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Summary

Maintenance of body temperature is essential for survival of homeotherms. Brown adipose tissue 

(BAT) is a specialized fat tissue that is dedicated to thermoregulation1. Due to its remarkable 

capacity to dissipate stored energy and its demonstrated presence in adult humans2-5, BAT holds 

great promise for the treatment of obesity and metabolic syndrome1. Rodent data suggest the 

existence of two types of brown fat cells: the constitutive BAT (cBAT), which is of embryonic 

origin and anatomically located in the interscapular region of mice, and the recruitable BAT 

(rBAT) that resides within white adipose tissue (WAT)6 and skeletal muscle7, that has 

alternatively been called beige8, brite9, or inducible BAT10. Bone morphogenetic proteins (BMPs) 

regulate the formation and thermogenic activity of BAT10-12. We here provide evidence for a 

systemically active regulatory mechanism that serves to control whole body BAT-activity for 

thermoregulation and energy homeostasis. Genetic ablation of type 1A BMP-receptor (Bmpr1A) in 

brown adipogenic progenitor cells leads to a severe paucity of cBAT. This in turn increases 

sympathetic input to WAT, thereby promoting the formation of rBAT within white fat depots. 
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This previously unknown compensatory mechanism, aimed at restoring total brown fat-mediated 

thermogenic capacity in the body, is sufficient to maintain normal temperature homeostasis and 

resistance to diet-induced obesity. These data suggest an important physiological cross-talk 

between the constitutive and recruitable brown fat cells. This sophisticated regulatory mechanism 

of body temperature may participate in the control of energy balance and metabolic disease.

It has recently become clear that cBAT shares a common developmental ancestry with 

skeletal muscle13,14, whereas rBAT, localized within white fat or skeletal muscle, derives 

from a non-myogenic lineage10,13. Lineage-tracing experiments have also revealed that 

cBAT arises from progenitors located in the embryonic dermomyotome15 that express 

myogenic markers Pax7 and Myf513,16. We thus generated a mouse model lacking 

BMPR1A in all cells descending from the Myf5pos lineage (Myf5-BMPR1A-KO). No 

apparent changes in morphology, proliferation, or apoptosis were observed during early 

embryonic stages (Supplementary Fig. 1 and 2). Histological evidence of reduced cBAT-

formation in Myf5-BMPR1A-KO mice was first observed at embryonic day 16.5 (E16.5) 

and persisted until after birth (P1, Fig. 1a-c). cBAT arises from highly proliferative 

fibroblasts during late gestational stages17. At E16.5, developing cBAT stains strongly for 

the proliferation marker Ki67, which was markedly decreased in Myf5-BMPR1A-KO 

embryos (Fig. 1d, Supplementary Fig. 2b and 2d). Apoptosis-levels were found unchanged 

throughout embryogenesis Supplementary Fig. 2c), suggesting that reduced proliferation 

occurring prior to or around E16.5 is responsible for defective formation of cBAT in KO 

animals.

Myf5-BMPR1A-KO mice were born runted and stayed smaller throughout life (Fig. 1e and 

1f). Importantly, the reduction of cBAT mass remained highly significant in adult mice (Fig. 

1g and 1h). Despite this, gene expression pattern of the residual cBAT appeared normal, 

apart from a moderate reduction of Bmpr1A gene expression (Supplementary Fig.3). The 

sizes of interscapular WAT (iWAT) and retroperitoneal WAT (rWAT), two white fat depots 

that contain subpopulations of cells from the Myf5pos lineage18, were also reduced in the 

KO-mice (Supplementary Fig. 4a). Gene expression in iWAT showed a trend towards 

reduced expression of BAT-genes, but no changes in general white adipogenic genes 

(Supplementary Fig. 4b). Subcutaneous WAT (sWAT) and epididymal WAT (eWAT), both 

mostly originating from a Myf5neg lineage18, were not decreased in size and expressed 

normal levels of all type-I BMP receptors (Fig. 1g-h, Supplementary Fig. 3a-c). Expression 

of Bmpr1A in skeletal muscle, on the other hand, was reduced by >95% (Supplementary Fig. 

3a). Upon normalization to body weight, we found limb skeletal muscle size unchanged, 

while the function of myogenic progenitors was altered (Huang and Gussoni, unpublished 

data). Thus, loss of BMP-signaling in Myf5-expressing cells specifically targets the 

formation of cBAT. During embryogenesis, MyoDpos progenitors emerge after the Myf5pos 

progenitors19. MyoD-CRE driven Bmpr1A-KO mice showed completely normal 

development of cBAT and WAT depots (Supplementary Fig. 5), suggesting that the 

developmental divergence between myogenic and brown adipogenic progenitors takes place 

prior to emergence of MyoDpos progenitors, or that BMPR1A is not required for cBAT-

formation during this particular developmental stage.
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A very similar phenotype was observed in a second mouse model with conditional deletion 

of Bmpr1A in all types of adipocytes (aP2-BMPR1A-KO). Loss of Bmpr1A led to a specific 

paucity of cBAT as well as WAT-resident rBAT (Supplementary Fig. 6). Since the aP2-

CRE driver is active at later adipogenic stages compared to Myf5-CRE, we conclude that 

signaling through BMPR1A is essential also for later stages of brown adipogenesis.

Next, we isolated progenitors from either Myf5neg sWAT or Myf5pos cBAT to test their cell-

autonomous ability to produce brown adipocytes10. Cells derived from sWAT differentiated 

normally (Supplementary Fig. 7). In contrast, the frequency and ability of cBAT-derived 

Myf5pos/Sca1pos/CD31neg progenitors to differentiate into mature brown adipocytes was 

significantly reduced (Fig. 2a and 2b). We therefore generated brown pre-adipocytes from 

cBAT completely lacking BMPR1A (Supplementary Fig. 8a and 8b). Loss of Bmpr1A 

resulted in a marked inhibition of differentiation (Fig. 2c) and ability to respond to BMP7-

induced phosphorylation of downstream targets of BMP-signaling, Smad and p38-mitogen 

activated protein kinase (p38MAPK)20 (Fig. 2d). This led to a concomitant decrease of the 

expression of key adipogenic transcription factors Zfp42321, Cebpα, and Pparγ22 in 

undifferentiated pre-adipocytes (Fig. 2e). Following adipogenic differentiation, BMPR1A-

KO cells displayed severely reduced expression of BAT-markers Ucp1, Prdm1613, and 

Pparγ (Fig. 2f), even in the presence of BMP7. Aside from BMPR1A, BMPR1B and 

Activin A receptor, type 1 (ACVR1) are the other two major type 1 BMP-receptors20. While 

cBAT developed normally in whole body BMPR1B-KO-mice (Supplementary Fig. 9a and 

9b), deletion of Acvr1 in the Myf5pos lineage resulted in a severe reduction of cBAT mass 

(Supplementary Fig. 9c and 9d), indicating that both ACVR1 and BMPR1A are essential for 

development of cBAT. Accordingly, pre-adipocytes lacking Acvr1 displayed a somewhat 

milder phenotype compared to BMPR1A-deficient cells, while in double knock-out cells, 

brown adipogenesis was completely abolished (Supplementary Fig. 8c-g).

Since BAT plays a key role in thermoregulation, one would anticipate that the Myf5-

BMPR1A-KO mice would display reduced body temperature as a consequence of 

impairment in cBAT-development. Indeed, newborn Myf5-BMPR1A-KO mice, with their 

unfavorable surface-to-volume ratio, showed a significant reduction in body temperature 

(Fig. 3a and 3b). This reduction in body temperature was surprisingly no longer present in 

adult Myf5-BMPR1A-KO (Fig. 3c, 22°C), suggesting a compensatory mechanism aimed at 

restoring thermogenic capacity. Non-shivering thermogenesis is a critical response to 

prolonged cold exposure in order to maintain body temperature23. When exposed to acute 

and chronic cold challenges, control mice were able to quickly resume normal body 

temperature after 48 h of cold, suggesting rapid activation of non-shivering thermogenesis 

via cBAT and possibly other short-term measures such as muscle shivering, which are less 

pronounced in newborn mice. By contrast, Myf5-BMPR1A-KO mice displayed a reduction 

in body temperature after 2 and 48 h of cold exposure, presumably due to the paucity of 

cBAT (Fig. 3c, 5°C-2h and -48h), as we did not observe any abnormal behavior, such as 

increased shivering, under cold exposure. Despite this, body temperature in Myf5-

BMPR1A-KO mice returned to normal after prolonged cold exposure (i.e. 11 days), strongly 

suggesting an adaptive recruitment of rBAT to cope with lower ambient temperatures (Fig. 

3c, 5°C-11d). Accordingly, KO-animals displayed a marked increase of UCP1-protein 
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expression in sWAT (Fig. 3d, Supplementary Fig. 10). This browning-effect could be 

further enhanced in sWAT, and induced in eWAT, by administration of the β3-adrenergic 

receptor agonist CL316,243, as signified by significantly increased expression of BAT-

markers Ucp1 and Cidea in Myf5-BMPR1A-KO mice (Fig. 3e-h), as well as increased 

emergence of multilocular UCP1pos adipocytes in WAT (Fig. 3i and 3j).

Recruitable BAT is sensitive to inductive factors, such as BMP710,11, BMP8b12, fibroblast 

growth factor (FGF)2124, and the myokine irisin25, among others. However, gene 

expression analysis revealed no changes in any of these (Supplementary Fig. 11), suggesting 

that the compensatory browning is not mediated by these factors. Since thermogenesis is 

rigorously controlled by the sympathetic nervous system (SNS)26,27, we quantified 

sympathetic input to white fat in Myf5-BMPR1A-KO mice. Staining for tyrosine 

hydroxylase was significantly increased in sWAT of KO-mice (Fig 3k and 3l). Moreover, 

circulating levels of norepinephrine (NE) were also significantly elevated in KO-mice, 

suggesting that increased sympathetic input may contribute to the browning of WAT in 

Myf5-BMPR1A-KO mice (Fig. 3m). Additionally, cold-exposed Myf5-BMPR1A-KO mice 

displayed normal NE-induced thermogenic capacity (Fig. 3n, Supplementary Fig. 12), and 

thus possess a sufficient ability to compensate for loss of cBAT. These findings suggest that 

both types of brown fat may possess similar capacities for thermoregulation if maximally 

stimulated. Whereas cBAT is essential during acute cold challenges, compensatory rBAT in 

the KO-mice with severe paucity of cBAT plays a critical role in maintaining normal body 

temperature, especially during long-term cold exposure. In accordance with these findings, 

Myf5-BMPR1A-KO animals were resistant to diet-induced obesity, even under obesity-

promoting thermoneutrality conditions, where mice no longer require thermogenesis to 

maintain body temperature28 (Supplementary Fig. 13).

To determine whether the effect of compensatory browning is also present in other models 

of cBAT-atrophy and independent of genetic intervention that could also affect skeletal 

muscle, we surgically interrupted innervation of cBAT in wild-type mice. Denervation of 

cBAT resulted in a significant decrease of cBAT size and a 68% reduction of Ucp1 

expression in cBAT (p=0.0029; Fig. 4a and 4b). As in Myf5-BMPR1A-KO mice, atrophy of 

cBAT resulted in increased recruitment of brown adipocytes in WAT (Fig. 4c-e), thus 

reinforcing the notion of a systemic mechanism that regulates total BAT-mediated 

thermogenic capacity.

It has been documented before that surgical removal of cBAT causes an activation of the 

remaining depots of cBAT29. Here we utilize both genetic and surgically-generated models 

of cBAT paucity to demonstrate the existence of a physiological mechanism to ensure 

thermoregulation by compensatory browning of WAT. This type of BAT may be more 

closely related to that found in adult humans8. The system inducing formation of rBAT 

appears to involve cBAT-brain and brain-WAT communication that is mediated, at least in 

part, by the SNS. Interestingly, obesity-resistance in mice appears to be mostly related to 

browning of white fat, rather than adaptive thermogenesis of cBAT30, altogether suggesting 

that rBAT is a key contributor to metabolic health. The findings presented here suggest that 

any therapeutic approach involving rBAT must take into account the tight regulation of total 

BAT-mediated thermogenic capacity and systemic energy metabolism at both peripheral and 

Schulz et al. Page 4

Nature. Author manuscript; available in PMC 2013 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



possibly also central levels. Targeting these mechanisms, for instance by modifying BMP-

signaling to regulate BAT mass and activity, could constitute a compelling approach to 

develop obesity therapies.

Full Methods

Animals

All animal procedures were approved by the Institutional Animal Use and Care Committee 

at Joslin Diabetes Center. Transgenic mice carrying floxed alleles for Alk2/Acvr131, or Alk3/

Bmpr1A32 were used to generate conditional gene deletion mouse models by intercrossing 

with either Myf5-33 or aP2/FABP2-driven34 CRE-expression as indicated. For studies 

involving Alk6/Bmpr1B-deletion, animals with whole body gene deletion of this receptor 

were used35. Myf5-CRE expressing animals were also crossed to Rosa26-YFP reporter mice 

(The Jackson Laboratory, Bar Harbor, ME) in addition to the Bmpr1A-flox alleles for Myf5-

lineage-tracing and GFP-labeling of Bmpr1A-deficient cells as described before10. For 

genotyping, DNA was isolated from tail tip biopsies by boiling in 0.5 ml 50 mM NaOH for 

15 min, followed by neutralization by addition of 50 μl 1M Tris-base (pH 6.8) and thorough 

vortexing. PCR-genotyping was performed using primers as listed in Supplementary Table 

S1. Expected band sizes for Bmpr1A during gel analysis were 180 bp for the wild type allele 

and 230 bp for the floxed allele. For recombination analysis of Bmpr1A-mRNA, expected 

band sizes were: 396 and 233 bp for the intact and recombined alleles, respectively, and 178 

bp for the control PCR of exons 6 to 7. For Alk2-genotyping, the PCR product was 

subsequently digested using the restriction enzyme Bgl-I (New England Biolabs, Ipswich, 

MA) at 37°C overnight, yielding a band at 250 bp for wild type mice, and a double band at 

90 bp and 160 bp for floxed alleles (all three bands in heterozygotes). Expected band sizes 

for Bmpr1B were 350 bp for the wild type, and 300 bp for the null allele. Expected band 

sizes for the Rosa26-YFP reporter mice were 600 bp for the wild type allele and 320 bp for 

the mutant allele. For Myf5-CRE genotyping, bands at 600 and 400 bp for wild type and 

mutant alleles, respectively, were expected. For a general CRE-PCR, a single band at 

approximately 350 bp indicated presence of CRE-cDNA in the genome. For loading control, 

IRS-1 primers were added for co-amplification in the same reaction (band at approximately 

500 bp) to ensure proper loading with template DNA. To stimulate the browning of white 

adipose depots, mice were treated with daily i.p. injections of 1 mg/kg bodyweight 

CL316,243 (Sigma-Aldrich, St. Louis, MO) dissolved in PBS (also used for control 

injections) for up to ten days. For experiments involving high fat diet feeding, 4- to 6-week-

old animals were placed on a diet containing 45 or 60 kcal% fat (Research Diets, New 

Brunswick, NJ). For cold exposure and thermoneutral conditions, animals were housed at 

5°C or 30°C, respectively, for the indicated times in a controlled environmental chamber 

(Caron Products & Services Inc., Marietta, OH) with free access to food and water. Body 

core temperature was determined by rectal probe measurements.

Haematoxylin & Eosin staining

Sections were prepared, processed, and stained as described11.
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Immunofluorescence

Sections were deparaffinized and prepared as described before11. Primary antibodies were 

incubated overnight at 4°C: Ki67 (1:200, rabbit polyclonal; Abcam, Cambridge, MA); 

UCP1 (1:50, rabbit polyclonal; AnaSpec, Fremont, CA), Tyrosine hydroxylase (1:50, rabbit 

polyclonal, Millipore, Billerica, MA), GFP (1:200, goat polyclonal; Novus USA, Littleton, 

CO). After primary antibody incubation, the sections were washed and incubated with 

appropriate secondary antibody (AlexaFlour-488 (green) or -594 (red); Invitrogen, Carlsbad, 

CA) at a 1:200 dilution for 10 min in the dark. After secondary antibody incubation, sections 

were washed with distilled water for DAPI-staining (0.1 μg/ml in water for 5-10 minutes in 

the dark), and mounted. Sections were kept in the dark after mounting and analyzed by 

confocal microscopy on a Zeiss LSM-410 Invert Laser Scan Microscope (Carl Zeiss 

MicroImaging, Thornwood, NY), or using a florescence microscope (Olympus BX60F-3; 

Olympus Corporation, Center Valley, PA). Quantification of tyrosine hydroxylase was 

performed by using the ImageJ software (ImageJ, NIH, Bethesda, MD). Identical conditions 

and settings were used for picture acquisition and analysis. A threshold was set for each 

image to eliminate background and to create a binary mode image. A minimum particle size 

of 20 pixels was used as exclusion criteria to eliminate unspecific background and for 

quantification of areas that stained positive for tyrosine hydroxylase. For quantification of 

Ki67-staining, Ki67pos nuclei were counted in areas identified as BAT by microscopic 

inspection of morphology and comparison to published sources36, and normalized to the 

total number of DAPIpos nuclei in the same area. For each section and animal, images from 

three representative areas were analyzed.

TUNEL staining

For detection of DNA fragmentation, sections were deparaffinized and blocked for 

autofluorescence as described10. Sections were blocked in 1% BSA/ 0.5%-1% TX-100 in 

PBS for 1 h followed by washes in PBS. Terminal strand labeling was performed for 1.5 h at 

37° C in TdT-buffer (30 mM Tris-HCL, 140 mM Na-Cacodylate, 1 mM Cobalt(II) chloride, 

pH 7.2) in the presence of dATP, biotinylated dUTP, and terminal deoxynucleotidyl 

transferase (all from Roche Applied Science, Indianapolis, IN). The reaction was stopped by 

immersion in 2× SSC buffer and subsequent incubation with Cy3-labeled streptavidin 

(1:200; Jackson ImmunoResearch Laboratories, West Grove, PA) for 1 h in the dark. 

Sections were then stained with DAPI, mounted, and analyzed as described above.

RNA and protein quantification

RNA extraction, cDNA synthesis, and quantitative real-time PCR (qPCR) were performed 

as described before11. For qPCR analysis, ct-values <30 were used for gene expression 

analysis. Protein detection by western blotting was performed as described before11. 

Primary antibodies were incubated overnight at 4°C: phospho-Smad-1/5/8 (1:1000, rabbit 

polyclonal), Smad1 (1:1000, rabbit polyclonal), phospho-p38 MAPK (1:1000, rabbit 

polyclonal), p38-MAPK (1:1000, rabbit polyclonal) (all from Cell Signaling Technologies, 

Danvers, MA), UCP1 (1:500, goat polyclonal; Santa Cruz Biotechnology Inc., Santa Cruz, 

CA) and β-Tubulin (1:8000, mouse polyclonal; Sigma-Aldrich). HRP-coupled secondary 
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antibodies (Cell Signaling Technologies) were used at 1:2000 dilutions at room temperature 

for 2 h followed by detection using ECL-system.

Cell Sorting

Sca1pos adipocyte progenitor cells were isolated from constitutive brown adipose tissue 

(cBAT) and subcutaneous white adipose tissue (sWAT) of Myf5-BMPR1A-KO mice and 

control littermates, and differentiated as described before10.

Immortalized pre-adipocytes

Immortalized cell lines were generated as earlier described37. In brief, cBAT from 

individual newborn pups (postnatal day 1 or 2) of homozygous floxed parents for the 

respective BMP-receptor was collected and pre-adipocytes were isolated by enzymatic 

digestion. Pre-adipocytes were immortalized by infection with SV40-expressing lentivirus 

and subsequent selection with puromycin. Stable cell lines were then infected with 

adenovirus expressing either GFP (control) or a CRE::GFP fusion construct for in vitro 

recombination (Gene Transfer Vector Core, University of Iowa, Iowa City, IA). 48 h post-

infection, GFPpos cells were collected by flow cytometry and expanded for subsequent use 

in experiments. DNA was isolated for PCR-analysis to determine full recombination of the 

respective receptor gene using the primers as detailed above.

Cell culture

Pre-adipocyte cell lines were cultured as described before11, except that 2% fetal bovine 

serum was used during differentiation. BMP7-treatments (3.3 nM) were performed for three 

days prior to 48 h of adipogenic induction, followed by a differentiation period of 5 days. 

Oil Red O staining was performed as described before11.

Thermal imaging of skin surface temperature

Measurement of skin temperature was performed using a thermal imaging camera (T300 

InfraRed Camera; FLIR Systems, Inc., North Billerica, MA). Skin surface temperature of 

newborns was analyzed using FLIR Reporter 8.5 software (FLIR Systems, Inc.). Images 

were acquired by placing newborn mice of the same litter (P4-P6) in 6-well cell culture 

dishes, and 2-3 images of each mouse from different angles were acquired in order to 

minimize temperature variations due to different postures of the animal. Software drawing 

tools were used to draw a region of interest (ROI) around the entire animal, and average 

body surface temperature was calculated using that ROI. For each animal, an average 

temperature value of the temperatures from all single images was calculated. These averages 

were then used for statistical analysis.

Serum parameters

Serum levels of norepinephrine (NE) were determined using a commercially available 

ELISA-kit and according to the manufacturer's instructions (Norepinephrine (Research) 

ELISA; IBL-America, Minneapolis, MN). To stabilize norepinephrine, 1 mM EDTA and 4 

mM sodium metabisulfite were added to the serum. Serum was prepared by spinning freshly 

collected blood in a cooled centrifuge at 6.000 g for 20 min. The clear supernatant was 
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collected and stored at −80°C. Samples were analyzed within 12 weeks after collection. To 

determine circulating irisin levels, a commercially available ELISA assay kit was used 

according to the manufacturer's specifications (Phoenix Pharmaceuticals, Inc., Burlingame, 

CA).

Body composition

Relative contents of lean and fat mass were determined using Dual-energy X-ray 

absorptiometry (DEXA) according to the manufacturer's instructions (GE Lunar PIXImus 2, 

General Electric Medical Systems, Pewaukee, WI). Animals were anaesthetized with 

pentobarbital (50 mg/kg, i.p.) and placed in the scanning area to measure body composition. 

Relative lean and fat mass were calculated by normalizing to body weight.

Norepinephrine-induced thermogenic capacity

Measurement of maximum thermogenic capacity was performed as described before with 

some modifications12,28. Animals were maintained in the cold as described above for 8 days 

before the experiment. All measurements were performed at room temperature. Oxygen 

consumption (OC) by indirect calorimetry was assessed using the Comprehensive Lab 

Animal Monitoring System (CLAMS, Columbus Instruments, Columbus, OH) and the 

Oxymax for Windows software (version 4.58) for data analysis. Animals were anaesthetized 

with pentobarbital (80 mg/kg, i.p.), and indirect calorimetry was performed immediately for 

30 min to record basal values of OC. The sampling interval was set to 15 min to allow for 

stable OC assessment throughout the experiment. After three data points were obtained, 

animals were briefly removed from the chamber and NE was injected subcutaneously (1 mg 

norepinephrine bitartrate/kg, Sigma-Aldrich), and OC was recorded for another 90 minutes. 

To determine maximum NE-induced thermogenic capacity (ΔVO2), the average value for 

basal OC prior to NE-injection was calculated and subtracted from the average value of 

highest NE-induced OC (t60 and t75). Areas under the curve (AUC) were calculated for the 

curves after NE-injection. Data were presented either not normalized, i.e. per animal, or 

after normalization to total body weight, or total fat mass (from DEXA scan).

Denervation of cBAT

Denervation of cBAT was performed as described before38. C57BL/6J mice (The Jackson 

Laboratory) aged 6 weeks were used for denervations. In brief, mice were anaesthetized and 

placed on a warm pad to maintain body temperature. Under a stereomicroscope, an incision 

was made posterior to the interscapular cBAT pad. Surrounding muscle and white fat was 

carefully moved to the side and the cBAT pad was turned upward to expose the five 

branches of the intercostal nerve bundles. Denervation was performed by isolating and 

cutting the nerve bundles and removing a portion of about 1-2 mm from each strand. Care 

was taken not to damage the adjacent blood vessels. The procedure was performed on left 

and right lobes of the interscapular brown fat. BAT pads, surrounding white fat, and muscle 

were placed in the original locations and the incision was closed using tissue adhesive glue 

(Vetbond, 3M Animal Care Products, St. Paul, MN). The same procedure was performed for 

sham surgeries, except that nerve bundles were not cut. Animals were housed in single cages 

and monitored daily during the first week of recovery. After 10 weeks, animals were divided 

in four groups of (1) sham-operated mice receiving vehicle i.p.-injections (PBS), (2) sham-
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operated mice receiving injections of CL316,243 as described above, (3) denervated mice 

receiving vehicle or (4) Cl316,243.

Statistical analysis

All statistical analyses were performed using the programs Excel (Microsoft Corporation, 

Redmond, WA), Statview (SAS Institute Inc., Cary, NC) and GraphPad Prism (GraphPad 

Software, Inc, CA). Statistical analyses were performed using two-tailed Student's t-test or 

ANOVA for comparing the means of two or multiple groups, respectively. Nonparametric 

testing (U-Mann-Whitney test) was used where appropriate, i.e. when normal distribution of 

sample sets was not evident. The means of two groups were considered significantly 

different when the p-value was smaller than 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Loss of Bmpr1A impairs cBAT-formation by decreasing embryonic progenitor 
proliferation
a, b, H&E-staining of interscapular sections at embryonic stage E16.5 and in newborns (P1). 

Photographs (100× original magnification) of the same anatomical location of transversal 

sections were acquired for control (CON) and Myf5-BMPR1A-KO mice (KO; § indicates 

spinal cord, orange lines indicate brown fat; applies to all panels). c, Macroscopic images of 

cBAT of P1-newborns. d, Ki67-immunofluorescence (green) of cBAT at E16.5 and co-

localization with nuclear DAPI-stain (blue, left panels; Analysis of Ki67pos nuclei in 

Supplementary Figure 1d), and light microscopy of the same area (right panels, 400× 

original magnification). e, f, Body weight analysis of control (C) and Myf5-BMPR1A-KO 

(K) mice from P1-newborns (e; n=12/4) and adult mice (f; n=6). g, h, Analysis of cBAT-, 

sWAT-, and eWAT-weights after normalization to body weight (n=13). All data are 

presented as mean ± s.e.m. Asterisks denote significant differences between genotypes: ** P 

< 0.01.
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Figure 2. Ablation of Bmpr1A in brown pre-adipocytes derived from the Myf5pos lineage inhibits 
differentiation
a, Relative frequency of Sca1pos/CD31neg/CD11bneg/CD45neg adipogenic progenitors of the 

Myf5-CRE(YFP)pos lineage in cBAT after normalization to tissue weight (n=6). White bars 

indicate cells isolated from control mice (C), black bars indicate Myf5-BMPR1A-KO cells 

(K). b, qPCR analysis of Ucp1, Cell death-inducing DFFA-like effector a (Cidea), and 

Bmpr1A mRNAs in FACS-purified primary progenitors from cBAT after adipogenic 

differentiation (n=3). Asterisks denote significant differences between genotypes: * P < 

0.05. c, Triglyceride-specific Oil Red O staining of differentiated control (C) or BMPR1A-

deficient (K) immortalized pre-adipocyte cell lines pretreated with vehicle (Veh) or BMP7 

(B7). d, Western blot of phospho-Smad1/5/8 (1st row), basal Smad1 (2nd row), 

corresponding α-Tubulin (3rd row), phospho-p38MAPK (4th row), basal p38MAPK (5th 

row), and corresponding α-Tubulin (6th row) in undifferentiated control (CON) and pre-

adipocytes lacking BMPR1A (KO) following exposure to BMP7 for 10, 30, and 60 minutes. 

Representative blots from three independent experiments are shown. e, qPCR of zinc-finger 

protein 423 (Zfp423), CCAAT/enhancer-binding protein-alpha (Cebpα), and peroxisome 

proliferator-activated receptor-gamma (Pparγ) in undifferentiated brown pre-adipocytes 

after 24h-exposure to BMP7. f, qPCR of Ucp1, PR-domain-containing-16 (Prdm16), and 

Pparγ isolated from mature brown adipocytes. Pre-adipocytes were treated with BMP7 for 3 

days, followed by 7-day differentiation. All experiments were performed in triplicate and are 

presented as mean ± s.e.m. For panels e and f, statistically significant differences as 

determined by ANOVA (p < 0.05) were acontrol (vehicle) vs. control (BMP7); bKO (veh) 

vs. KO (BMP7); ccontrol (veh) vs. KO (veh); and dcontrol (BMP7) vs. KO (BMP7).

Schulz et al. Page 13

Nature. Author manuscript; available in PMC 2013 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Specific ablation of cBAT results in a compensatory response of increased browning by 
enhanced sympathetic input to WAT
a, Photographic (left side) and infrared (right side) images of P4-P6 newborns, indicating 

KO pups by white circles. b, Quantification of average skin surface temperature from 

infrared images. White bars indicate control mice (C), black bars Myf5-BMPR1A-KOs (K; 

n=12/10). c, Body core temperature of adult control and Myf5-BMPR1A-KO mice. 

Measurements were performed at room temperature (22°C, n=11/10), and following 2 h 

(n=5), 48 h (n=7/6), and 11 days (n=7/6) of cold exposure (5°C). d, Western blot analysis of 
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UCP1 in sWAT and eWAT. e, f, qPCR of Ucp1 gene expression in sWAT (e) and eWAT 

(f). Grey bars indicate controls after administration of β3-adrenergic agonist CL316,243 (1 

mg/kg body weight) for ten days, red bars indicate CL316,243-injected Myf5-BMPR1A-KO 

(n=7; applies to all panels). g, h, qPCR of Cidea in sWAT (g) and eWAT (h). i, H&E 

staining of sWAT and eWAT after administration of CL316,243 (original magnification: 

200×). j, UCP1-immunofluorescence (IF) of sWAT and eWAT after administration of 

CL316,243 (original magnification: 400×). Left panels show UCP1-IF (green), right panels 

show light microscopic image of the same area. k, l, Tyrosine hydroxylase-IF and 

quantification of THpos nerve fibers in sWAT after administration of CL316,243 (original 

magnification: 400×). (n=3). m, Serum levels of norepinephrine (n=8). n, Time course of 

NE-induced oxygen consumption in mice maintained at 5°C for 8 days (control - gray line; 

KO - black line; n=5). All data are presented as mean ± s.e.m. Asterisks denote significant 

differences between genotypes: * P < 0.05; ** P < 0.01.
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Figure 4. Loss of sympathetic innervation causes atrophy of cBAT and compensatory browning 
of white fat
a, Tissue weight of cBAT, sWAT, and eWAT normalized to body weight in sham-operated 

mice (S, white bars) and mice after surgical denervation of cBAT (D, black bars). b, c, d, 

qPCR of Ucp1 in cBAT (b), sWAT (c), and eWAT (d) of control mice, denervated mice, 

controls (S, grey bars) or denervated (D, red bars) mice injected with CL316,243. e, H&E 

staining of sWAT from sham-operated and cBAT-denervated mice after CL316,243-

injections. All data are presented as mean ± s.e.m (n=4). Asterisks denote significant 

differences between denervation and respective control groups: * P < 0.05 as determined by 

ANOVA.
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