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Abstract

Background: Alzheimer’s disease (AD) prevalence is rapidly growing as worldwide populations grow older. Available
treatments have failed to slow down disease progression, thus increasing research focus towards early or preclinical
stages of the disease. Subjective cognitive decline (SCD) is known to increase the risk of developing AD and several
other negative outcomes. However, it is still very scarcely characterized and there is no neurophysiological study
devoted to its individual classification which could improve targeted sample recruitment for clinical trials.

Methods: Two hundred fifty-two older adults (70 healthy controls, 91 SCD, and 91 MCI) underwent a
magnetoencephalography scan. Alpha relative power in the source space was employed to train a LASSO
classifier and applied to distinguish between healthy controls and SCD. Moreover, MCI participants were used
to further validate the previously trained algorithm.

Results: The classifier was significantly associated to SCD with an AUC of 0.81 in the whole sample. After randomly
splitting the sample in 2/3 for discovery and 1/3 for validation, the newly trained classifier was also able to correctly
classify SCD individuals with an AUC of 0.75 in the validation sample. The regions selected by the algorithm included
medial frontal, temporal, and occipital areas. The algorithm trained to select SCD individuals was also significantly
associated to MCI diagnostic.

Conclusions: According to our results, magnetoencephalography could be a useful tool for distinguishing individuals
with SCD and healthy older adults without cognitive concerns. Furthermore, our classifier showed good external
validity, being not only successful for an unseen SCD sample, but also in a different population with MCI cases. This
supports its utility in the context of preclinical dementia. These findings highlight the potential applications of
electrophysiological techniques to improve sample recruitment at the individual level in the context of clinical trials.
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Introduction
Modern societies are experiencing a dramatic increase in
life expectancy, even in lower income countries the propor-
tion of people aged over 60 years will increase during the
next decades, which together with decreased birth rates is
leading to an unprecedented population aging. As a conse-
quence, the prevalence of diseased population and the
medical costs associated to their treatment are rapidly in-
creasing [1, 2]. This context has raised numerous concerns
about the sustainability of current clinical practice, mainly
focused on expensive and chronic healthcare of fully deve-
loped syndromes. Consequently, research efforts are shifting
towards early detection [3], which could reduce the cost
associated to disease treatment by promoting and impro-
ving the efficacy of targeted early intervention programs.
More concretely, Alzheimer’s disease (AD) dementia will be
one of the main challenges for health systems during the
decades to come, since its prevalence is expected to nearly
triple by 2050 [4]. Several clinical trials and drugs available
have consistently failed to achieve a significant interruption
or slowing of the disease pathology or clinical symptoms
progression [5], which is increasing the interest in its pre-
clinical stages. However, our ability to distinguish at-risk
individuals in the earliest stages of the disease is still rela-
tively limited. Some at-risk conditions have been described
at the individual level, yet reliable markers to classify sub-
jects on an individual basis remain still relatively unknown.
There is accumulating evidence that subjective cogni-

tive decline (SCD) might be one of the earliest indicators
of the pathological cascade underlying dementia [6].
SCD is characterized by a subjective feeling of cognitive
worsening in comparison to a previous state, in the
absence of objective neuropsychological deficits. There-
fore, SCD elders are at an increased conversion risk to
mild cognitive impairment (MCI) and dementia varying
between a 2-fold and a 5-fold increase depending on the
study [5–8]. Furthermore, SCD has been related not only
to dementia [9], but also to other relevant age-related
outcomes such as increased depression risk [10],
impaired higher level functional capacity [11] and even
increased vulnerability as reflected by higher risk of
nursing home placement [12]. Furthermore, despite
some inconsistent results [13], SCD has also been found
to be predictive of increased all-cause mortality in the
older adult population [14]. Altogether, these findings
highlight the relevance of identifying SCD as a potential
early marker of forthcoming decline.
Neuroscience has only recently started to explore

whether differences in brain functioning or structure
can be identified at the group level in SCD population.
Interestingly, there is increasing evidence showing that
elders with SCD, as a group, show brain patterns re-
sembling of those exhibited by AD patients, such as
reduced metabolism [15] or gray matter atrophy over

medial temporal structures [16]. Electrophysiological
studies have consistently proven the relevance of power
spectrum alterations in the AD continuum, showing
abnormal relative power distribution affecting both slow
and fast brain rhythms [17]; furthermore, similar alte-
rations have also been found in MCI patients [18] and
SCD [19]. Despite the fact that several alterations have
been identified at the group level in SCD individuals (CSF,
amyloid-PET deposition, power alterations, etc.), to the
best of our knowledge, it has not been studied whether
these differences translate into individual classification in
independent samples. Detection of SCD by objective
means could potentially represent an initial step for
targeted subject selection in the context of clinical trials,
specific interventions in the early stages, and individual
diagnosis. [20]. In this vein, magnetoencephalography
(MEG) is not yet established as a biomarker for AD diag-
nosis, although recent advances in the study of AD using
this technique [21]. All the above-mentioned pathophysio-
logical alterations have implications in synaptic transmis-
sion at a very early stage of the disease. MEG is able to
measure tiny variations in the magnetic fields arising from
neuronal post-synaptic activity localized over cortical
sources mainly; henceforth, it is sensitive to subtle alte-
rations in this activity with extremely high temporal preci-
sion and good spatial resolution. This makes MEG a
suitable technique for a potential biomarker identification
in the context of dementia.
To this aim, we tried to train a classifier able to dis-

criminate healthy elders with and without SCD in inde-
pendent samples using their brain power spectral
properties and basic demographic information such as
age and gender. Furthermore, we validated our classifier
in another completely unseen sample of amnestic-MCI
participants under the assumption that the previously
trained algorithm should also be able to significantly dif-
ferentiate later stages of the progression to dementia.
More concretely, source-space alpha band power was se-
lected as our main feature as it has been shown to be
specifically affected in SCD by two different studies, by
our group and others that discarded alterations in other
frequency ranges [19, 22].

Material and methods
Participants
A total of 161 community-dwelling elders (mean age 71.6,
SD of 4.9 years) recruited in three centers in Madrid (Spain)
enrolled in this study after signing an informed consent.
The study protocol was approved by the Hospital Universi-
tario San Carlos ethics committee. In all the procedures,
participants were divided into two groups, healthy control
group without cognitive concerns (HC, n = 70) and older
adults with subjective cognitive decline (SCD, n = 91). All
subjects underwent a neuropsychological assessment to
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confirm their normal cognitive state, an MRI scan and
lastly an MEG recording. The exclusion criteria included
the following: (1) history of psychiatric (e.g., depression), or
neurological disorders, or drug consumption that could
affect MEG activity such as cholinesterase inhibitors; (2)
evidence of infection, infarction, or focal lesions in a
T2-weighted scan within 2months before MEG acquisition;
(3) a modified Hachinski score equal to 5 or higher; (4)
alcoholism, chronic use of anxiolytics, neuroleptics, nar-
cotics, anticonvulsants, or sedative hypnotics. Furthermore,
additional analysis to rule out other possible causes of
cognitive decline such as B12 vitamin deficit, diabetes melli-
tus, thyroid problems, syphilis, or human immunodefi-
ciency virus (HIV) was conducted. Furthermore, 91
additional participants (mean age 72.8, SD of 4 years) with
amnestic-MCI and recruited using the same exact criteria
were included in the study as an external validation sample.

Clinical assessment
All the subjects underwent an initial screening to assess
their overall state including The Mini Mental State Exa-
mination (MMSE), Functional Assessment Questionnaire
(FAQ), the Hachinski Ischemic Scale, and the Geriatric
Depression Scale-Short Form as a screening to ensure
normal functioning level and preserved vascular health.
After the initial screening, each participant completed a
neuropsychological assessment including evaluation of
their memory, executive functions, language, and praxis.
All participants in the HC and SCD groups had nor-

mal cognitive performance in the standardized assess-
ment with respect to their age and education. Expert
clinicians gathered information about cognitive concerns
for each participant during an interview, in which sub-
jects self-reported whether they felt a significant cogni-
tive decline with respect to their previous performance
level. During the interview, the SCD-questionnaire [23]
was applied to each participant, and although diagnostic
was not only based on the questionnaire score, it was
considered by clinicians for the evaluation of SCD pre-
sence. The final group assignment was made according
to a multidisciplinary consensus by neuropsychologists,
psychiatrists, and neurologists. Several possible con-
founders of SCD such as medication, psycho-affective
disorders, or relevant medical conditions were taken into
account for the decision. According to recent criteria
proposed for studying SCD, all the participants were
older than 60 at onset of SCD, which occurred within
the last 5 years [6].
For the validation sample, MCI diagnosis was estab-

lished according to the criteria proposed by Petersen [24].

MRI acquisition
Each subject completed an MRI scan in order to use the
images for the source reconstruction analysis. T1-weighted

images were acquired in a General Electric 1.5 Tesla mag-
netic resonance, using a high-resolution antenna and a
homogenization PURE filter (Fast Spoiled Gradient Echo
sequence, TR/TE/TI = 11.2/4.2/450ms; flip angle 12°; 1mm
slice thickness, 256 × 256 matrix and FOV 25 cm).

MEG acquisition and analysis
This section contains a summary of the MEG pipeline. A
more detailed explanation of the acquisition, preprocessing,
and source reconstruction procedure can be found in pre-
vious work [19]. Four minutes of resting state activity with
eyes closed was recorded for each participant in a Vector-
view MEG system (Elekta AB, Stockholm, Sweden) with
306 channels (102 magnetometers and 204 gradiometers)
at the “Laboratory of Cognitive and Computational Neuro-
science” (Madrid-Spain). Additionally, continuous head
position and eye movements were also recorded. The
acquired signal was filtered on-line with an anti-alias filter
between 0.1 and 330Hz and digitalized with a 1000Hz
sampling rate.
Recordings were offline filtered using spatiotemporal

signal space separation algorithm (tSSS) with movement
compensation using MaxFilter. Data was automatically
inspected for artifacts, and the findings were manually con-
firmed by a MEG expert. When possible, artifact related to
eye movements and heart activity were removed by ICA,
and the related artifacts were removed accordingly.
Artifact-free data were segmented into non-overlapping
segments of 4 s. The analyses were conducted with magne-
tometers due to their high similarity with gradiometers
after tSSS filter [25].
The source model consisted on a homogeneous grid

of 1 cm defined in MNI space and labeled according
to a compact version of the Automated Anatomical
Atlas (see Additional file 1: Table S1 for the complete
set of regions). This template-based source model was
linearly transformed to the individual T1 image of
each participant. To solve the direct problem, we
employed a three-shell Boundary Element Method
(BEM-3) with the surfaces (brain, skull, and scalp) ex-
tracted from the individual T1 image. The resulting
lead field was used to generate a Linearly Constrained
Minimum Variance beamformer for the broad band
(2 to 45 Hz) activity.
Source power spectra estimates were calculated between

2 and 45Hz for each 0.5-Hz frequency step using a discrete
prolate spheroidal sequence (DPSS) as tapers with 0.5Hz of
frequency smoothing. The relative power was then calcu-
lated by normalizing power values with the overall power in
the broad band range. Afterwards, relative power for each
subject and source was obtained for the alpha band. Power
data were finally averaged across each of the 38 regions of
interest (ROIs) of the atlas.
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Classification and validation
To test the ability of MEG source power analysis to cor-
rectly classify SCD and HC participants, we used regula-
rized logistic regression with the Least Absolute Shrinkage
and Selection Operator (LASSO) [26] as implemented in
the R 3.5.0 [27] and the glmnet package [28] including
age, gender, and alpha power in 38 ROIs using the default
criteria and leave-one-out cross-validation for determining
the penalty factor that is chosen to minimize the expected
prediction error. Unlike other variable selection tech-
niques, LASSO regression constraints the sum of the
absolute regression coefficients and sets the coefficients of
variables that least contribute to the prediction to zero
effectively leading to variable selection. We used the
penalized coefficients to obtain the predicted probability
of SCD status for receiver operating characteristic (ROC)
curve analysis with the associated area under the curve
(AUC) measure for discrimination. We defined as the
optimal cut-off value the point on the AUC where the
sum of sensitivity and specificity was maximized.
Initially, we performed the classification analysis on

the whole sample to test the ability of alpha band activity
obtained from MEG to correctly distinguish individual
subjects of both groups. In a second step, we randomly
split the study sample in a 2/3 discovery sample and 1/3
validation sample and repeated the above analysis to
gain an insight into the external validity of the perfor-
mance of MEG source results in the identification of
SCD cases. Lastly, with the aim of proving the validity of
our classifier do detect the early stages of cognitive
decline in external samples, we employed the LASSO
algorithm trained in the previous step (discovery-test

sample) to test whether we could correctly distinguish a
new sample of MCI participants from the healthy con-
trols contained in the test sample. As an additional veri-
fication, we ensured that our classifier using alpha power
was able to outperform a classifier merely based on
neuropsychological scores differing at the group level
between the control group and SCD.

Results
In total, we obtained valid results for 161 participants
(n = 70 HC, n = 91 SCD) (Table 1). SCD participants
were on average 1.8 years older and more likely to be
female. All SCD participants performed within the nor-
mal range in clinical assessment. As expected, SCD
group scored quite significantly higher in the SCD-
questionnaire (p = 0.00006). The 91 MCI participants
used to validate the algorithm were on average 72.8
years old and 56 of them were female.
The age and gender adjusted results from the logistic re-

gression of SCD status on each of the 38 ROIs separately
are graphically displayed in Fig. 1 showing a generalized
increase in SCD risk associated with lower alpha power
values. LASSO regression selected age, gender, and the
following ROIs as joint predictors of SCD status: left su-
perior and middle frontal, right inferior frontal gyrus, right
inferior temporal, left hippocampus, right superior and
inferior occipital, left middle occipital, bilateral inferior
parietal, right supplementary motor area, and right cingu-
lum (see Fig. 2a and Additional file 2: Table S2 for the
biased coefficients obtained from LASSO regression). The
predicted probability of SCD status obtained from LASSO
was significantly associated with SCD status (p < 0.001),

Table 1 Relevant demographic and clinical variables in the sample

Mean ± SD p values

HC SCD MCI HC vs SCD

Age 70.6 (4.4) 72.3 (5.2) 72.8 (4) 0.031

Gender (M-F) 29–41 20–71 35–56 0.008*

APOE (pos-neg) 15–49 16–65 36–51 0.59

GDS 1.4 (1.8) 3.0 (3.3) 3.7 (3.0) 0.001*

MMSE (gral. cognition) 28.9 (1.2) 28.2 (1.8) 26.9 (2.3) 0.104

RBMT global (episodic memory) 10.0 (1.6) 9.3 (2.4) 5.8 (3.2) 0.13

Direct digit (working memory) 8.5 (2) 8.4 (1.9) 7 (2.1) 0.660

Inverse digit (working memory) 6.2 (1.8) 5.2 (1.8) 4.2 (1.4) 0.009*

TMTA (hits) (executive funct.) 23.9 (0.3) 23.9 (0.5) 23.9 (0.9) 0.866

TMTB (hits) (executive funct.) 23.2 (2.5) 22.4 (3.1) 19.1 (6.1) 0.211

Gesture imitation (Praxis) 7.8 (0.6) 7.5 (0.9) 7.1 (1.3) 0.184

7 M-fluency (language) 20.5 (4.7) 18.6 (4.8) 13.7 (3.9) 0.140

7 M-clock (Praxis) 6.7 (0.5) 6.4 (1.1) 5.9 (1.4) 0.084

Age is compared using independent samples t test. Gender and APOE status (expressed as presence–absence of APOE4 allele) are compared using chi-squared.
Neuropsychological test contrasts are adjusted by age and education. Each test is followed by the main cognitive domain intended to measure
*p < 0.05
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and the AUC was 0.81 (95% CI 75.8–87.7%). Sensitivity
and specificity at the point that maximized the sum of
both were 83.5% (95% CI 75.8–91.2%) and 64.3% (95% CI
52.9–75.7%), respectively (Fig. 2b).
After randomly splitting the study sample into a trai-

ning sample of n = 107 (60 SCD, 47 HC) and a validation
sample of n = 54 (31 SCD, 23 HC) and repeating the
LASSO analysis, the following ROIs were selected in the
training sample for validation: left superior frontal, right
inferior frontal, right superior occipital, left rolandic
operculum, left supplementary motor area, and left
hippocampus (Fig. 3a for a graphic representation and
Additional file 3: Table S3 for the tabular format). When
calculating the probability of SCD in the validation sample
by applying the LASSO results from the training sample,
the classifier was significantly associated to SCD status in
the validation sample (p = 0.005) with an associated AUC
of 75.3% (95% CI 61.9–88.7%). Sensitivity and specificity
at the point that maximized the sum of both were 58.9%
(95% CI 41.9–74.2%) and 95.7% (95% CI 87.0, 1.00)
respectively (Fig. 3b). This model was significantly dif-
ferent from using age and gender alone for prediction
(AUC = 60.1%, p = 0.156), pDeLong for difference =
0.016) and from using age, gender, and working me-
mory (AUC = 61.4%, p = 0.125), pDeLong for differ-
ence = 0.049). This result shows that alpha power is
able to outperform the accuracy of neuropsychological
testing and sociodemographic variables in distinguish-
ing older adults with SCD from healthy controls.
To confirm the validity of the derived predictor, we

applied calculated probability of having SCD status ob-
tained from the training sample as a predictor to dis-
criminate between 23 HC from the validation sample
and 91 independent participants with MCI. The SCD
predictor was significantly associated to MCI status
(p = 0.03), sensitivity (36.3%, 95% CI 26.3, 46.2%) was
low, but specificity (95.7%, 95% CI 87.0–100%) was
high meaning that participants classified as not having

MCI were very likely true negatives at the point that
maximized the sum of both.

Discussion
The current study demonstrated that magnetoencepha-
lography, and more concretely the power spectral pro-
perties of ongoing brain activity, can be a useful tool for
distinguishing individuals with SCD and healthy older
adults without cognitive concerns. To the best of our
knowledge, this is the first time that electrophysiological
brain activity is used to characterize SCD on an individual
basis. Our results using the algorithm on the whole
sample showed great accuracy (over 80%). More impor-
tantly, when the sample was split, the newly obtained clas-
sifier from the reduced training sample was able to
discriminate SCD individuals with more than 75% accu-
racy in the independent validation sample, thus showing
good external validity of relative alpha power as a poten-
tial candidate to identify very early synaptic dysfunction.
Importantly, although with a lower accuracy but high
specificity, the SCD algorithm was also significantly asso-
ciated to MCI, a well-known at-risk state for dementia.
Given that SCD and MCI have been linked to an increased
risk of dementia and cognitive decline, the significant
association of our classifier with both populations offers
additional evidence of its relevance in the context of early
cognitive dysfunction, and potentially for the preclinical
stages of AD. Furthermore, this work expands previous
findings into the individual level, a crucial step for bio-
marker detection.
Previous neuroimaging studies have already identified

alterations in older adults with SCD, resembling those
abnormalities found in later stages of dementia due to
AD, such as increased levels of amyloid and tau proteins
[29], cortical atrophy [30], or functional connectivity
alterations [31]. These studies support our results repor-
ting a relationship between the alterations found in SCD
and MCI populations compared to healthy older adults
and pinpoint the possibility of both states being part of a
continuum towards dementia. Electrophysiological re-
search, in particular, has identified a shift to the left in the
power spectrum in AD patients that correlates with
disease severity [32]. These alterations are characterized
by a power increase in slower rhythms and a decrease in
faster waves, such as alpha oscillations. Interestingly, most
of the regions selected by LASSO classifier such as bila-
teral frontal and ventromedial frontal, inferior parietal
regions, and the cingulate gyrus, or more concretely its
posterior aspect, are typically known to exhibit cortical
hypo-metabolism as reflected by FDG-PET specifically
associated to AD [33]. Furthermore, frontal regions seem
to play a crucial role in the amyloid network even in the
very early stages of AD [34]. Consistent with our inter-
pretation of SCD as an at-risk state potentially leading to

Fig. 1 Figure displays the results of the age and gender adjusted
regression of SCD status on each ROI independently. Color scale
represents logarithmic odd ratios with negative values indicating an
increase in SCD status risk associated to lower alpha power
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dementia, a recent study by Babiloini et al. [35] also iden-
tified a decrease in alpha power over these same cortical
regions in AD patients. Moreover, a review conducted by
the same group has recently proposed alpha power alte-
rations as a potential good candidate for the detection of
AD or its prodromal phases [36], which seems to be sup-
ported in our results.
Alpha oscillations during awake rest are known to go-

vern a wide range of relevant functions for cognition,
from general brain arousal and global attentional readi-
ness to particular cognitive functions such as memory or

sensorimotor networks [36]. In fact, disturbances in
alpha oscillations reflect synaptic dysfunction, which is
thought to be the best correlate of early cognitive im-
pairment in AD [37]. In this vein, the alpha relative
power reduction observed in our sample of SCD could
represent an early indicator of very subtle synaptic alter-
ation that is not yet manifested as an objective cognitive
deficit at this stage. Furthermore, a recent study showed
that when stratified for diagnosis, alpha power reduction
measured with EEG was able to predict future cognitive
decline and conversion in healthy older adults with SCD

Fig. 2 Figure displays the results for the whole sample discrimination analysis (SCD vs HC). a Top part shows the regions selected by the
algorithm for classification. b Bottom part shows the ROC curve resulting of the LASSO algorithm
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[38]. Although longitudinal studies are necessary to con-
firm this hypothesis, those subjects selected by our algo-
rithm may represent a specific subpopulation among
older adults with SCD at a highly increased risk of sub-
sequent cognitive decline.
Abnormal AD-related protein accumulation in the

brain of preclinical and fully demented AD patients has
been shown to produce alterations in power spectrum
[37]. In this study, alpha power reductions were asso-
ciated to decreased Aβ levels, and increased total and
phosphorylated tau levels in cerebrospinal fluid (CSF)

already in the SCD and MCI stages. However, results in
this regard are yet scarce and a recent study reported
alpha power increases in relation to Aβ accumulation
over frontal regions [18], although in this same study
MCI participants exhibited a significant reduction of
relative alpha power which is in agreement with our
findings. In accordance with the former study, and des-
pite the limitation that no CSF biomarkers were avai-
lable in our sample, the power spectral alterations found
in our sample might be an early sign of the initial neuro-
pathology accumulation, leading to a decrease in alpha

Fig. 3 Figure displays the results for the discovery-test split samples discrimination analysis (SCD vs HC). a Top part shows the regions selected in
the discovery sample by the algorithm for classification. b Bottom part shows the ROC curve resulting of the LASSO algorithm applied to the
test sample
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power. This would be in line with the fact that SCD par-
ticipants are known to show increased levels of tau and
Aβ burden as shown by Buckley et al. [39].
Very little literature is available addressing SCD indi-

vidual classification, and to the best of our knowledge,
none of them employed electrophysiological data, but
structural and functional MRI information instead. One
of them obtained a significant classification with 0.96
AUC [40] using entorhinal volume and fractional anisot-
ropy of the hippocampal body. However, its small
sample size and the fact that there was no test sample
(i.e., feature selection and test was performed in the
same sample) limits its reliability. A previous study
employed an algorithm trained with MRI data from AD
patients, to then distinguish healthy elders from SCD
[16]. They obtained a significant classifier with 0.67
AUC, which is a similar value to what we obtained when
we employed our SCD-HC classifier in the MCI sample.
The hippocampus was the region with higher contribu-
tion in the above-mentioned classification, which was
again replicated in a posterior study [41]. Interestingly,
our results also highlight hippocampus, a central structure
in AD neurodegeneration [42], as one of the key regions
in distinguishing between both populations. This is con-
sistent with previous work reporting structural decline
with alpha power reduction [43]. A recent study was also
able to significantly classify SCD participants from their
BOLD signals, although completely independent samples
were again not included for validation [44].
This study is not absent from certain limitations. First,

despite its relatively large sample size within the field of
MEG literature, the number of participants is still some-
what limited for a study of individual classification. Fur-
thermore, although split in a discovery and a validation
sample, both belong to the same study population,
which could potentially limit its replicability and high-
lights the need of validation in different population
settings. However, fully detailed outcomes of the algo-
rithm are available on request in order to replicate our
findings in new samples and different acquisition settings.
Lastly, it is important to bear in mind that the absence of
AD-biomarkers hinders our ability to unequivocally asso-
ciate our findings to the presence of this pathology. Thus,
in spite of the careful sample selection (following up-to-
date established criteria and ruling our variables such as
depression or other neurological conditions), we cannot
completely dismiss the possibility that other conditions
may influence our results. In this regard, future studies
should further validate the present findings with additional
biomarker evidence.

Conclusions
In conclusion, our results suggest that MEG and elec-
trophysiology represent promising tools for the early

detection of pathological aging and in particular AD. This
could be of crucial interest for policymakers and future
pharmacological studies, as MEG could represent a potential
good candidate to select a targeted subset of the population
in which treatments or preventive interventions resulted
potentially more beneficial. Furthermore, this MEG-in-
formed signature could potentially be translatable to EEG
which would result in a cheaper and more broadly available
risk assessment tool.
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