstrated their success in
downstaging to meet Milan criteria and enable subsequent
liver transplantation.’’ Addition of ICI therapy is being
considered for this patient population in the peri-transplant
period to achieve early remission, control micrometastasis,
and avoid tumor recurrence post liver transplantation. As a
result, the Organ Procument & Transplantation Network
(OPTN) has revised its bylaws to enable the utilization of ICI
systemic therapy for HCC downstaging or the reduction of
tumor board to fit with exceptions criteria.*®

However, safety data is limited, with significant hetero-
geneity among studies regarding effects on long-term graft
tolerance and ICl-related adverse events, although these
events can occur at any time, even post therapy. Indeed,
hepatic necrosis post-transplant was observed in 2 patients
treated with toripalimab 93 days and 8 days prior to liver
transplantation, respectively. Though autopsy was not

Immune Blockade in Peri-liver Transplantation 3

pursued in either case, expression of PDL-1 on the grafts
was noted post-transplant suggesting ICl-related graft
injury.®*** Both of these cases had used sorafenib and other
modes of local regional therapy prior to ICI treatment,
questioning if additional therapies augmented the immune
response induced by ICI. Although studies on biomarkers
have found to be correlated with ICI response, and others
like interleukin (IL)-6 and IL-17 to be correlated with ICI-
related adverse effects, there are no reliable markers to
predict adverse effects following a solid organ
transplant.***°

Data on the use of ICIs in the post-transplant period to
treat tumor recurrence is lacking. Most of the literature on
the interaction between ICIs and immunosuppression
therapy comes from managing inflammatory adverse events
caused by ICI therapy in non-transplant patients. Inflam-
matory toxicities induced by ICIs are characterized by high
CTL expansion and infiltration into different tissue sites
causing inflammation.*® In patients with ICI-induced colitis,
CTL recruitment is aided by CXCL9 and CXCL10 myeloid
cells. Recruited CTLs express activation markers such as
granzyme B and IFN-y, as well as CTLA-4 and PD-1 re-
ceptors, which also play immunosuppressive functions.

High CTL population in inflamed tissues can be
controlled with steroid therapy, which triggers T cell
apoptosis. Taking advantage of the binding of «437 integrin
CTL protein and mucosal vascular addressing cell adhesion
molecule-1 (MAdCAM-1) expressed on intestinal epithelia,
the use of anti-integrin such as vedolizumab has shown ef-
ficacy in steroid-refractory ICI-induced colitis.>” For ICI-
induced hepatitis, steroids are also first-line therapy.
Immunosuppression medications such as azathioprine,
mycophenolate mofetil, or tacrolimus used as anti-rejection
medications in post-liver transplant period are second-line
medications for steroid-refractory ICI-related hepatitis.
Similarly anti-thymocyte globulin, used in cases of severe
liver allograft rejection, has also been proposed as third-line
medication in fulminant ICI-induced hepatitis.*® Although
sequential use of these therapies have proven to be safe pre-
transplant, this existing data ought not to be extrapolated to
the use of ICIs after liver transplantation given different
immune microenvironment.

Transplant Immunology

The liver is one of the most important immunological
organs of the human body containing a rich innate immune
cell microenvironment that aims to achieve immune ho-
meostasis, balancing antigen tolerance and inflammatory
response in the presence of harmful antigens.*” Its unique
anatomic localization continuously exposes it to different
antigens from the gastrointestinal tract through the portal
vein flow. Upon liver transplantation, donor graft hemato-
poietic cells are transferred to the recipient where they
undergo chimerism or replace the host’s immune cells. This
promotes long-term tolerance and improves graft survival
of simultaneous organ transplant.*” After allograft is placed
into the recipient, hepatocytes that have undergone tran-
sient ischemia release pathogen-associated molecular
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patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs), inducing toll-like receptors (TLRs) activa-
tion on donor’s APCs, which results in an inflammatory
response in lymph nodes. This ischemic reperfusion injury
occurring when blood flow is reestablished to the graft,
augments the inflammatory response leading to host
neutrophil infiltration followed by other APCs, cytokine
secretion, and massive activation of T cells, either by re-
cipient’s or donor’s APC that have processed the anti-
gens.*"*? This results in a majority of host T cell death.
However, a subset of T cells proliferates and migrate to the
allograft, while the remaining differentiate into Tyem. APCs
become saturated by antigen release, which dampens the
inflammatory I'esponse.40 Different studies have, however,
found that this is achieved by activation of different path-
ways, such as TIR and IRAK-M signaling, angiogenesis, and
oxygen tissue restoration via vascular endothelial growth
factor (VEGF) secretion, inhibitory cytokine secretion such
as IL-10, and T, production. Additionally, removal of
apoptotic material by phagocytic cells, and expression of
anti-inflammatory lipid mediators such as aslipoxins,
resolvins, and protectins promote a reduction of neutrophil
recruitment and inflammatory response, thereby creating a
tolerant environment.****

Failure to regulate this initial immunologic response will
result in the release of hyaluronan, glycosaminoglycan, and
uric acid, as well as pro-inflammatory cytokines secretion in
the microenvironment by injured hepatocytes that play a
role in the early acute T-cell medicated rejection (TCMR).*®
The uptake of antigens by recipient APCs to present to T
cells are characteristic of late acute TCMR. In the attempts to
repress this early rising inflammatory response, immuno-
suppressants like calcineurin inhibitors (CNIs), steroids,
mycophenolate mofetil, and sometimes IL-2-depleting
therapies are administrated during the early stage of liver
transplantation. Immunotherapy at this critical stage would
antagonize the efforts of controlling the inflammatory
response by blocking T-cell apoptosis and reinforcing T cell
activation, risking graft survival and thereby recipient’s
survival.*

The use of ICIs in clinical trials has been excluded in
patients who have received an organ transplant, empha-
sizing the lack of data in their safety, efficacy, duration, and
administration window from transplantation. In mice, ICI
use induced rejection in already tolerant mice,*” and scarce
literature of their use in liver transplant recipients have
demonstrated high rates of rejection. Case reports of ICI use
in post-liver transplant patients with solid tumors including
HCC and melanoma demonstrated rejection in 36% of them,
regardless of Ipilimumab or pembrolizumab use.*” Those on
calcineurin monotherapy had the lowest rejection rate
happening in a median time from transplantation of less
than 5 years. High-dose steroids, discontinuation of ICI
therapy, and dialysis was required to treat this TCMR.
Despite attempts to control rejection with these in-
terventions, graft loss was reported in 81% of patients.*®*®
Interestingly a cohort of 17 patients who had undergone
kidney transplantation showed a lower rate of rejection (2
of 17 cases); one of these cases was salvaged by plasma
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exchange and anti-thymocyte therapy.*” This suggests that
the type of baseline immunosuppression therapy at the time
of ICI therapy initiation may provide protection against graft
rejection.

Memory T Cells in Tolerance

After initial inflammatory insult, remaining memory T
cells are divided into highly proliferative central memory
(Tcm) T cell, effector memory (Tgm), and tissue resident
memory (Trym) T cells. Tcy express high levels of CCR-7 and
CD62-L and are located in secondary lymphoid organs,
whereas Tgy reside in the peripheral compartments. Tgry
express CD69, which interferes with cell surface expression
of sphingosine 1 phosphate (S1P1), required for exiting
lymph node and for blood circulation, thereby ensuring
tissue retention.’® Try reside in barrier tissue epithelia such
as skin, intestine and liver sinusoidal endothelial cells in the
liver with high expression of CD103 and CD69 retention
markers and low CD62L. In the liver, Try upregulate E-
cadherin ligand and express CXCR3 involved in tissue
homing, and CD14 that mediates TLR-4 activation upon
exposure to lipopolysaccharide (LPS).°" Try readily re-
sponds to relapsing injury upon antigen presentation,
releasing IL-2 and IFN-vy to recruit circulating T cells, acti-
vate DCs and NK cells, and maintain effector Tgy response
even if they express exhaustion markers CD39 and PD-1.°!

Clonal rearrangement and pathway analysis has
demonstrated that CTLs share identical TCR than Tgy in
patients with colitis following ICI therapy suggesting dif-
ferentiation of these Try into CTLs, explaining colitis as
adverse event during ICI therapy.”” In tumor immune
microenvironment (TIME) of hepatobiliary cancer, Tgry in-
duction and maintenance is less understood. Patients with
HCC harbored higher population of CD1037CD69  Try-
expressing immune checkpoint receptors PD-1, T cell
Immunoreceptor with Immunoglobulin and ITIM domain
(TIGIT) and/or T-cell immunoglobulin mucin-3 (Tim-3)
compared with patients with CCA, suggesting better HCC
response to ICI therapy.”® Indeed, patients with prostate,
melanoma, lung, and kidney cancer responding to ICI ther-
apy have a higher Tgy population.”

In liver transplantation, majority of Try are derived from
donor allograft and can remain years after transplantation.
As the liver graft is exposed to new antigens via its portal
blood flow, lymphocytic population is replaced over time
with de novo regeneration, in which Try subpopulations
differ by their CXCR3 levels whereby CXCR3"&" Tgy are
donor derived.”® CD691CD103" Try and tissue resident NK
cells have been detected in allografts and draining lymph
nodes a decade after liver transplantation.”>”° Lung trans-
plantation studies have shown that preservation of donor
Trm have been associated with less episodes of allograft
rejection.”” However, it is unclear how Try plays an
immunomodulatory role in liver transplant recipients and
their response to recurrent malignancy.

Use of ICI after solid organ transplant showed mixed
results. Liver transplant recipients exhibited acute cellular
rejection (ACR) in 28.8%.°° Of recipients, 13.4% died due to
graft loss, whereas 44.2% of them achieved tumor control
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associated with longer overall survival of 26.4 months
compared with 3.4 months in non-responders. Tumor
expressing PD-L1 was associated with ACR rejection after
ICI therapy in a small number of patients. However, this
effect may be salvaged by high quantity of tumor infiltrating
lymphocytes.””®° Rejection has been observed with a higher
frequency when receiving anti-PD1 therapy compared with
anti-CTL4 agents, suggesting use of CTL-4 in patients with
tumor PD-L1". Nevertheless, the number of reported cases
treated with anti-CTL-4 therapy was lower compared with
the patients treated with anti-PD-1 therapy.**®' The
mechanism of ICI-mediated rejection is unclear and the
immune phenotype of infiltrating T cells that are protective
against ACR episodes has not been characterized.

TCR engagement with MHC is not enough to induce a full
T cell activation and requires a costimulatory signal such as
CD28 activation. CD28 is constitutively expressed on T cells
and provide the costimulatory signal to full activated T cells
when it is bound to CD80/CD86 expressed on APC. CTLA-4
competes with CD28 for the binding of CD80/CD86. How-
ever, CTLA-4 has a higher affinity for CD80/CD86 than
CD28. Thus, CTLA-4 binding to CD80/86 inhibits the cos-
timulatory signal from CD28 by binding competition,
resulting in downregulation of CTL inflammatory
response.'” Consequently, blocking CTLA-4 with ICI risks to
induce graft rejection after liver transplantation. Pre-clinical
models of mice treated with anti-CTLA-4 antibodies on day
0, 4, and 6 post liver transplant demonstrated acute rejec-
tion within 15 days post-transplantation. These mice
showed a significant increase of host splenic T cells, graft
donor CD8" and CD4" T cells, and less apoptotic graft
infiltrating T cells, leading to focal necrotic areas and severe
liver injury. CD3™ T cells purified from both graft and spleen
of treated mice exhibited higher secretion of inflammatory
cytokines IL-2 and IFN-y, whereas secretion of the anti-
inflammatory cytokine IL-4 was decreased compared with
control mice.*” Similar findings have been described in mice
undergoing cardiac transplant and in CD28-deficient mice
treated with anti-CTLA-4.°* CD28 antagonist treatment in the
first 2 weeks of cardiac transplant mouse model in combi-
nation with CNI or anti-CD157 prolonged heart allograft
tolerance associated with an increase of CD4 " FOXP3" Tiegs
and regulatory DCs. Alloantibodies were also observed to be
suppressed, suggesting a protection against chronic rejec-
tion.°® Although the therapy was given in an early stage post-
transplantation compared with current clinical care, blocking
CTLA-4 in the early liver transplantation period can jeopar-
dize the induction of graft tolerance.

CTLA-4 agonists such as abatacept have been investigated
in their potential role in transplant tolerance. Cardiac trans-
plant mice treated with abatacept showed less alloantibodies
associated with a longer graft survival, but no increase in Tyegs
population was observed.”®> CTLA-4 agonists have shown to
be beneficial in kidney transplant recipients presenting a high
risk of antibody-mediated rejection (AMR) in presence of
donor-specific antibodies. Moreover, studies in non-human
primates, treated with calcineurin inhibitor and belatacept
after kidney transplantation, demonstrated that alloantibodies
and germinal centers were reduced and graft survival
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increased compared with standard care, using calcineurin
inhibitor, mycophenylate, and steroids. However, CTLA-4
agonist-CNI combination therapy was associated with higher
cytomegalovirus (CMV) infections requiring chronic use of
CMV prophylaxis, as therapy could not be tapered without
risk of alloantibody recurrence or graft rejection.* Further
clinical trials demonstrated efficacy and better kidney graft
function when using CTLA-4 agonist-CNI combination for
initial therapy or after conversion from CNI therapy. Transi-
tion to this therapy reduced immunosuppression-related side
effects, particularly CNI-related nephrotoxicity, at a cost of
more ACR episodes, and risk of Epstein-Barr virus (EBV)-
associated post-transplant lymphoproliferative disorder in
EBV' donor grafts or EBV unknown receipients.”” CTLA-4
agonists are also used off-label for AMR in cardiac and lung
transplant recipients.”>®” In liver transplant recipients, its use
has demonstrated mixed results, with reports of early graft
loss and infections resulting in death, for which it is currently
limited for use as salvage therapy.®®

The PD-1/PD-L1 pathway plays a central role in post-
transplant tolerance.®” Indeed, early studies of cardiac
transplant in double deficient CD28 and CD80/CD86,
recipient mice treated with PD-L1 inhibitor showed an
accelerated rejection, associated with a higher infiltration of
CD4" Tgy cells.”® A fully MHC-mismatch cardiac transplant
mouse model treated with a CTLA-4 recombinant protein
fused with Ig H chain tail (CTLA4Ig) that blocked CD80/
CD86 signal, exhibited ACR when anti-PD-L1 was adminis-
trated, regardless of the administration period compared
with mice treated with CTLA4Ig alone. T cell population
analysis demonstrated that infiltrated CD8" Ty population
was augmented, where CD4" Treg was reduced in mice
treated with combination therapy compared with the group
receiving CTLA4Ig monotherapy. The group treated with
combination therapy exhibited increased inflammatory
infiltrate, vascular obliteration, and scattered tissue necro-
sis. To explore the mechanism of tolerance behind PD-1/PD-
L1 pathway more deeply, the authors performed cardiac
transplantation into PD-L1 deficient mice and observed a
significant shorter graft survival compared with wild-type
mice after CTLA4lg therapy with a similar histology
observed in double CD28 and CD80/CD86 deficient mice. In
addition, to determine whether host or recipient PD-L1 is
more important in tolerance, they performed a trans-
plantation of PD-L1 deficient heart into wild-type mice
treated with CTLA4Ig. Although graft was accepted, severe
chronic rejection was observed 3 months post trans-
plantation in PD-L1-deficient recipient compared with wild-
type graft, which showed protection against chronic rejec-
tion. This study highlights the importance of host PD-L1 and
PD-L1" APCs being critical in the induction and mainte-
nance of graft tolerance, whereas PD-L1 in the graft pre-
vents chronic rejection and local inflammatory.”* In liver
transplantation, however, graft PD-L1 is critical in the in-
duction of graft tolerance. Indeed, PD-L1-deficient liver
transplanted in allogeneic recipient mice resulted in an
acute graft rejection.®® This observation can be explained by
its unique tolerogenic features and specific immune micro-
environment composed of a large population of resident
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macrophages that allow it to immunosuppress unnecessary
inflammatory response.””

Immunosuppression in Post-transplant Tumor

Recurrence

ACR episodes have been correlated with higher post-
transplant survival, particularly in patients with hepatitis B
virus-related HCC, whereas ACR patients treated with steroids
were associated with higher HCC recurrence.”* Mammalian
target of rapamycin (mTOR) inhibitors such as sirolimus both
interfere with cancer cell metabolism and proliferation and
serve as an immunosuppressant agent. In patients with active
HCC associated with elevated AFP at the time of transplant,
administration of mTOR inhibitor for at least 3 months
showed higher overall survival, delayed HCC recurrence, and
improved survival after tumor recurrence.”* The recurrence-
free and overall survival advantage in patients receiving
sirolimus was only seen in the first 3 to 5 years after trans-
plant compared with patients receiving mTOR-free in-
hibitors.”® In patients with HCC recurrence post-transplant,
higher concentration level of mTOR inhibitor in combination
with sorafenib lead to higher overall survival compared with
non-mTOR inhibitor use as immunosuppressant agent.76
Despite these known benefits, mTORs are not uniformly
used in malignancy-related liver transplantations.

Immunosuppression with CNIs such as tacrolimus has
been extensively debated to increase risk of malignancies
particularly with long-term exposure.”” And though retro-
spective analysis of liver transplant recipients showed that
ACR episodes were less frequent in patients with HCC un-
dergoing liver transplantation, the occurrence of malignancy
post-transplant often reflexes providers to decrease immu-
nosuppression to enable anti-tumor response. Earlier studies
demonstrated high liver graft rejection rates following ICI
therapy of 37.5% in the setting of no immunosuppression or
steroid-only therapy. Survival after ICI exposure from rejec-
tion was higher in patients who had an additional immuno-
suppressive agent to steroid therapy.”®’? Indeed, recent
analysis has suggested that at least a combination of 2-
immunossupressor regimen is associated with a lower risk
of rejection after ICIs. Moreover, rejection rate decreased
with longer post-transplantation.”” A delay in ICI initiation
upon tumor diagnosis was also associated with decrease in
efficacy, suggesting consideration of earlier ICI use as
opposed to using it as salvage therapy. These recent analyses
also demonstrated disease progression as a leading cause of
death as opposed to graft failure demonstrated by earlier
studies, and demonstrated better clinical outcomes when ICIs
were used for non-HCC diagnosis. Still, these conclusions are
taken from case series and systematic reviews, for which
prospective and randomized studies are needed to draw
more certain conclusions.”’

Mechanisms of Resistance to ICls
Tumor Intracellular Resistance Mechanisms
Despite the promise of ICI use in liver tumors and cancer
treatment prior to liver transplantation, tumor recurrence
and progression can still be observed owing to the tumor’s
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ability to evade the immune system. Although mechanistic
studies of tumor resistance have been done in non-
transplant settings, one can extrapolate tumor recurrence
post-transplant by the mechanisms outlined below. Cyto-
toxicity from anti-tumor immunity and ICIs induce a pres-
sure selection on tumor cells that promote cells with
survival advantages, fostering the emergence of immune
resistant tumor cells and resulting in the tumor relapse®'
(see Figure 1). Although ICI treatment aims to unleash
CTLs response, efficiency of the CTLs cytotoxicity depends,
in part, on their capacity to identify tumor or the presen-
tation of TAAs by the MHC-I complex at the surface of the
tumor cells.

MHC-I-peptide complex or human leukocyte antigen I
(HLA-I) is composed of the antigen and a glycopolypeptide
that is non-covalently associated to the ($2-microglobulin
(82M) subunit, which is essential in the transport of MHC-
peptide to the surface.®’? One of the strategies employed
by tumor cells to overcome ICI-induced T cell cytotoxicity is
to reduce antigen presentation by frameshift deletion in the
82M exon, resulting in impaired T cell activation.”® Epithe-
lial cancers, such as HCC, frequently overexpress epidermal
growth factor receptor (EGFR), which can be mutated into a
constitutively active state, or be continuously activated by
EGFR ligand such as TGF«a and epidermal growth factor
(EGF) that are abundant in the TIME. In vivo and in vitro
studies described a reduction of MHC-I expression by EGFR,
which can be reversed by EGFR inhibitor gefitinib.”*

During cancer progression, tumor cells undergo rapid
proliferation, resulting in accumulation of genetic muta-
tions. Neoantigens are the byproduct of mutations, and
transcription and post-transcriptional alterations specific to
tumor cells. Neoantigens are associated with inflammatory
response and overall, with higher and durable effector T cell
response. In addition to reducing MHC membrane expres-
sion to avoid CTLs recognition, cancer cells can reduce their
neoantigen production to evade immune response.85

Studies have demonstrated that tumor cell DNA hyper-
methylation silences genes and facilitates T cell evasion.
DNA methyltransferase 1 (DNMT1) and enhance of zeste
homolog 2 (EZH2), the catalytic subunit of histone 3 lysine
27 (H3K27) methyltransferase system, is upregulated in
melanoma cell lines treated with anti-CTLA-4 and correlate
with inhibition of genes related to antigen processing, an-
tigen presentation, chemokine expression, and increase of
exhausted T cells (Tgx and FOXP3"Tregs).”® Inhibition of
DNMT1 and EZH2 by GSK1260 and 5-AZA-dc restored
CXCL9 and CXCL10 chemokine secretion, and reconstituted
T cell migration to the tumor in mice with ovarian cancer.®”
Moreover, methylation of PD-L1 promoter, PDCD1LG1, has
been associated with resistance to PD-1 inhibitor nivolumab
in patients with non-small-cell lung cancer, whereas low
methylation on CTLA-4 promoter in patients with melanoma
has been correlated with ICI treatment response and
increased overall survival.®**®? The combination of ICI with
DNA demethylating agents achieves significant higher tumor
growth inhibition compared with ICI therapy alone.”

Cytotoxic T cell function is also impaired by high levels
of circulating IL-6, correlating with poor ICI response. Janus
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Figure 1. Intracellular mechanism of tumor cells to evade anti-tumor immune response. Tumor cells lead to dysfunctional
MHC-I expression via: (1) Constitutive EGFR activation reduces MHC-| expression through an unclear mechanism; (2)
Upregulation of DNMT1 and H3K27 methyltransferase complex that silences MHC-I gene via hypermethylation; and (3) Exon
deletion of 32-microglobulin gene results in the loss of g2-microglobulin subunit of MHC-I, resulting in abnormal TAAs pre-
sentation and dysfunctional T cells activation. Tumor cells also induce tumor-infiltrated lymphocyte (TIL) apoptosis by over-
expression of FAS ligand, which bind FAS receptors on TIL. Tumor IL-6 receptor activation leads to phosphorylation and
nuclear translocation of STAT3, which promotes transcription of genes involved in migration, proliferation, and tumor cell
survival. STAT3 phosphorylation is facilitated by SOCS gene silencing via DNA hypermethylation.

kinase/signal transduce and activator of transcription 3
(JAK/STAT3) is an IL-6R downstream pathway activated in
response to high circulating IL-6. In normal tissue, STAT3 is
inhibited by the expression of suppressor of cytokine
signaling (SOCS) proteins. In tumor, SOCS promoter un-
dergoes hypermethylation, silencing SOCS gene expression
and leading to abnormal activation of STAT3, resulting in
cell proliferation, migration, and survival via anti-apoptotic
genes Bcl-2, Bcl-xL, and Mcl-1.°%? Tocilizumab, an IL-6R
inhibitor, and ruxolitinib, an inhibitor of JAK1/2, reduced
tumor cell survival and proliferation in liver tumor cell
lines.”*%*

CCA cells overexpress Fas ligand (FasL) and have dys-
regulation of Fas receptor (FasR).”* FasL-FasR is a cell death
pathway playing a central role in tumor modulation and
cancer progression. CCA cells are able to induce lymphocyte
and NK cell apoptosis via the Fas pathway and increase their
expression of anti-apoptotic protein c-FLIP and BCl-2 to
avoid their own cell death.”® TNF-related apoptosis-
inducing ligand (TRAIL) induces apoptosis by binding its

cognate receptors TRAIL-R1 or TRAIL-R2, which are over-
expressed on tumor cells. TRAIL agonist therapy raised
hope in immune oncology but failed in human clinical trials.
Recently, a study showed that CCA cells overexpressed
TRAIL and bind TRAIL-R on myeloid-derived suppressor
cells (MDSCs) to promote MDSC survival through a non-
canonical activation of the NFkB pathway.”® This mecha-
nism promoting MDSCs survival could explain the failure of
TRAIL agonists in human clinical trials.””

Cancer Cells Modulate the Tumor Immune
Microenvironment to Evade CTLs

TIME is complex, continuously evolving and restructur-
ing the stroma, endothelial, and immune cells. Cancer cells
modulate these different TIME parameters to evade the
immune cells (Figure 2). Cancer-associated fibroblasts
(CAFs) play a central role in stroma and cancer cell support
by secreting growth factors, cytokines, and extracellular
matrix proteins, which promote tumor proliferation and
therapeutic immune resistance.”® Although fibroblasts are
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wound-healing specialized cells activated by an inflamma-
tory response, CFAs are recruited and activated by both
cancer cells chemokine secretion such as tumor growth
factor beta (TGF(), platelet-derived growth factor (PDGF),
and fibroblast growth factor (FGF), and by the inflammatory
response at the tumor site.””"%°

CAFs are sources of numerous cytokines and chemo-
kines involved in the modulation of the TIME, such as IL-
6.1°1 Activation of STAT3 by IL-6 increases IL-10 secretion
by the liver resident macrophages Kupffer cells, preventing
NK cell activation. It also lowers CD80 and CD86 expression
on APCs, suggesting poor APC activation, and switches
dendritic cell (DC) progenitors from having antigen-
presenting ability to a phagocytic-like action in chol-
angiocarcinoma.' % This is associated with poor response to
both PD-1 and CTLA-4 inhibitors, although the mechanism is
not fully understood. High levels of circulating IL-6 were
associated with poor response to atezolizumab, but
combining anti-PDL-1 and anti-ILR-6 therapy increased
cytotoxic T cell response to achieve tumor growth
inhibition.'*?

To stay undetectable by the immune system, cancer cells
can induce T-cell exhaustion (Tgyx), a state of CTL dysfunc-
tion characterized by poor effector function. Tgx have
important expression of inhibitory receptors such as PD-1,
Tim-3, lymphocyte activation gene-3 (LAG-3), TIGIT, and
V-domain Ig suppressor of T-cell activation (VISTA).'** Tgy
is induced by a chronic inflammation, resulting in progres-
sive loss of function, improper activation, expression of
inhibitory receptors, impaired cytokine secretion, and
inability to respond to IL-7 and IL-15 stimulation.'’”
Interestingly, PD-1 blockade induces upregulation of natu-
ral killer cells triggering receptor 1 (Nktrl) in a lung cancer
subtype with Kras/p53 mutation, which activates JAK/
STAT3 pathway leading to PD-L1 overexpression and CTL
exhaustion. Thus, Nktrl upregulation provides a survival
advantage to the tumor cells under immune pressure.'%°
TIM-3 has been described to be regulated by PI3k/Akt
pathway in the CTLs and can be co-expressed with PD-1.
Anti-PD-1 therapy in a lung cancer mouse model upregu-
lates TIM-3 expression in CTLs resulting in PD-1 ICI
resistance.'’’

Tumor progression necessitates an important quantity of
energy where it uses up large quantities of the available
nutrient and oxygen, setting up a TIME poor in glucose and
oxygen, and forcing the different cells to use different
metabolism pathways.'”® Low glucose levels impaired CTL
activation and restrained anti-tumor immune response.
Pathway analysis of genes that correlated with T cell
exhaustion in HCC revealed those involved in glycolysis and
methionine  degradation, leading to  higher 5-
methylthioadenosine (MTA) serum levels. The liver, being
a prime organ for metabolism, allows upregulation of
GLUT1 and GLUT2 for glucose uptake in HCC. Both HCC and
CCA demonstrate overexpression of hexokinase to convert
glucose to glucose-6-phosphate for glycolysis, and adopt de
novo fatty acid synthesis to aid in membrane synthesis and
to use as energy source in the form of carbon dioxide via
oxidation.'’”''” Hence, dysregulation of lipid metabolism
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has been correlated with poor outcomes, and aberrancies
have been noted in the pentose pyrophosphate pathway,
hexosamine biosynthesis pathway, TCA metabolites, and
nucleotide metabolism."' "'

Immune cells must also adapt to lower aerobic respira-
tion. Tyegs switch to anaerobic metabolism under low
glucose and hypoxia conditions as they increase GLUT1
expression, which continues to allow their proliferation in
the tumor microenvironment."’* Metabolites in the TIME
also regulate the immune response. Glutamine depletion
impairs T cell differentiation into memory phenotype
through epigenetic remodeling. Similarly, low arginine
levels impeded IFN-y production, cytotoxic nitric oxide
production, and NK cell differentiation."’*'"* Upregulation
of indoleamine 2,3 dioxygenase (IDO) enzyme that catalyzes
the conversion of tryptophan to its metabolite kynurenine,
induce T, and MDSCs, while ablating effector T cell
response and proliferation.'*® CAFs play a role in trypto-
phan depletion with accumulation of kynurenine, which
induces a T, phenotype upon interaction with Wnt5a-
ligand secreted by tumor cells."'” CAFs upregulate expres-
sion of fibroblast activating protein-a (FAP), which aids in
angiogenesis, epithelial-mesenchymal transition to allow
tumor metastasis, and extracellular remodeling via collagen
I cleavage to increase macrophage adhesion and prevent T
cell tumor penetration.**®

Cancer cells induce vessel growth and proliferation to
facilitate their metastasis and removal waste via a process
called angiogenesis. However, this neovascularization is
abnormal as they are leaky and unevenly distributed, lead-
ing to a poor tumor perfusion with low pH and hypoxia,
promoting tumor growth, spread, and apoptosis resistance,
and impairs drug delivery to the tumor site."*? In HCC,
HIF1q, a hypoxia marker, mediated FAP expression and was
associated with worse overall survival.'?"

Tumor-associated macrophages (TAMs) are regarded as
the main tumor immune suppressive cells involved in
angiogenesis, immune suppression, tumor invasion, and
progression.'”" TAMs’ infiltration and differentiation are
driven by tumor cells through cytokine secretion such as
CSF1, CCL2, or IL-4, but also by the TIME itself, such as
extracellular matrix composition and hypoxia."** In CCA,
TAMs are the main source of PD-L1, inducing CTL exhaus-
tion and promoting CCA tumor progression.'** In addition,
TAMs express inducible nitric oxide synthetase (iNOS) and
arginase-1 (Argl), 2 enzymes involved in catabolism of L-
arginine, an amino acid required in CTL activation and
proliferation. L-arginine depletion in TIME causes reactive
oxygen species (ROS), inhibiting CTLs."** TAMs also secrete
cytokines such as IDO, IL-10, and CCL17, inducing T, dif-
ferentiation and recruitment, which inhibits CTL
infiltration.'*

MDSCs also release reactive nitrogen species that acti-
vate and modify CCL2 chemokine, attracting monocytes and
macrophages to the tumor microenvironment, but inhibiting
T cell entry, trapping them in the stroma that surrounds the
cancer.'?® MDSCs are immature myeloid cells from mono-
cyte or neutrophil lineage with immune suppressive func-
tion, which promote tumor immune evasion and ICI
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Figure 2. Complex interaction of tumor cells with the TIME to evade anti-tumor immune response. Tumor cells induce T
cell exhaustion through: (1) immune checkpoint activation resulting in T cells apoptosis; (2) recruitment of immune suppression
cells such as TAMs, MDSCs, Tregs, and CAFs, via cytokine and chemokine secretion; and (3) tumor metabolism, which in-
duces hypoxia, low glucose, and depletion of metabolites in the TIME. Tumor cells preferentially uptake glucose, leading to
accumulation of MTA and kynurenine, along with depletion of glutamine and arginine in TIME. These metabolites are also
secreted by CAFs; they promote Tregs along with cytokines and ROS secretion by TAMs and MDSCs. IL-6, a central cytokine,
induces differentiation of resident macrophages such as Kupffer cells into TAMs. and decreases CD80/86 on APCs. Tumor
cytokine secretion stimulates angiogenesis, CAFs, TAMs and MDSCs, which promote tumor metastasis. CAFs secrete
extracellular matrix, which form a dense physical barrier and limit T cells tumor infiltration.

resistance. In CCA, MDSCs are the second source of PD-L1
after TAMs and are recruited by CAF-derived CXCLZ2.
Moreover, MDSCs’ TIME infiltration is increased in response
to immunotherapy targeting TAMs, highlighting their role in
ICI resistance by a compensatory effect.'*?

The microbiome influences response to ICI therapy via
crosstalk between immune system and micro-organism-
associated molecular patterns.'”’” Microbiome forms an
additional layer of epithelial barrier, and microbial epitopes
are often shared with neoantigens on tumor cells. When the
epithelial barrier is disrupted, such as in dysbiosis in the
setting of antibiotic treatment, microbes and their metabo-
lites leak, increasing inflammation and contributing to ICI
resistance. Fecal transplantation from ICI responders into

germ-free mice demonstrated better tumor regression with
ICI therapy compared with those receiving transplant from
nonresponders.’?® Clinical trials of combination fecal
microbiota transplant (FMT) with PD-1 therapy for meta-
static melanoma have shown promise, but further studies
are needed to elucidate how the microbiome impacts ICI
response in HCC and CCA.**°

Future Directions

Immunotherapy is a promising therapy for solid tumors,
including HCC and CCA, and has the potential to revolu-
tionize cancer care even in the peri-transplant period.
However, tumors harbor and acquire resistance to ICI via
complex and multiple mechanisms that highlight the
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challenges to control cancer progression, stressing the
importance of identifying new therapeutic targets and ap-
proaches to overcome resistance that can also be used in the
peri-transplant setting. HHLA2, TIM-3, LAG-3, and TIGIT are
cell surface proteins expressed on immune cells that are
potential targets of immune-checkpoint blockade.

HHLAZ2 is a transmembrane protein member of the B7
family expressed on APCs and stimulated B cells, also
overexpressed in solid tumors including HCC and intra-
hepatic CCA, thus being a possible target for therapy. Its
interaction with killer cell Ig-like receptor, 3 Ig domains, and
long cytoplasmic tail 3 (KIR3DL3) reduces T cell prolifera-
tion and function in HCC via activation of JAK/STAT
signaling pathway associated with immune tolerance and T
exhaustion.”*° High HHLA2 expression has been associated
with worse prognosis and poorly differentiated tumors, and
its co-expression with PDL-1 correlated with higher mor-
tality and worse tumor progression in both HCC and
CCA."*%'*! HHLA2 is a promising alternative to PD-1/PD-L1
ICIs. Indeed, HHLA2 expression is typically inversely corre-
lated with PD-L1 expression in cancer cells. Negative PD-L1 or
PD-1/PD-L1 ICl-resistant tumors could be targeted via this
new immune checkpoint pathway.'** Thus, new ICIs targeting
HHLA2 and another targeting KIR3DL3 are currently in phase
Ia/Ib clinical trial for various cancers including CCA with anti-
KIR3DL3 (NTC05824663 and NTC05958199).** LAG-3 and
TIGIT are transmembrane proteins of the Ig superfamily
expressed on CD4" and CD8'T cells, Treg, and NK cells.
Although LAG-3 has higher affinity for MHC-II than CD4 T-
cells, thereby decreasing T cell-activation, TIGIT exerts its
effect by binding PVR ligand on tumor cells, decreasing TCR
expression and cytotoxic response.’** LAG-3 and TIGIT
expression correlate with poor prognosis, but their blockade
has shown to be useful in anti-tumor activity with infiltration
of CD8' T cells, increased T cell proliferation, and longer
progression-free survival in HCC."*

TIM-3 is a surface glycoprotein expressed on CD4" and
CD8™T cells, Treg NK cells, and myeloid and mast cells that
halts T cell activation after binding to ligands on tumor cell
surface or released by apoptotic tumor cells. These ligands
include carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) and galectin-9 (gal-9), which are
differently expressed on tumor cells, whereas high mobility
group protein B1 (HMGB1) and phosphatidylserine (PtdSer)
ligands bind TIM-3 as they are released from tumor cells
undergoing apoptosis."”*® TIM-3 is upregulated on tumor
cells after PD-1 therapy and in cells with acquired ICI
resistance, for which dual PD-1 and TIM-3 therapy for
cancer therapy is being explored in clinical trials. Interim
analysis of phase II clinical trial of anti-TIM-3 cobolimab in
combination with anti-PD-1 dostarlimab in patients with
HCC showed objective response rate of 46% with mild
adverse events."?” Although there are several clinical trials
ongoing for ICIs targeting LAG-3, TIGIT, or TIM-3 immune
checkpoints, they show clinical efficiency in association with
PD-1 or PD-L1 ICIs, thus limiting their potential efficacy in
PD-1/PD-L1-negative patients.

Other potential targets for immunotherapy in HCC and
CCA include CD112R and glucocorticoids-induced TNF
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receptor family-related (GITR) proteins, which have also
had favorable preliminary results, although clinical trials are
needed to test their efficacy in these tumors."*®'*° The
infusion of patients’ derived T-cells after they are engi-
neered to target cancer cells and the use of cancer vaccines
are additional treatment strategies aimed at raising an im-
mune response against tumor cells; their efficacy in HCC still
needs validation through clinical trials, although their
application in CCA has been limited to pre-clinical
models."*"

Additional therapies to modulate TIME could reduce
tumor progression in the pre transplant period with limited
negative events compared with ICI therapy. ICIs may be
used in combination with alternative treatments or as
sequential therapy to maintain an anti-tumor response.
ProAgio, an integrin av@3; antagonist, targets CAFs and
vascular endothelial cells to mediate their apoptosis by
recruiting caspase 8 in mice with breast cancer. They also
cause collagen breakdown, and reduce EGF, PDGF, and in-
sulin growth factor 1 (IGF1). These effects decrease tumor
proliferation, angiogenesis, and metastasis; the latter acting
through lowering lysine oxidase (LOX) levels normally
secreted by myofibroblasts and CAFs, which is responsible
for collagen cross-linking.'** Focal adhesion kinase (FAK) is
a nonreceptor tyrosine kinase that is overexpressed in hu-
man pancreatic ductal adenocarcinoma (PDAC). FAK1 is
associated with lower CTL tumor penetration, tumor pro-
liferation, and immunosuppressive TIME, although the
mechanism is not well understood. Reducing expression of
FAK1 led to decrease in tumor collagen formation with
reduction in profibrotic factors CXCL20, CCL20, and CCL6.
Low FAK1 also decreased FAP-expressing fibroblasts and
reduced infiltrating MDSCs, while it increased CTLs infil-
tration. Mice with PDAC treated with FAK inhibitor VS-4718,
gemcitabine, and anti-PD1 demonstrated reduction in
fibrosis, increased CTLs infiltration, and higher survival.}*?
FAK1 inhibitor is currently undergoing clinical trial in
those with advanced pancreatic cancer,"* but may serve as
additional therapy in other stroma-dense tumors such as
intrahepatic CCA.

Chimeric antigen receptor (CAR) T cells are synthetically
engineered T cells that have shown promise in HCC. These
CAR T cells targeting glypican-3 (GPC3) overexpressed in
HCC or in combination with CAR T targeting TGFg,
demonstrated partial response in 2 of 13 subjects with
advanced HCC."** T-cell receptor transduced (TCR) T cells
designed to recognize TAAs are also being considered,
particularly in HCC tumors overexpressing AFP, with pre-
liminary clinical trial results showing stable disease in 64%
of the participants. Both types of engineered T cells have the
potential side effect of activating an acute inflammatory
cytokine response, leading to life-threatening multiorgan
damage."*® This suggests this therapy modality is an un-
suitable application in the peri-transplant setting, at least in
their present form.

Conclusion
As tumor biology becomes more clear, elucidating new
targets for therapy, it is also becoming more evident that ICI
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therapy alone may not be truly curative, given mechanisms
of resistance as abovementioned, at least for HCC and CCA.
Multimodal therapies for HCC and CCA such as ICI therapy
and liver transplantation need consideration where addition
of ICI as adjuvant therapy has the potential of changing the
natural history of the disease and preventing tumor relapse.
ICI use pre-liver transplantation has the benefit of
addressing micro-metastasis pre-transplant, reducing tumor
burden, avoiding patient wait-list dropout, and may prevent
post-transplant recurrence. However, ICI therapy may ach-
ieve more impactful results and decrease tumor recurrence
if combined with therapies targeting distinct mechanisms
aside from immune checkpoints such as demethylating
agents, CAFs, tumor metabolites, and even microbiome
modulation.

Cancer cells acquire immune resistance by hijacking
immune self-tolerance and inflammatory gate-keeper
mechanisms, such as by expression of immune checkpoint
proteins and modulation of their microenvironment. ICI use
before and after transplantation requires a tight balance
between tolerance and effective anti-tumor response. ICI
use in the post-transplant period risks graft loss and overall
survival, but promising data in post-kidney transplant sug-
gests therapy is possible after liver transplantation, likely
needing personalized regimens that do not interfere with
immunosuppression therapy. Adjusting the type of ICI, dose,
and timing based on drug half-life and type of patient may
mitigate the risk of adverse events, including rejection post-
transplantation. Further data is needed on the mechanisms
of ICI effect on graft tolerance and ICI interaction with
immunosuppression in the post-transplantation period to
better ascertain safety of this class of drugs and efficacy on
combination therapy to achieve disease remission.
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