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Abstract

Background: We investigated changes of cortical thickness and its association with cognitive performance in
patients with high-grade carotid artery stenosis without ischemic brain lesions.

Methods: We studied 25 patients with unilateral carotid artery stenosis ≥50% and 25 age-matched controls. All
subjects underwent T1-weighted MRI, and cortical thickness was measured in 33 regions of interest in each
hemisphere, as well as in brain regions belonging to the vascular territory of the middle cerebral artery (MCA).
General linear mixed models were fitted to the dependent variable cortical thickness. Cognitive assessment
comprised the Stroop Test and Trail Making Test B.

Results: In the linear mixed model, presence of carotid stenosis had no effect on cortical thickness. There was a
significant interaction of stenosis and region with a trend towards lower cortical thickness in the MCA region on
the side of carotid stenosis. Patients with carotid stenosis performed significantly worse on the Stroop test than
controls, but there was no correlation with cortical thickness.

Conclusion: In patients with carotid stenosis without ischemic brain lesions, neither a clear pattern of reduced
cortical thickness nor an association of cortical thickness with cognitive function was observed. Our data do not
support the hypothesized association of cortical thinning and cognitive impairment in carotid stenosis.
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Background
Carotid stenosis is a known risk factor for stroke [1]. In
population based studies, asymptomatic carotid stenosis
can be found in up to 5.7%, with higher prevalence in
men and with higher age [2, 3]. While carotid stenosis is
usually termed “asymptomatic” in the absence of stroke
related to the stenosis, there is continuous debate about
detrimental effects of carotid stenosis on brain structure

and cognition beyond the occurrence of cerebrovascular
events.
Non-invasive measurement of cortical thickness by

structural MRI has come into focus as a biomarker of
brain pathology as it was linked with performance in
cognitive tests [4]. It is considered to reflect the struc-
tural integrity of cortical gray matter, and can be influ-
enced by age, sex, subcortical lesions, specific training or
diseases of the brain [5, 6]. Vascular risk factors were
also found to be associated with cortical thinning [7].
Hemodynamic compromise with focal brain lesions,

i.e. ischemic stroke, is well known to go together with
secondary cortical thinning [8–10]. The same was
observed for symptomatic hemodynamic impairment,
e.g. subclavian steal syndrome [11]. For asymptomatic
carotid stenosis, data on cortical thickness is scarce. A
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pilot study suggested, that altered cerebral perfusion in
carotid stenosis is associated with regional cortical thin-
ning [12]. Another study revealed a decrease of cortical
thickness specifically in the anterior cerebral artery terri-
tory [13]. Several studies report an association of carotid
artery stenosis with impaired cognitive performance
[14–22]. Whether structural brain changes including re-
gional cortical thinning represent a relevant mechanism
contributing to cognitive impairment in carotid stenosis
remains unclear.
We aimed at evaluating cortical thickness and a hy-

pothesized association of cortical thinning with impaired
cognitive function in patients with unilateral carotid
stenosis in the absence of focal ischemic brain lesions.

Methods
Patients and controls
Between March 2015 and October 2016, we enrolled 25
patients with findings of unilateral carotid artery stenosis
without ischemic brain lesions on MRI, in whom inter-
ventional or surgical treatment of carotid stenosis was
planned. Patients presented to the outpatient depart-
ments or were referred for treatment at the Department
of Neurology or at the Department of Vascular Surgery.
Decision to perform carotid revascularization was made
by interdisciplinary consensus decision as described re-
cently [23]. Inclusion criteria were: unilateral internal ca-
rotid artery stenosis of at least 50% assessed by
ultrasound following the North American Symptomatic
Carotid Endarterectomy Trial (NASCET) [24, 25]; be-
tween 60 and 90 years of age; no history of stroke; no is-
chemic brain lesion on MRI. As a control group, we
studied 25 healthy age-matched controls. Inclusion cri-
teria were no history of a TIA or stroke and no neuro-
logical or psychiatric disease. Exclusion criteria for both
groups were a history of a severe disease, structural
brain lesions and inability to undergo MRI. All partici-
pants provided written informed consent. The study was
approved by the ethics committee of the Hamburg
chamber of physicians.

MRI protocol and image analysis
MRI was performed prior to treatment of the stenosis
on a 3 T Skyra MRI scanner (Siemens, Erlangen,
Germany). For anatomical imaging, a T1-weighted high-
resolution three-dimensional magnetization-prepared,
rapid acquisition gradient-echo sequence (MPRAGE)
was used with the following parameters: TR = 2500ms,
TE = 2.12 ms, FOV = 240 × 192 mm, 256 axial slices,
ST = 0.94 mm, IPR = 0.94 × 0.94 mm.
T1-weighted MR-images were preprocessed using the

Freesurfer software package 6.0.0 with standard proce-
dures and parameters [26–28]. After careful visual in-
spection of images and skull stripping and registration

to MNI space coordinates [29, 30], Freesurfer segments
the brain volume into white and grey matter creating
white matter-gray matter and pial surface boundary.
From these volumes, the cortical thickness is calculated
for 35 labelled region of interests (ROIs) on the cortical
surface. For our analysis, we excluded the entorhinal
ROI resulting from its eccentric position making it
prone to artifacts and inaccurate results. Thus, we in-
cluded 33 ROI in our analysis.
In addition, we defined vascular regions of interest by

brain regions in the vascular territory of the middle
cerebral artery (MCA) according to previous description
of arterial territories [31–33]: (MCA region), and all
other brain regions (non-MCA region).

Cognitive tests
Cognitive tests were performed on the same day as
the MRI examination and comprised the following:
Stroop Test and trail making test B (TMT B), being
part of the extended Consortium to Establish a Registry
for Alzheimer’s disease (CERAD-Plus) test battery. From
the results of the TMT B [34], z scores were determined
according to evaluation system CERAD-Plus Online
(https://www.memoryclinic.ch/de/main-navigation/cerad-
plus/), of the Memory Clinic (Universitäre Altersmedizin,
Felix Platter-Spital, Basel, memoryclinic@fps-basel.ch)
[42]. The CERAD-Plus online analysis program trans-
forms the total raw score into specific values and converts
them into z scores that are corrected for age, education
and sex, thereby enabling comparison with performance
of a standard reference sample. Z scores describe by how
many standard deviations the results differ from the refer-
ence sample. By subtracting the time to accomplish the
Farb-Wort- Test (FWT, corresponding to the Stroop Test)
II and III, results were obtained that were modified ac-
cording to the age of each patient by assessment tables
from the Nürnberger Alters-Inventar [35], thereby result-
ing in C scores. Additionally, the Mini Mental State Exam-
ination (MMSE) was performed by all participants and the
clock drawing test (CDT) and dementia detection test
(DemTect). Higher score in the MMSE and DemTect are
reflected by better cognitive function, whereas higher
score in the CDT is associated with lower cognitive per-
formance. To compare cognitive tests of patients and con-
trols, Stroop test and TMT results were corrected for age
and adjusted to a standard reference sample.

Statistics
All statistical analyses were performed using IBM SPSS
Statistics 22. A general linear mixed model (GLMM)
was employed to determine significant main effects and
interaction effects of independent variables on cortical
thickness. The GLMM accounted for random intercepts
of patients and hemispheres within patients, considering
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regions within hemispheres and patients as repeated
measures. Non-significant interactions were hierarchic-
ally stepwise-backward eliminated from the model until
only main effects and significant interactions remained.
Two analyses were performed: first, including all 66 ROI,
and second, including four vascular regions (ipsilateral
and contralateral MCA region and non-MCA region).
The following independent variables were included in the
model: group (patient or control), hemisphere (left or
right), presence of stenosis (yes or no), ROI and age.
Group (patient or control) and stenosis (presence of sten-
osis yes or no) and hemisphere (left or right) were in-
cluded as interaction terms to be able to identify potential
specific regional effects of stenosis on individual hemi-
spheres, thus enabling the separation of possible system-
atic effects of group from specific effects of unilateral
stenosis on cortical thickness.
Results of cognitive tests were compared between

groups using Student’s t-test or Mann-Whitney-U-test
according to the distribution of the numbers. Correl-
ation between test results and cortical thickness was in-
vestigated by Spearman correlation. Since this study was
exploratory, no correction for multiple testing was per-
formed. An alpha of 0.05 was considered significant.

Results
Mean age of patients and control subjects was 67 (± 9.44)
and 64 (± 8.36) years (p = 0.228). Of the 25 patients, 15
had a stenosis of the left carotid artery (cf. demographical
table in the online Additional file 1: Table S1). Median de-
gree of stenosis of the patient group was 80% (range 50–
95%), all but one patient had stenosis ≥70%.

General linear mixed model
In the GLMM including 66 anatomical ROI, ROI
(p < 0.001) and age (p = 0.002) showed a significant ef-
fect on cortical thickness, while no significant effect was
observed for hemisphere, group, and presence of sten-
osis (see Table 1). After hierarchical stepwise-backward
elimination of non-significant interactions, no significant
interaction remained. Estimated mean cortical thickness
was numerically lower in the in the hemisphere with up-
stream carotid stenosis (with stenosis: 2.354; without:
2.363 mm, p = 0.180).
In the second model including MCA and non-MCA

regions, region (p < 0.001), hemisphere (p = 0.003), and
age (p = 0.009) showed a significant effect on cortical
thickness, while stenosis did not (see Table 2). Estimated
mean cortical thickness was higher in the MCA region
as compared to the non-MCA region (2.344 mm vs.
2.021 mm, p < 0.001). There was a significant interaction
between presence of stenosis and region (p = 0.042). Esti-
mated mean cortical thickness in the MCA region in the
hemisphere with upstream carotid stenosis was

numerically lower than without stenosis (2.332 mm vs.
2.355 mm, p = 0.111).

Cognitive tests
Stroop test C scores and TMT-B z scores were normally
distributed for both groups. In the TMT B test, stenosis
patients showed a trend towards lower Z-score values
compared to controls (− 0.27 vs. 0.32, p = 0.054), indicat-
ing a longer time required and thus worse performance
in the test. Regarding the Stroop test, patients had sig-
nificant lower C-values (4.8 vs. 6.2, p = 0.010) indicating
worse performance. Patients also achieved significantly
worse test results for the CDT (1.52 vs. 1.04, p = 0.005)
and DemTect (15.68 vs. 17.40, p = 0.009) (see Table 3).
MMSE values were not normally distributed. Thus, a
non-parametric test was used for group comparison.
There was no significant difference between stenosis pa-
tients and controls (28.08 vs. 28.48, p = 0.375).
In patients, no significant correlation between per-

formance in cognitive and cortical thickness across the

Table 1 Main effects of independent variables on cortical
thickness in 66 Freesurfer ROIs; results of a linear mixed model
analysis

Main effect P value Beta value [95% CI]

ROI < 0.001 a [a]

Age (covariate) 0.002 −0.006 [(− 0.01)-(− 0.002)]

Stenosis = no (no stenosis
> stenosis)

0.180 0.009 [(− 0.004)-0.023]

Group = patients (patients
< controls)

0.796 −0.009 [(− 0.08)-0.062]

Hemisphere = right (right < left) 0.937 −0.0004 [(− 0.01)-0.009]
aBeta values and 95% confidence intervals for each ROI can be found in the
Additional file 1: Table S2
ROI region of interest, CI confidence interval
Results with significant p value were printed in bold

Table 2 Main- and interaction effects of independent variables
on cortical thickness in MCA and non-MCA region

Main effect P value Beta value [95% CI]

Hemisphere = right
(right < left)

0.003 −0.013 [(− 0.021)-(− 0.005)]

Age (covariate) 0.009 −0.005 [(− 0.009)-(− 0.001)]

Region = non-MCA
(nonMCA <MCA)

< 0.001 −0.308 [(− 0.333)-(− 0.282)]

Stenosis = no
(stenosis< no stenosis)

0.34 0.023 [(− 0.005)-0.052]

Stenosis = no & region =
non-MCA (no stenosis
nonMCA < stenosis non
MCA, no stenosis MCA,
stenosis MCA)

0.042 −0.031 [(− 0.06)-(− 0.001)]

Group = patients
(patients< controls)

0.637 −0.015 [(− 0.081)-0.05]

MCA middle cerebral artery, 95% CI = 95% confidence interval
Results with significant p value were printed in bold
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whole hemisphere, or any of the hemispheres (left or
right, stenosis or no-stenosis) was observed (data not
shown). In control subjects there also was no significant
correlation between cognitive test results and cortical
thickness except for a moderate correlation between
DemTect result and cortical thickness of the left hemi-
sphere (Spearman’s rank correlation coefficient = 0.403,
p = 0.046).

Discussion
In our study of patients with internal carotid artery sten-
osis without ischemic brain lesions, we did not observe
significant alterations of cortical thickness in brain re-
gions ipsilateral to the stenosis. While patients showed
worse cognitive test performance than controls, there
was no correlation of cognitive function and cortical
thickness.
These results are in contrast to a recent study that re-

ported a reduction of cortical thickness in the motor
cortex of patients with carotid stenosis ≥80%, while no
change of cortical thickness was detected in the visual
cortex [12]. In the same patient cohort, a significant dif-
ference between cortical thicknesses on the side of sten-
osis versus non-stenosis side in M1 could be shown for
the patients while this was not detectable in healthy con-
trols [36]. A previous study also reported progressive
brain atrophy measured by evaluation of brain volume
associated with severe carotid stenosis in a longitudinal
follow up of 4 years [37].
Worse performance of patients with carotid artery

stenosis in cognitive tests in our study is in line with
previous reports. Patients with either symptomatic or
asymptomatic carotid stenosis showed worse results in
cognitive tests than controls [19–22, 38], and lower
MMSE scores were observed in patients with carotid
stenosis ≥75% [14]. Findings from previous studies also
support an association of grey matter volume and cogni-
tive function independent from carotid stenosis. Smaller

cortical gray matter volume was correlated with cogni-
tive impairment, including among others tests for atten-
tion, memory and language and tests for executive
performance [4, 39]. It was also hypothesized, that the
association of brain volume and cognitive function
might be mediated by cerebrovascular pathology includ-
ing white matter lesions and brain infarcts30. We did not
observe any meaningful correlation of cortical thickness
with cognitive tests, although healthy controls achieved
better results in the cognitive tests than stenosis pa-
tients. Other factors influencing cognitive function be-
yond cortical thickness may play a role leading to worse
performance in patients, such as co-morbidities or vas-
cular risk factors (cf., demographical data, Additional file
1: Table S1).
While cortical thickness provides important informa-

tion on structural integrity of the brain, further tech-
niques may be helpful to take into account other aspects
of structural brain organization. In line with this, a study
using diffusion tensor imaging observed reduced frac-
tional anisotropy as a marker of white organization and
diminished cognitive test results in patients with carotid
stenosis [40]. The analysis of more complex parameters
of brain structure including structural network
organization may yield further insights into less pro-
nounced structural sequelae of unilateral carotid stenosis
and its interaction with cognitive function.
In our study, cortical thickness was associated with

age, brain region, and hemisphere, which are well-
described factors determining cortical thickness [5, 41].
We interpret the lack of obvious changes of cortical
thickness in patents with carotid stenosis as an indicator
of the robustness of the brain to chronic alterations of
cerebral perfusion in the absence of ischemic brain le-
sions. Both, the network of collateral arteries and the
mechanisms of neurovascular coupling may help render
rain perfusion resilient and sufficient for maintaining the
functional and structural metabolism within a wide
range of changes to the cerebral blood flow. Only when
focusing the analysis of cortical thickness changes in
brain regions supplied by the middle cerebral artery, we
observed an interaction of presence of stenosis and brain
region, with slightly decreased cortical thickness in the
MCA territory of brain hemispheres with upstream ca-
rotid stenosis. This interaction might indicate a small ef-
fect of unilateral carotid stenosis on cortical thickness
beyond the effects age, brain region, and hemisphere.
Our sample, however, may have been too small, to detect
this small effect in the statistical model applied.

Conclusion
To summarize, in patients with carotid stenosis without
ischemic brain lesions we observed neither significantly
reduced cortical thickness nor an association of cortical

Table 3 Mean with standard deviation (in brackets) of C score
of the Stroop Test, Z score of the TMT B and median with first
and third quartile (in brackets) of MMSE, DemTect and CDT for
both groups with p value for difference between the groups

Patients Controls Group comparison
(p-value)

Stroop Test,
C score

4.780 (± 1.849) 6.2 (± 1.871) 0.010*

TMT-B, Z score −0.268 (± 1.112) 0.329 (± 1.023) 0.054*

MMSE 28 (27, 30) 29 (27, 30) 0.375**

DemTect 17 (14.5, 18) 18 (17, 18) 0.009**

CDT 1 (1, 2) 1 (1, 1) 0.005**

*: t test, **: non-parametrical test: Mann-Whitney-U test
TMT-B trail making test B, MMSE mini mental state examination, DemTect
dementia detection test, CDT clock drawing test

Nickel et al. BMC Cardiovascular Disorders          (2019) 19:154 Page 4 of 6



thickness with cognitive function, although patients per-
formed worse than healthy controls in cognitive tests.
These data do not support the hypothesized association
of cortical thinning and cognitive impairment in carotid
stenosis. In contrast, our results demonstrate the robust-
ness of brain structure to chronic changes of cerebral
perfusion in the absence of focal stroke lesions. Future
studies should take into account a wider range of clinical
and imaging parameters when studying the effects of al-
terations of cerebral perfusion on brain structure and
cognitive function.

Additional file

Additional file 1: Table S1. Demographic data stratified by group.
Table S2. Beta values and 95% confidence interval for each region of
interest. (DOCX 17 kb)
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