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Abstract

The promise of efficacious vaccines against SARS-CoV-2 is fulfilled and vaccination cam-
paigns have started worldwide. However, the fight against the pandemic is far from over.
Here, we propose an age-structured compartmental model to study the interplay of disease
transmission, vaccines rollout, and behavioural dynamics. We investigate, via in-silico simula-
tions, individual and societal behavioural changes, possibly induced by the start of the vacci-
nation campaigns, and manifested as a relaxation in the adoption of non-pharmaceutical
interventions. We explore different vaccination rollout speeds, prioritization strategies, vaccine
efficacy, as well as multiple behavioural responses. We apply our model to six countries world-
wide (Egypt, Peru, Serbia, Ukraine, Canada, and Italy), selected to sample diverse socio-
demographic and socio-economic contexts. To isolate the effects of age-structures and con-
tacts patterns from the particular pandemic history of each location, we first study the model
considering the same hypothetical initial epidemic scenario in all countries. We then calibrate
the model using real epidemiological and mobility data for the different countries. Our findings
suggest that early relaxation of safe behaviours can jeopardize the benefits brought by the
vaccine in the short term: a fast vaccine distribution and policies aimed at keeping high compli-
ance of individual safe behaviours are key to mitigate disease resurgence.

Author summary

The start of vaccination campaigns is a decisive turning point in the global effort against
COVID-19. Nonetheless, at least in the short and medium-term, vaccine availability and
the logistical issues associated with an unprecedented mass vaccination suggest that non-
pharmaceutical interventions will still play an important role in virus containment. Here,
we propose an epidemic model to study the possible effects induced by a relaxation of
COVID-safe behaviours in response to the vaccine rollout. Individuals may see this
milestone as the end of the emergency and thus give up preventive measures potentially
exposing themselves to higher infection risk. We explore the interplay between such beha-
vioural changes and different population pyramids, contact patterns, epidemic conditions,
vaccine allocation strategies, rollout speed, and vaccine efficacy. We show that early
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relaxation of COVID-safe behaviours can jeopardize and even nullify the benefit brought
by the vaccine in the short and medium-term. Our results indicate that a high level of
compliance to NPIs during vaccines rollout is crucial to avoid hindering the gigantic effort
of the vaccination campaigns.

Introduction

The COVID-19 pandemic has been largely fought with non-pharmaceutical interventions
(NPIs). Bans of events and social gatherings, limitations in national and international travels,
school closures, shifts towards remote working, curfews, closure of pubs and restaurants, cor-
don sanitaires, national and regional lockdowns are examples of governmental interventions
implemented around the world to curb the spreading of SARS-CoV-2 [1-5]. While extremely
effective, such top-down NPIs induce profound behavioural changes, bring many social activi-
ties to a halt, and thus have huge socio-economic costs. Hence, alongside these measures,
governments nudged and/or mandated populations to adopt another set of NPIs. Social dis-
tancing, face masks, and increased hygiene are examples [6]. Although far from being cost-
free, they are more feasible, sustainable, and allow for higher levels of socio-economic activity.
As such, they have been the leitmotif of the post first COVID-19 wave in many countries.
Unfortunately, awareness, adoption, and compliance with these NPIs have been spotty [6].
Furthermore, they have not been complemented with sufficiently aggressive test and trace pro-
grams. As result, many countries experienced marked disease resurgences after the summer
2020 and some had to resort to new lockdowns [7].

As we write, we have turned a crucial corner in hampering the resurgence, diffusion and
severe outcomes of the disease. Several vaccines have shown great results of their phase 3 trials,
and have been authorized for emergency use by several regulating agencies and tens of others
are in the pipeline [8-10]. As result, we have witnessed the start of vaccination campaigns
around the world. However, the logistical issues linked to the production, delivery, and adminis-
tration of billions of doses on a global scale impose caution when evaluating the impact vaccines
will have on the pandemic in the short and medium term. They will be a scarce resource and it
will take time to vaccinate the fraction of the population necessary for herd immunity [11, 12].
Furthermore, vaccines are not perfect and there are many other unknowns [13]. The extent to
which vaccines limit further transmission, how long the immunity lasts, and the levels of protec-
tion offered against new variants are key features currently under investigation [13]. So far, the
results show high levels, around 95% [14, 15], of direct protection against the disease. Despite
these first signs of the vaccine impact in the real world are extremely encouraging [16, 17], these
figures might end up to be lower. Finally, vaccines’ acceptance is a complex challenge. A recent
survey among 13, 426 participants in 19 countries shows that, while 71.5% of the sample is very
or somewhat likely to take the vaccine, there are large heterogeneities [18]. Acceptance rates
vary from 90% in China to less than 55% in Russia. Furthermore, they are linked to socio-eco-
nomic, socio-demographic features, and education attainment [18]. Arguably, vaccines alone
will not be able to contain the spreading of the virus, at least in the short term [19, 20]. Social dis-
tancing, face masks, hygiene measures, and other NPIs will be still key during the delivery of
such vaccination programs, especially considering the emergence of variants of concern as well
as the challenges in vaccines procurement and administration in the developing world [21].

In this context, an important question emerges. What will happen to adoption and compli-
ance to NPIs as vaccination campaigns progress? Their arrival and delivery might induce indi-
vidual and collective behavioural changes. Some might see this milestone as the official end of
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the emergency and as result relax their COVID-safe behaviours. Somehow paradoxically, vac-
cines might have, at least initially, a net negative effect. According to the health-belief model,
one of the most commonly used psychological theories to characterize health-related behav-
iours, beliefs, perceptions, barriers to take action, and other modifying variables such as socio-
demographic and socio-economic factors are key ingredients driving behavioural changes
[22-24]. A recent study may offer an empirical evidence of this tendency [25]. By means of
surveys delivered before the vaccination rollout in December 2020, authors found that vaccine
information reduce adherence to social distancing, hygiene measures, and the willingness to
stay at home. Several surveys conducted during the COVID-19 pandemic, well before any con-
crete hope for a vaccine, confirm this picture, provide hints of how the arrival of vaccines
might corrode even more adoption, highlight how compliance is a complex multi-faced prob-
lem [5] and that risk-perception as well as NPIs adoption are indeed associated to several
socio-economic determinants such as age, gender, wealth, urban-rural divide [26-41].

The literature aimed at estimating the epidemiological and societal impact of COVID-19 vac-
cines has been focused mainly on two very important points. The first line of research has been
devoted to quantifying the effects of a vaccine on the evolution of the pandemic, considering dif-
ferent efficacy and coverage levels [42]. The second instead tackled the issue of vaccine allocation
investigating strategies that target first different groups (i.e., age brackets, high-risk individuals)
or particular occupations (i.e., doctors, nurses) [10, 43-45]. Very recently, the intuition that social
distancing remains key during vaccination rollout stimulated few studies on the effects of a vac-
cine on the adoption of NPIs in specific settings [46-50]. An agent-based model applied to North
Carolina showed that lifting NPIs during vaccines distribution would imply a substantial increase
in infections and deaths [51]. Similarly, a data-driven model of SARS-CoV-2 transmission for
China estimated that NPIs need to remain in place at least one year after the start of vaccination
to avoid a generalized disease resurgence [52]. Despite these examples, the impact on real-world
scenarios of the interplay of disease dynamics, behaviour change, and vaccines rollout is still
largely unexplored. Furthermore, because of the novelty of the problem, also modeling frame-
works able to characterize the possible behavioural dynamics linked to vaccinations are scarce.

To tackle such limitations, we introduce an age-structured compartmental epidemic model
capturing the possible relaxation of NPIs adoption in response to the vaccine rollout. We
model different compliance levels as distinct compartments and consider different behavioural
dynamics driving the relaxation of NPIs. We test extensively the effects of behaviour change on
disease spreading for different prioritization strategies, vaccine efficacy, and vaccination rollout
speeds, using real demographic data and contacts matrices for six countries: Egypt, Peru, Ser-
bia, Ukraine, Canada, and Italy. We choose these countries sampling levels of economic devel-
opment. Indeed, in the World Economic Situation and Prospects 2020 issued by the United
Nations, Egypt and Peru are classified as Developing Economies [53], Serbia and Ukraine as
Economies in Transition, Canada and Italy as Developed Economies. Furthermore, considering
dissimilar countries allows us to explore the interplay between vaccination and behaviours also
as a function of population pyramids and intra/inter-generational mixing observed around the
world. High income countries are typically characterized by higher average age, but lower
inter-generational interactions respects to mid/low income countries [54]. These observations,
together with the dependence of COVID-19 fatality rates on age, point to the possibility of
non-trivial dependencies which we aim to explore here. As a way to realistically account for the
different epidemic trajectories, we also explore the model after calibrating it on COVID-19
weekly deaths in the period 2020/09/01-2020/12/31 in these countries. To this end, we incor-
porate the timeline and effects of governmental restrictions on social contacts.

Our results provide quantitative insights on the interaction between sustained NPIs and an
effective vaccination program. We show that an early relaxation of COVID-safe behaviours
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may lower, and even nullify, the advantages brought by the vaccine in the short term. Overall,
the picture that emerges from the analysis of the different countries is consistent: a high level of
compliance towards NPIs such as mask-wearing, social distancing, and avoidance of large gath-
erings, is needed in order to avoid spoiling the great effort of the vaccination campaigns.

Results
Vaccine-behaviour model

We consider an age-structured epidemic model based on a Susceptible-Latent-Infectious-Recov-
ered compartmentalization with the addition of pre-symptomatic and asymptomatic infection
stages and deaths. On top of the disease dynamics, we model both the vaccination rollout and
the behavioural responses linked to it. After the start of the vaccination rollout, on each day a
fraction of the population receives a vaccine that decreases both the probability of infection
(with efficacy VEs) and of developing symptoms (with efficacy VEj,,,,,) and enters in the com-
partment V [44]. As result, in our simulations, the overall efficacy of vaccine against severe out-
comes such as death is VE = 1 - (1 — VEg)(1 - VEg,,,,,). We introduce the rollout speed ry as the
number of daily administered vaccine doses expressed as a percentage of the total population.
We study and compare three different strategies of vaccine prioritization. The first considers
distributing vaccines in decreasing order of age. Previous research on COVID-19 vaccines allo-
cation has shown that this strategy is the most effective in reducing the number of deaths and
overall severity [10, 43, 44]. It is also the main strategy currently deployed in the different vacci-
nation campaigns across the globe. In the second and third strategy vaccines are either distrib-
uted homogeneously or first to the individuals in age brackets 20-49 [55] and then to the rest
of the population. The last strategy seeks to reduce symptomatic transmission targeting the
most social active part of the population [10]. For simplicity, we will refer to the three rollout
approaches as vaccine strategy 1, vaccine strategy 2, and vaccine strategy 3. In parallel to the vac-
cination, individuals (both susceptible S and vaccinated V) may start giving up safe behaviours
and expose themselves to higher infection risks. We introduce the compartments SN and V¢
for susceptible and vaccinated individuals respectively, to describe different behavioural classes
(for convenience “NC” refers to “non-compliant” to COVID-safe behaviours). The increased
infection risk for these individuals is captured by the parameter r > 1 (for example, r = 1.3 indi-
cates an increased risk of 30%). Sensitivity analysis on parameter r has been performed for val-
ues in the range of current estimates, as reported in Materials and methods section). We model
the transition from S and V towards riskier behavioural classes as a function of the fraction of
the vaccinated population and the parameter a. In turn, we imagine that a worsening of the epi-
demiological conditions may push non-compliant individuals back to safer behaviours. Here,
we consider the number of fatalities per 100, 000 individuals in the previous time step (i.e., day)
and the parameter ¥ to control the second behavioural transition. We refer the reader to the
Materials and Methods section and the S1 Text for more details on the model. We refer to the
the SI Text, for results related to different behavioural mechanisms: a simpler one with constant
rate, and a more complex one with different rates for vaccinated vs. unvaccinated individuals.

Interplay between NPIs adoption and vaccination campaign

We use data for six different countries: Egypt, Peru, Serbia, Ukraine, Canada, and Italy. As
mentioned above, these countries have been selected to sample a range of demographics and
socio-economic contexts. In Fig 1A, we represent some key characteristics of the demographic
and the mixing patterns between age groups of these countries. First, we consider the fraction
of people aged over 65. This is a measure of the epidemic fragility of a country: indeed 65+
individuals are at particularly high risk of mortality from COVID-19 disease [56]. Italy is the
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Fig 1. Demographic, mixing patterns, and relative deaths difference for different rollout speeds and prioritization
strategies. A) Demographic characteristics and mixing patterns of the six countries considered are shown: percentage
of the population aged over 65, contacts intensity for different age groups, and a measure of inter-generational mixing.
B) Relative deaths difference is computed as the fraction of deaths that are avoided with a vaccine with respect to a
baseline simulation without vaccine. We display results of the simulations for three vaccine rollout speed and
prioritization strategies. Other parameters used are y = 0.5, Ry = 1.15, r = 1.3, VEg = 70% and VEg,,,,, such that

VE = 90%, 0.5% of initially infected, 10% of initially immune individuals, and simulations length is set to 1 year.

https://doi.org/10.1371/journal.pcbi.1009346.g001

country showing the highest fraction of 65+ people (24%), while the developing economies
show the lowest fraction (Egypt 5.3% and Peru 8.7%). Indeed, low/middle-income countries
tend to have a younger population with respect to the high-income ones. Second, we present
also the contacts intensity of different age groups. This is defined as the total number of con-
tacts that an individual in a certain age group has, on average, with all the others in a day. We
observe a typical decreasing trend, with younger people that tend to have more contacts. In
particular, developing economies show a much higher number of daily contacts for individuals
aged under 30. This can play an important role in the spreading even in developed economies.
According to a recent study the resurgence of the COVID-19 Pandemic in the US after Sum-
mer 2020 was mainly sustained by younger people [55]. Finally, we represent a measure of
inter-generational mixing. We define it simply as the number of daily contacts that an
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individual in the age groups at high mortality risk from COVID-19 (65+) receives from indi-
viduals in the age brackets 0-49. We observe that Egypt is the country showing the highest
inter-generational mixing, followed closely by Peru.

It is important to notice how heterogeneities in health infrastructures, access to health care,
and comorbities are expected across the six countries under examination [54]. These features
might induce variations in the IFR. For simplicity however, in the following, we use the same
fatality rates for all countries. We leave the exploration of this important aspect to future work.

Prioritization strategies, rollout speed, and vaccine efficacy. The proposed model allows
to investigate the impact of the behavioural response under different conditions. We consider
six populations matching the characteristics of the countries under consideration and exploring
the model with the same epidemic initial conditions. The experimental setup considers that
each population has already experienced a previous wave of infections and that restrictive mea-
sures are in place to mitigate the spreading. Therefore, we set the basic reproductive number R,
= 1.15, 0.5% of initially infected individuals, and 10% of immune individuals. In line with esti-
mates of vaccine efficacy against COVID-19 we set VEg = 70% and we choose VEg,,,,,, such that
VE =90% [57], while we let vary the vaccine rollout speed ry between 0.1% and 1% to cover the
spectrum of real vaccination rollout speeds of the vaccination campaigns across the globe. Peru,
for example, administered on average 0.05 daily doses per 100 people in the week commencing
on the 8" of March, Italy administered 0.30, and Serbia 0.70 [58]. In Fig 1B we show the relative
deaths difference for the three vaccine prioritization strategies and the three vaccine rollout
speed ry = 0.1%, 0.5%, 1.0%. The relative deaths difference (RDD) is defined as the fraction of
deaths averted thanks to the vaccine with respect to a baseline simulation without vaccine and,
therefore, no behavioural response. For example, RDD = 0.2 indicates that 20% of deaths are
averted. Note how this quantity may become negative if the behavioural response causes more
deaths than those averted thanks to the vaccine. We refer the reader to the Materials and Meth-
ods section for further details. Moreover, we explore a range of behavioural responses running
the simulations for a range of values of the parameter a. Starting from « = 0 (which implies no
behavioural response), we perform simulations with increasing a values (implying stronger
reactions), while keeping constant the other behavioural parameter (y = 0.5).

As a first observation, across the different countries and rollout speeds considered, the strat-
egy aiming to curb the severity of the pandemic (i.e., vaccine strategy 1) is indeed the most
effective in reducing the number of deaths.

As illustrative and concrete example let us consider the case of Canada. When a = 0 (i.e., no
behaviour response) and ry, = 1% with this strategy the fraction of averted deaths is 0.77 with
respect to a baseline without vaccine. This fraction reduces to 0.72 with the homogeneous vac-
cination strategy, and to 0.70 with the strategy prioritizing younger individuals. When ry =
0.5%, these fractions reduce to, respectively, 0.67, 0.64, 0.62. The ordering of the strategies
slightly changes when ry, = 0.1%, in this case we obtain 0.28. 0.35, 0.36. Overall, the picture that
emerges is consistent with previous studies on the allocation of COVID-19 vaccines among
age groups showing that the strategy minimizing deaths is generally the one targeting the
elderly, even though for some combination of the parameters the strategy targeting the youn-
ger might be preferable [43, 44].

When the behavioural response to the vaccine rollout is considered (i.e., @ > 0), we note a
consistent decreasing trend of the relative deaths difference for increasing values of a. This
shows that the behavioural response impacts the unfolding of the epidemic, and that a relaxa-
tion of NPIs leads to a smaller fraction of averted deaths. Interestingly, a concerning effect also
emerges: in some conditions, as non-compliance becomes larger, the benefit brought by the
vaccine is nullified and the number of observed deaths increases with respect to the no-vaccine
and no-behaviour change scenario (i.e., the relative deaths difference become negative). This is
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solely attributable to the behavioural reaction to the vaccination campaign which in turn is not
efficient enough to balance behaviour relaxation. Indeed, this phenomenon is observed in par-
ticular when strategies that do not target a reduction in severity are employed, and when the
vaccine rollout speed is low. In the case of Serbia, with i, = 1% and a strategy aimed at reducing
severity, the fraction of averted deaths goes from 0.84 when & = 0 to 0.73 when a = 10, with a
potential loss of 0.11 attributable to the NPIs relaxation. This effect is more pronounced in the
case of the vaccination strategy 2 (or 3): the fraction of averted deaths goes in this case from
0.76 (0.73) when o = 0 to 0.59 (0.50) when o = 10, with a potential loss of 0.17 (0.23) attributable
to the NPIs relaxation. Similarly, lower vaccine rollout speed are impacted more significantly by
behavioural responses. In the previous example, an immunization campaign with a ry of 1%,
0.5%, and 0.1% would induce a relative deaths difference, in the case of the vaccination strategy
1, 0f 0.84, 0.75, 0.40 when o = 0. By setting instead a = 10, these figures would drop to 0.73,
0.44, —0.67 with a loss of 0.11 in the first, of 0.31 in the second, and of 1.07 in the third case.

In the results presented in Fig 1B, we observe that the most disadvantaged countries are the
developing economies, Egypt and Peru. At first, this may seem counter-intuitive. Indeed, these
countries have a lower fraction of individuals aged over 65. A possible explanation is given by
the high activity of young individuals combined with the high inter-generational mixing.
Moreover, it is worth stressing that these results are to be intended in relative terms: a relative
worst performance in averting deaths does not necessarily imply a worst absolute perfor-
mance. In other words, the relative impact of behavioral responses might be stronger in those
countries, but their age pyramid might induce still a smaller number of deaths in absolute
terms. On this point, it is important to remember that we are not considering possible modula-
tions of the IFRs due to the heterogeneity in health care infrastructure, prevalence of co-mor-
bidities and access to health care. In the S1 Text we provide an example highlighting this point
by comparing Italy and Egypt. We observe also that the difference between countries is more
profound for the vaccination strategy aimed at reducing transmission (i.e., strategy 3). Further-
more, behavioural relaxation widens the distance between the countries. With ry,= 0.1% and
vaccination strategy 3, the gap between the relative deaths difference for Italy and Egypt is 0.24
when o = 0. This figure increases to 0.87 when o = 10.

In the S1 Text we repeat the analysis considering the fraction of averted infections instead
of deaths. We find that the ranking of allocation strategies is inverted. Indeed, in line with pre-
vious findings [43], when considering averted infections the most efficient strategy is the one
targeting the younger population first, followed by the homogeneous, and the strategy aimed
at curbing severity. In the S1 Text, we also repeat the results presented in Fig 1B exploring
different vaccine efficacy VE (50%, 70%, 90%) rather than rollout speed. Similarly to the case
presented in the main text, also in these additional analyses we find that early behavioural
relaxation reduces the fraction of averted infections, influences heterogeneously the prioritiza-
tion strategies, and impacts more significantly lower vaccine efficacy or slower rollout.

To further explore how to mitigate the impact of behavioural relaxation once that the vaccina-
tion campaign started, in Fig 2 we systematically explored the interplay between vaccine efficacy
VE and vaccination rollout speed ry. The black dashed lines highlight the combinations of VE
and ry that achieve a 30% drop in observed deaths (taken as reference value), in the absence of a
behavioural response (i.e., & = 0). In most countries, it can be achieved with ry, smaller than
0.2%. On the contrary, when even a mild behavioural response is active (red dash-dotted lines,

o = 1), the rollout speed has to increase greatly when vaccine efficacy diminishes: for the case of
Italy, a 30% drop in deaths would be achieved with a ry, of 0.4% when the vaccine efficacy is 90%,
but in the case of VE = 60% the rollout speed has to grow up to 0.8% to achieve the same result.

Epidemic trajectories and impact of behavioural relaxation. As a way to ground the
model on more realistic epidemic scenarios, we calibrate it to the real epidemic trajectories of
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Fig 2. Interplay between vaccine efficacy and rollout speed. Contourplot of the relative deaths difference in the scenario with a mild
behavioural response (o = 1) for different combinations of VE and ry. We let VEg vary between 30% and 70% and we choose different
VEg,mp such that the overall efficacy VE vary between 50% and 90%. A 30% reduction of deaths is highlighted with a red dashdotted line.
The black dashed line highlight the 30% death drop achieved with a vaccination campaign without the behavioural component (o = 0).

Vaccination Strategy 1 is considered, parameters used are y = 0.5, Ry = 1.15, r = 1.3, 0.5% of initially infected, 10% of initially immune
individuals, and simulations length is set to 1 year.

https://doi.org/10.1371/journal.pchi.1009346.g002

the six countries considered. The calibration is performed via an Approximate Bayesian Compu-
tation technique (ABC) [59] on weekly deaths for the period 2020/09/01-2020/12/31. In doing
so, we estimate some key epidemiological parameters matching the context of each country, thus
defining realistic initial conditions for the model. To capture the effects of non-pharmaceutical
interventions on the contacts between people we consider data from the Google Mobility Report
[60] and the Oxford Coronavirus Government Response Tracker [61] until week 11 of 2021.
After the calibration step, the model evolves from 2021/01/01 up to 2021/06/01 with the vaccina-
tion rollout for each of the countries. Note that in some of these countries, the vaccination cam-
paigns officially started in the second half of December, though mostly symbolically.

In Fig 3A we show key indicators resulting from the calibration. In particular, for the six
countries we report the boxplot for the calibrated infection parameter S, the projected number
of symptomatic infections per 100, 000, and the fraction of recovered individuals on the 2021/
01/01, which is the start of the vaccination campaign in our simulations. We acknowledge a sig-
nificantly high acquired immunity in the case of Peru, where the estimated attack rate as of 1%
January, 2021, is around 38%. Nonetheless, this figure is line with other available estimates [58].
We observe how the calibration allows for an heterogeneous representation of the epidemiolog-

ical conditions of the different countries. In Fig 3A we also show the effects of restrictive mea-
sures on contacts. As a proxy, we consider the ratio between the leading eigenvalue of the
contacts matrix (considering the restrictions) and the leading eigenvalue of the baseline con-
tacts matrix (without restrictions). The leading eigenvalue of the contacts matrix influences the
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Fig 3. Giving up NPIs during rollout may nullify the benefits brought by the vaccine. A) We display for the
different countries the boxplot of the calibrated infection parameter f3, the projected number of symptomatic infectious
cases per 100’000 and the fraction of recovered at the 2021/01/01, start of the vaccination campaign in our simulation.
We also report the ratio between the leading eigenvalue of the contacts matrix considering restrictions and of the
baseline contacts matrix with no restrictions. B) We display the median relative deaths difference for the calibrated
model in the different countries. We consider the three vaccination strategies and two possible rollout speed: r, = 1%
(faster rollout), and ry, = 0.25% (slower rollout). We run the model over the period 2021/01/01-2021/06/01. Other
parameters are y = 0.5, @ = 10% r = 1.3, VEg = 70% (VE = 90%).

https://doi.org/10.1371/journal.pcbi.1009346.9003

reproductive number of the disease (see Materials and methods), and more broadly it measures
the intensity of contacts among people. By normalizing with respect to the baseline contacts
matrix (with no restrictions) we can grasp the strictness of the measures in place. For example,
aratio of 0.3 would imply, in our simulations, a 70% reduction of the reproductive number
with respect to the baseline without restrictions. The effect of restrictive measures on contacts
varies over time up to week 11, 2021. In the case of Italy, for example, we observe the partial
ease of the measures during January and February (i.e., p(C;)/p(Cp) increases) followed by the
tightening of measures in March aimed at curbing the third wave of infections. Afterwards, we
keep the mixing levels as those observed for week 11 (more details in the Materials and methods
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section). This is a conservative assumption as we can imagine that the seasonality and impact of
the vaccination campaign might induce a relaxation of NPIs as the number of cases and deaths,
hopefully, will go down. In this scenario, the countries with the strictest measures in place after
week 11, are Peru and Italy, and Canada, while Egypt and Ukraine show the most permissive
measures. In the S1 Text, we repeat the analysis using real data to compute contacts reduction
parameters for the whole period. The results are in line with the observations presented below.
In Fig 3B we study, for the calibrated model in the six countries, the difference between
the fraction of averted deaths with respect to a baseline without vaccine in the case of a strong
behavioural reaction to vaccine deployment (i.e., a = 10?%) and in the case of no relaxation of
NPIs (i.e., & = 0). This quantity, which we indicate with Agpp, represents the additional frac-
tion of deaths that occur due to lower compliance to COVID-safe behaviours in our simula-
tions (see Materials and methods for more details). We study two vaccination rates. A fast
deployment that manages to vaccinate ry = 1% of the population daily (aligned with the pre-
paredness plan for Influenza pandemic [62] and vaccination rates achieved by countries like
Israel or Chile), and a slower rollout ry, = 0.25%. Worryingly, in the different countries, even in
a scenario with several restrictions and a successful vaccination campaign in place, it is possible
to witness a significant increase in deaths exclusively due to a relaxation of COVID-safe behav-
iours. As a result of the calibration step, the countries under investigation face different epide-
miological conditions (e.g., effective reproductive number, immunity from previous waves,
initial number of infected, estimated effects of restrictions). These translate into phenomeno-
logical differences with respect to the results of the previous analyses. In particular, Ukraine
and Egypt are significantly impacted by behavioural relaxation in the case of the slower rollout
ry = 0.25%, while Peru, differently from the previous analysis, is less impacted. From Fig 3A
we see that in the first two countries the estimated effect of restrictions on contacts (especially
in the last weeks) is smaller with respect to the others. On the other hand, Peru features
tougher NPIs, together with Italy and Canada, which are also less impacted by behaviour in
Fig 3B. This underlines how, besides the characteristics of the vaccination campaign, also the
epidemiological conditions and the measures in place are important factors influencing the
behaviour-vaccine interplay. In the case of the faster rollout ry, = 1%, the obtained values of
Agrpp are smaller and the differences between countries are less pronounced. A possible expla-
nation is that when a fast rollout is employed the influence of epidemiological conditions and
restrictions become less important because of the efficiency of vaccine administration. Fur-
thermore, we observe that, for both ry, the vaccination strategy targeting a reduction of sever-
ity (strategy 1) performs generally better in case of NPIs relaxation with respect to the other
strategies. In the S1 Text we investigate more in detail the comparison between vaccination
strategies in terms of robustness to behaviour relaxation considering both averted deaths and
infections. We find that, when considering deaths, a vaccine allocation aimed at reducing dis-
ease severity (i.e., strategy 1) is always preferable. Instead, vaccination strategy 2 and 3 perform
better when the number of avoided infections is used as evaluation metric. Information about
vaccination strategy robustness against behavioural changes might be used to tune and design
resilient rollout campaigns. Policy-makers might also consider to optimize vaccination strate-
gies with respect to a combination of multiple metrics. In this direction, our analysis provide
additional insights, and suggests that behavioural changes might play an important role possi-
bly modifying the impact of vaccine prioritization strategies.

Discussion

For almost a year, in the midst of a global pandemic, policymakers struggled to implement sus-
tainable restrictions to slow SARS-CoV-2 spreading. Every non-pharmaceutical intervention
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was aimed at slowing (in few countries stopping) the disease progression buying time for the
development, test, production and distribution of vaccines that might ultimately protect the
population. With an impressive scientific endeavor, several vaccines have been developed and
an early distribution campaign was rolled out by the last days of December 2020. Besides the
potential threats emerging from new virus strains [63], the current vaccination campaign rep-
resents the beginning of a new normal and a gigantic step towards complete virus suppression.
However, we demonstrated that if the growth in vaccination uptake would lead to overconfi-
dent conducts inducing relaxation of COVID-safe behaviours, additional avoidable deaths

will occur. We extended the literature proposing a mechanistic compartmental model able to
simulate the unfolding of COVID-19, the vaccination dynamics and the compliance/non-
compliance transition modulated by different behavioural mechanisms. Performing in-silico
simulations allowed us to explore, from a theoretical standpoint, the interplay among different
vaccination strategies, rollout speeds, vaccine efficacy, and behavioural responses. We found
that behaviour impacts non-linearly vaccine effectiveness. Indeed, early NPIs relaxation affects
more significantly slower rollouts, lower vaccine efficacy, and allocation strategies that target
reduction in transmission rather in severity. We included in our analysis six different countries
(Egypt, Peru, Serbia, Ukraine, Canada, and Italy), representatives of various points of the spec-
trum of world economies. This allowed us to observe the effects of behaviour-vaccine relation-
ships for various population pyramids and mixing patterns. We observed that the developing
economies, characterized by a younger population, but higher contacts activity and inter-gen-
erational mixing, are generally more affected by behaviour change with respect to developed
economies. Then, as a way to ground the model on more realistic epidemiological conditions,
we calibrated it using real epidemic and mobility data for the six countries considered and sim-
ulated the unfolding of the first months of the vaccination campaign. In such realistic scenario,
we observed that even with restrictive measures in place and a successful vaccination cam-
paign, it is possible to witness to non-negligible increases in deaths attributable to an early
relaxation of COVID-safe behaviours. The calibration step allowed us to highlight that also

the epidemiological conditions related to the country-specific unfolding of the disease are an
important factor influencing the interplay behaviour-vaccine.

We acknowledge some limitations in the present study. First, we considered the vaccines
fully working immediately after the first dose and we neglected that vaccination campaigns are
using a portfolio of vaccines rather than a single one. We have also studied three simple vacci-
nation strategies that neglect the complexities of an unprecedented mass vaccination. As result,
both the vaccination priorities, vaccine effects and vaccination rates are an approximation of
reality. In the S1 Text, we studied a data-driven vaccination rollout for Italy, where vaccines
are distributed to the various age brackets following the real daily administration data. The
results we obtained are qualitatively similar to those presented in the main text. Second, while
the model calibration suggests that our approach can nicely capture national trends, the model
is not meant to provide accurate forecasts of the local unfolding of the disease, but rather to
test what-if scenarios in a comparative fashion. We have considered a simple age-structure
compartmental model that does not capture spatio-temporal heterogeneity both in terms of
spreading and of NPIs implementation which have instead been observed in the countries
under investigation. Third, our model does not include new, more transmissible, variants of
concern and assumes the same IFR across the six countries. Finally, we propose and model
two potential mechanisms leading to behavioural changes, but data are not available to per-
form a quantitative validation of the behavioural components of the model.

Implementation of individual protective behaviours and adherence to NPIs have been vital
in order to reduce the transmission of SARS-CoV-2 leading to substantial population-level
effects [5, 64-75]. Behavioural science can provide valuable insights for managing policies,
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incentives, communication strategies and can help coordinate efforts to control threats and
evaluate such interventions [76]. As during the first waves of COVID-19, when NPIs were the
only available mitigation measures [77], the results of our paper call for adequate strategies to
keep high the attention and compliance towards individual COVID-safe behaviours, such as
mask-wearing, social distancing, and avoidance of large gatherings now that vaccines are
finally available. Communication strategies and policies should keep targeting such non-phar-
maceutical intervention to avoid frustrating the immense effort of the vaccination campaigns.

Materials and methods
Epidemic model

Model definition. We propose an age-stratified compartmental model that incorporates
both the vaccination process and the behaviour dynamics possibly linked to it. See Fig 4 for a
schematic representation. Individuals are divided into 16 five-year age groups (last group is
75+). The virus transmission is modeled using the following approach. Susceptible individuals
(S compartment) in contact with infectious compartments become latent (L compartment).
After the latent period (¢ "), L individuals enter the pre-symptomatic stage of the infection (P).
Then, they can transition either in the asymptomatic (A) or the symptomatic stage (I) at rate
w (the length of time spent in the L and P compartments is the incubation period). The probabil-
ity of being asymptomatic is f. After the infectious period ("), both I and A individuals enter
the Recovered compartment (R, R4). Alternatively, I individuals can also die and transit to the
D compartment. Note how we include a delay of A days from the time individuals enter the
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Fig 4. Compartmental model. We consider an extension of the classic SLIR model adding compartments for presymptomatic (P)
and asymptomatic (A). We also design compartments for vaccinated (V), dead (D describes individuals that will die with a delay of
A~ entering the compartment D°), susceptible (V) and vaccinated (V) individuals that do not comply with COVID-safe
behaviours. The vaccine offers a protection VEg against infection and VEgy,,, against symptoms that can lead to severe outcomes
such as death. The transmission rate for susceptible is § and for susceptible non-compliant 7 (r > 1). The parameter o regulates the
transition from compliant to non-compliant behaviours, while y regulates the opposite flow. Arrows describe the transitions
between compartments. For simplicity of visualization, we do not display the compartments mediating the different transitions. For
example, the transition S — L is mediated by the infectious compartments (P, A, I, P", I, A"). The compartmentalization is then
extended to account for empirical age-structure and contact matrices.

https://doi.org/10.1371/journal.pchi.1009346.g004
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compartment D and die (D° compartment, the superscript stands for “observed”). The infec-
tious compartments are P, A, I. The transmission rate is 5 and the force of infection is dependent
on the age-stratified contact matrix C € R“*¥, whose element C;; represents the average number
of contacts that an individual in age group i make with individuals in j per day. The matrix C
has four location-specific contributions: contacts at home, workplace, school, and other loca-
tions. We adopt country-specific contacts matrices provided in Ref. [78]. We assume that P and
A have lower infectiousness with respect to symptomatic I (8y, with y < 1). Similar approaches
have been used in several modeling studies in the context of the current pandemic [70, 79].

On top of the disease dynamics, we model both the vaccination process and the behavioural
change that is possibly coupled to the vaccination. More in detail, after the start of the vaccina-
tion campaign at ty, at each time step, a fraction of the susceptible population receive a vaccine
and transit to compartment V. We introduce the rollout speed ry as the number of daily avail-
able doses expressed as a percentage of the total population. We adjust the number of doses
available per day considering the fraction of susceptibles among all those that can receive the
vaccine (S, L, P, A, and R,) and we assume that the remaining doses are wasted. We consider a
“leaky” vaccine that reduces susceptibility with a certain efficacy VEg and the probability of
developing symptoms by VEj,,,,. In other words, the infection rate for V individuals is S(1 -
VEs) and the probability of entering the infectious symptomatic compartment I from P" is (1
- A(1 = VEgy,,,). Similar approaches have been used in previous works in the context of math-
ematical modeling of COVID-19 immunization campaigns [44, 80]. As mentioned above, we
consider three vaccination strategies: one in which the vaccine is given in decreasing order of
age (vaccination strategy 1 aimed at reducing the severity), one in which it is given homo-
geneously to the population (vaccination strategy 2), and one in which it is first given to indi-
viduals in age brackets 20-49 and then to the rest of the population (vaccination strategy 3
aimed at reducing the transmission of the virus) [10]. In parallel, we imagine a behavioural
dynamics triggered by the presence of the vaccine. Indeed, susceptible individuals (both vacci-
nated and not) may start adopting less safe behaviours because reassured by the presence of an
effective vaccine. This is encoded in the model with a transition from the compartment S (V)
to a new compartment SV (VN)—NC stands for non-compliant—of individuals that protect
less themselves and as a result get infected at a higher rate. The parameter r > 1 captures the
increased risk of contagion for NC individuals. It modulates the contribution to the force of
infection from the $¥° and VN compartments. In the simulations presented in the main text
we used r = 1.3 imagining a scenario where the relaxation of COVID safe behaviors increases
the transmission rate of 30%. This choice is informed by the estimated effects of NPIs such as
face masks and social distancing on COVID-19 spreading, as reported in the literature [4, 20,
81, 82]. Nonetheless, in the S1 Text we perform a sensitivity analysis considering also r = 1.1,
1.5. We propose two mechanisms to model the behavioural transition. In the first mechanism,
the transition towards non-compliance happens at a rate o and it is catalyzed by the cumula-
tive fraction of individuals that received a vaccine (v, including both compliant and non-com-
pliant). The opposite transition from SM (V¥) to S (V) happens at rate y and is catalyzed by
the number of deaths per 100, 000 observed in the previous time step (d¢_,, including both
compliant and non-compliant). Indeed, an increase in deaths is frequently used—especially by
media—as an indicator of the severity of the current epidemiological situation. Existing litera-
ture suggests that risk perception (in the form of number of infected individuals or deaths)
and communication of such risk significantly affect adherence to personal mitigation strategies
such as social distancing and wearing face masks [5, 83]. Expressing the number of deaths in
proportion to the population allows us to compare countries of different size. Overall, this
approach aims to depict the adaptive nature of human behaviour where individual choices are
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influenced by vaccination and pandemic progression [84]. In the second mechanism, S (V)
individuals transit to the non-compliant compartment S (VN°) at a constant rate o. We also
account for the possibility of non-compliant going back to safer behaviours again at a constant
rate y. To simplify the narrative, we present the results considering this second mechanism
only in the S1 Text. The overall picture discussed above does not change significantly. Note
that in order to avoid issues with transition probabilities large than one we model the rates as
Ax_xnc=1— exp_g(a), Axvex=1— exp_h(y) with X =[S, V] and where the specific expression
of the exponent depend on the two mechanisms described above: g(a) = av;, h(y) = yd°_ | in
the first one, and g(a) = o, h(y) = ¥ in the second mechanism. Note how for small values of
g(a), h(y) the rate converges to the usual mass-action law. The model just described can be
written down as the following system of differential equations for individuals in age group k:

ds
d—t" = S — (1 —e#®)S, + (1 — e h))gNe
dSNC
= S (L= e ) — (1 - e M)
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Where &, = B3, G 'is the force of infection for age group k.
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Table 1. Model parameters.

Parameter

Transmissibility

Latent period

Presymptomatic period

Fraction of asymptomatic
Reduced infectiousness of P and A
Infectious period

Infection fatality rate

Days spent in D before transitioning to D’

https://doi.org/10.1371/journal.pcbi.1009346.t001

The basic reproduction number is R, = p(C)[ + m}—:f) + /%f], where C is the contacts
matrix weighted by the relative population in different age groups. In the S1 Text we provide
details on its derivation. We adopt the model integrating numerically the equations, thus it is
deterministic. However, it is worth stressing that when we calibrate the model to the real epi-
demic trajectory in the six countries, we use a probabilistic framework through an Approxi-
mate Bayesian Computation technique. Said differently, the calibrated parameters are
characterized by posterior probability distributions rather than exact values. For this reason,
the results presented in Fig 3 (i.e., the median of model’s projections) are to be intended as an
ensemble of multiple trajectories generated sampling from the posterior distribution of the fit-
ted parameters. The model is implemented in the programming language python with the use
of the libraries scipy [85], numpy [86], and numba [87]. The visualization of the results is real-
ized with the library matplotlib [88].

In the Results section, we kept for simplicity y = 0.5 and we let vary a. The choice of y is
informed by the maximum number of deaths observed in the countries of focus. In Italy, for
example, the maximum number of deaths reported on a single day is around 1, 000. Therefore,
this value of y is such that, in a similar situation, non-compliant individuals would likely return
to COVID-safe behaviours. As described in the previous paragraph, in the dynamic-rate beha-
vioural mechanism we model the transition rate as Ayve ., = 1 — exp "1 (X = [S, V]), where
d? | is the number of deaths per 100, 000 individuals observed at time ¢t — 1. Hence at the peak
of deaths the transition rate towards compliance is Ayxc_, ~ 0.6. The sensitivity to this choice
is discussed in the S1 Text, where we also report additional analyses to better understand the
effects of the behavioural parameters. More in detail, we plot the rates A, ync and Aync_y
together with the actual number of NC individuals in time for several values of &, , v;, d?_, and
different epidemiological conditions.

In Table 1 we report a list of the model’s parameters together with their values used in the
simulations and the related sources. We also indicate which values are optimized during the
calibration step (described in the next sections).

Relative deaths difference. In the previous analyses, we compared the vaccination strate-
gies in the six countries using different evaluation metrics. The relative deaths difference
(RDD) represents the fraction of deaths that are avoided in a simulation with vaccines (and
behavioural response) with respect to a baseline simulation without vaccines (and no beha-
vioural response). We compute it as:

B dea thsnovaccine _ dea thsvaccine (O{)

RDD ((x) - deathsnovaccine
Symbol Value Source

B calibrated calibration range informed by Ref. [89]
€ 3.7 days [90, 91]
) 1.5 days [90, 91]
f 0.35 [92,93]
x 0.55 [94]
u 2.5 days [95, 96]

IFR age-stratified [56]
A calibrated calibration range informed by Ref. [97]
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Where we made explicit the dependence from a. By definition, a value of RDD = 0.2 indicates
that 20% less deaths are observed in the simulation with vaccines administered. Negative val-
ues of RDD capture instead scenarios where the behavioral response induces more deaths that
in the case without vaccines. An analogous quantity can be easily computed for infections. In
Fig 3B we have also considered the difference between the fraction of averted deaths with
respect to a baseline without vaccine in the case of behavioural reaction (i.e., @ > 0) and in the
case of no relaxation of NPIs (i.e., @ = 0). We indicated this quantity with Agpp(e), and we
compute it as follows:

Aypp(®t) = RDD(s) — RDD(0)

With respect to the simple RDD, the Agpp provides a slightly different piece of informa-
tion. Indeed, by subtracting the RDD obtained with & = 0 we isolate only the effects of behav-
iour. As a clarifying example, Appp(@) ~ 0 refers to a negligible effect of behaviour on the
fraction of averted deaths. Instead, Agxpp(@) < 0, indicates that due to behaviour relaxation
more deaths are occurring. Also in the case of Agxpp(er), an analogous for infections can be
easily derived.

Vaccination strategies

We consider three vaccination strategies. In the first one, the vaccine is given in decreasing
order of age. Since the IFR of COVID-19 strongly correlates with age, many countries world-
wide are adopting similar strategies prioritizing the vaccination among the elderly. Previous
modeling works in the context of COVID-19 showed that this is the preferable strategy when
considering the number of averted deaths [10, 43, 44]. In practice, this means that in our simu-
lations we start giving the vaccine to the 75+ age bracket and we proceed in decreasing order
only when everyone in this group is vaccinated. In the second strategy the vaccine is given
homogeneously to the population respecting the age distribution. This means that, of the X
vaccines available at step ¢, the fraction Ny/N is given to age group k (where Ny is the number
of individuals in age bracket k, and N is the total number of individuals). In the third strategy,
we prioritize age groups 20-49. Indeed, individuals at high mortality risk from COVID-19 dis-
ease may be protected indirectly by vaccinating age brackets that sustain the transmission [98,
99]. In practice, in our simulations we start giving the vaccine homogeneously to the 20-49
age brackets, and when they are all vaccinated we give it homogeneously to all other groups. In
the previous two strategies, if, on a given time step, the number of people remained in the age
group which is currently being vaccinated is smaller than the total number of vaccines avail-
able, the exceeding part is given to the next age group in line. This implies that the number of
vaccines given in different time steps is always constant. Since doses may be administered to
non-susceptible, on each day we compute the fraction of S individuals among all those who
may have received a vaccine (latent, presymptomatic, infectious asymptomatic, and recovered
asymptomatic individuals) and we adjust accordingly the number of doses available. A similar
approach has been used in Refs. [44, 80]. Though a simplification of reality this approach
allows to avoid making assumptions about the possible modulations of vaccine efficacy for
individuals vaccinated when not susceptible. In the S1 Text, we repeat part of the analyses con-
sidering that some individuals may decide not to get vaccinated. We find that, despite shifts
due to vaccine hesitancy, the main findings remain unchanged.

Model calibration

In this section we describe the methods used to calibrate the model to the real epidemic trajec-
tories in the countries considered. We use an Approximate Bayesian Computation technique
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to calibrate the model on weekly deaths during the period 2020/09/01-2020/12/31. We
account for government-mandated restrictions and their effect on the contacts between indi-
viduals modifying the contacts matrices using data from the Google Mobility Report [60] and
the Oxford Coronavirus Government Response Tracker [61].

Approximate Bayesian computation. We calibrate the model for each country using the
Approximate Bayesian Computation (ABC) rejection method [59, 100]. At each step of the
rejection algorithm, a set of parameters 6 is sampled from a prior distribution and an instance
of the model is generated using 0. Then, an output quantity E’ of the model is compared to
the corresponding real quantity E using a distance measure s(E', E). If this distance is greater
(smaller) than a predefined tolerance y, then the sampled set of parameters is discarded
(retained). After accepting N sets, the iteration stops and the distribution of accepted parame-
ters is an approximation of the real posterior distribution P(6, E). The free parameters of our
model and the related prior distributions are:

o The transmission rate 8. We explore uniformly values of 3 such that the related R, is between
0.8 and 2.2. The basic reproduction number of SARS-CoV-2 is higher [101], but we consider
lower values since our calibration starts on 2020/09/01 when restrictions were in place to
mitigate the spreading.

o The delay in deaths A ~ [14, 25]. Indeed, for COVID-19 the average time between symptoms
onset and death is about 2 weeks [97] and we also account for possible additional delays in
death reporting.

o The initial number of infected individuals. We explore uniformly values between 0.5 and 15
times the number of reported cases in the week before the start of the simulation. We then
assign these individuals to the infected compartments (L, P, A, I) proportionally to the time
spent there by individuals (¢ ' for L, ™" for P, and y~" for I, A), and we split between I and
A individuals considering the fraction of asymptomatic f.

The model is calibrated on the period 2020/09/01-2020/12/31 using the weighted mean
absolute percentage error on weekly deaths as an error metric with a tolerance = 0.3 (y = 0.4
for Egypt for convergence issues) and 5, 000 accepted parameters set.

Model initialization. The number of individuals in different age groups is initialized con-
sidering the 2019 United Nation World Population Prospects [102]. We consider 16 age brack-
ets of five-years, except for the last one that includes 75+ individuals. As specified above, the
initial number of infected individuals is calibrated considering the total number of confirmed
cases in the week before the start of the simulation according to the data issued from the Euro-
pean Centre for Disease Prevention and Control [103]. To initialize the number of non-sus-
ceptible individuals (placed in the R compartment) we compute the average of several publicly
available projections of total COVID-19 infections up to 2020/09/01 (i.e., start of the simula-
tion) from different modeling approaches [58]. Both the initial number of infected and of non-
susceptibles is assigned homogeneously across age groups. Other parameters used are ¢ ' = 3.7
days, ' = 2.5 days, w ' = 1.5 days y = 0.55, f= 0.35 in line with current estimates of COVID-
19 infection dynamics parameters [90-92, 95, 96]. We use the age-stratified Infection Fatality
Rate (IFR) from Ref. [56].

Modeling the effects of NPIs on contact matrices. In our model, we incorporate the
implementation of top-down NPIs by changing the contacts patterns defined by the contacts
matrix C. As mentioned, we use the country-specific contacts matrices provided in Ref. [78].
These are made by four contributions: contacts that happen at school, workplace, home, and
other locations. In a baseline scenario, the overall contacts matrix C is simply the sum of these
four contributions. Following Ref. [104], we implement the reductions in contacts, due to the
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restrictions, multiplying the single contribution by a reduction factor 7;(t). Thus, in general
the overall contacts matrix at time ¢ become:

C(t) = home +n,(t) - work + n(t) - school + n,,(t) - other locations (2)

For simplicity, we assume no changes to contacts at home, though lockdowns tend to
increase them [64]. For the contacts locations work and other locations we use data from the
Google Mobility Report [60]. In detail, we consider the fields workplaces percent
change from baseline to model reduction in the contacts location work and the aver-
age of the fields retail and recreation percent change from baselineand
transit stations percent change from baseline for other locations. A gen-
eral entry of the report p,(t) represents the percentage change on day ¢ of total visitors to a
specific location [ with respect to a pre-pandemic baseline. From p,(f) we derive a contacts
reduction coefficient as follows: 7,(¢) = (1 + pi(t)/ 100)2. Indeed, the number of potential con-
tacts in a specific location is proportional to the square of the the number of visitors. We
model contacts reduction in school considering instead the Oxford Coronavirus Government
Response Tracker [61]. More in detail, we use the ordinal index C1 School closing. The
index ranges from a minimum of 0 (no measures) to a maximum of 3 (require closing all lev-
els). We turn this quantity into the contacts reduction coefficient in school as follows: 7,(t) =
(3-C1 School closing)/3. We use these datasets to inform contacts reductions up to
week 11, 2021. After, we assume that contacts remain at the same level of week 11. Note how
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Fig 5. Calibration results. For each country we represent the observed and simulated weekly deaths (median, 50% and 95%
confidence intervals).
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we let vary both the transmission rate  and the contact matrix. The former describes the risk
of infection given contacts with infectious individuals. This is function of the disease (which is
assumed to be the same, we don’t consider multiple or emergent new strains possibly more
transmissible) and of the protective behaviours such as social distancing and use of face masks.
The latter describes variations to the number and types of contacts induced by top-down NPIs
as for example remote working, schools closure and lockdowns. By splitting the contributions
to the force of infection of transmission rate and contact matrix we are able to take into consid-
eration different behavioural attitudes which, given the same number of contacts, might lead
to higher or lower risks of infection. This allows us to consider explicitly both top-down and
bottom-up NPIs.

Calibration results. In Fig 5, we report the results of the calibration. It is important to
stress how our goal is not to develop a predictive model aimed at forecasting the pandemic
trajectory. The fit is used to ground the model and to define the epidemic conditions at the
start of the vaccination campaign in the six countries. In fact, our aim is to understand the
possible interplay between behaviours and vaccine rollout which is also function of the epi-
demic progression. In the Figure we report the official and simulated weekly number of
deaths (median, 50% and 95% confidence interval). Despite its simplicity and approxima-
tions, the model is able to reproduce the evolution of the pandemic in the six countries
capturing well its progression after the summer. In the S1 Text we also report the posterior
distributions for the parameters.

Supporting information

S1 Text. Supplementary and sensitivity analysis to the modeling framework. In this supple-
mentary material we present additional analyses and extensions of our model. We also run
extensive sensitivity analysis on the parameters used in the main text.

(PDF)
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