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With the rapid development of the Internet of )ings (IoT), the curse of dimensionality becomes increasingly common. Feature
selection (FS) is to eliminate irrelevant and redundant features in the datasets. Particle swarm optimization (PSO) is an efficient
metaheuristic algorithm that has been successfully applied to obtain the optimal feature subset with essential information in an
acceptable time. However, it is easy to fall into the local optima when dealing with high-dimensional datasets due to constant
parameter values and insufficient population diversity. In the paper, an FS method is proposed by utilizing adaptive PSO with
leadership learning (APSOLL). An adaptive updating strategy for parameters is used to replace the constant parameters, and the
leadership learning strategy is utilized to provide valid population diversity. Experimental results on 10 UCI datasets show that
APSOLL has better exploration and exploitation capabilities through comparison with PSO, grey wolf optimizer (GWO), Harris
hawks optimization (HHO), flower pollination algorithm (FPA), salp swarm algorithm (SSA), linear PSO (LPSO), and hybrid PSO
and differential evolution (HPSO-DE). Moreover, less than 8% of features in the original datasets are selected on average, and the
feature subsets are more effective in most cases compared to those generated by 6 traditional FS methods (analysis of variance
(ANOVA), Chi-Squared (CHI2), Pearson, Spearman, Kendall, and Mutual Information (MI)).

1. Introduction

Large amounts of data have been generated in various fields
such as social media, healthcare, cybersecurity, and edu-
cation in the past decades, and edge computing provides an
effective solution for data storage and transmission. How-
ever, as the dimensionality of the data increases, the curse of
dimensionality problem becomes common, which has a
negative impact on the stability, security, and computational
efficiency of edge computing. Feature selection (FS) is a data
preprocessing technique in machine learning and data
mining that has been applied to improve the performance of
edge computing by eliminating irrelevant and redundant
features in the datasets [1–3]. In general, it is a combinatorial
optimization problem [4, 5] that tries to find the optimal
feature subsets with essential information from the original
datasets. Given a dataset with N features, there will be 2N

possible feature subsets, and the search space rises expo-
nentially as the number of features increases [6, 7]. Hence,
some traditional FS methods have received considerable
interest due to their ability to evaluate feature importance
and select a certain number of top-ranked features. )ese
methods include statistical test (e.g., analysis of variance
(ANOVA) [8, 9] and Chi-Squared (CHI2) [10, 11]), cor-
relation criteria (e.g., Pearson [12], Spearman [13, 14],
Kendall [15, 16]), and information theory (e.g., symmetrical
uncertainty (SU) [17], mutual information (MI) [18, 19], and
entropy [20]). However, the statistical test and correlation
criteria techniques only consider the correlation between
features and labels, and the feature subsets are not appro-
priate because some highly correlated but redundant fea-
tures are selected. As a result, information theory techniques
are applied to FS problems owing to their consideration of
redundancy between features as well. Moreover, the
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redundancy calculation only focuses on the interaction
between two features and fails to identify those of multiple
features [21], which may ignore some important features.
)erefore, how to find suitable feature subsets efficiently
needs to be further investigated.

Metaheuristic algorithms such as monarch butterfly
optimization (MBO) [22], slimemold algorithm (SMA) [23],
moth search algorithm (MSA) [24], hunger games search
(HGS) [25], hybrid rice optimization (HRO) [26], colony
predation algorithm (CPA) [27], weighted mean of vectors
(INFO) [28], grey wolf optimizer (GWO) [29], clonal flower
pollination algorithm (FPA) [30], salp swarm algorithm
(SSA) [31], Harris hawks optimization (HHO) [32], and
particle swarm optimization (PSO), have been used to solve
combinatorial optimization problems because of their dy-
namic exploration and exploitation capabilities in the search
space, some of which have shown to be successful in FS
problems [33, 34]. For instance, Shen and Zhang [29]
proposed a two-stage GWO for processing biomedical
datasets, which showed better performance in terms of time
consumption and classification accuracy by removing more
than 95.7% of the redundant features. Hussain et al. [32]
developed an FS method based on HHO, which removed
87% of features and achieved 92% of classification accuracy.
Yan et al. [30] presented a binary clonal FPA for some
biomedical datasets, which enhanced population diversity
and selected fewer features with strong robustness. Balak-
rishnan et al. [31] designed an FS method based on salp SSA,
which increased the ability of particles to explore different
regions by randomly updating their position and improved
the confidence level by 0.1033% on 6 datasets. However, a
series of parameters need to be set by users in these met-
aheuristic algorithms, and unsuitable parameters may lead
to slow convergence and local stagnation. A lot of experi-
ments and extensive experience are needed to find the ap-
propriate parameter settings.

Compared with the above metaheuristic algorithms,
PSO is applied to solve FS problem of its fast convergence
and few parameters. However, the exploration and exploi-
tation capabilities are influenced by parameter setting and
population diversity as the number of features increases.
)erefore, some improved PSO based on parameter
updating and population diversity updating strategies have
been proposed for FS. For example, Song et al. [35] de-
veloped a three-phase hybrid FS algorithm, which reduced
the computational cost by using correlation-guided clus-
tering and an improved integer PSO. Tran et al. [36] used a
bare-bones PSO for FS, which reduced the search space of
the problem and improve the search efficiency. Song et al.
[37] also introduced a variable-size cooperative coevolu-
tionary PSO for high-dimensional datasets, which divided a
high-dimensional FS problem into multiple low-dimen-
sional subproblems with a low computational cost. Hu et al.
[38] presented a multi-objective PSO for FS, which achieved
superior performances in approximation, diversity, and
feature cost by introducing a tolerance coefficient. Hosseini
Bamakan et al. [39] proposed a time-varying PSO-based FS
method to deal with the network intrusion detection
problem, which obtained a higher detection rate and lower

false alarm rate by introducing a chaotic concept and time-
varying parameters. Mafarja et al. [40] proposed a binary
PSO-based FS method, which adopted a time-varying inertia
weighting strategy and showed a superior convergence rate
on some datasets. Huang et al. [41] utilized cut-point and
feature discretization to expand the searching scope of PSO
for gene expression datasets, which selected fewer features
and maintained similar classification accuracy. Xue et al.
[42] introduced adaptive parameters in PSO for high-di-
mensional datasets, which allowed particles to automatically
adjust parameters during the search process and decreased
time consumption. Moradi and Gholampour [43] used a
PSO with the local search strategy for high-dimensional
datasets, which adjusted the search process by considering
the correlation information between distinct features. Chen
et al. [44] introduced an FS method based on hybrid PSO
and differential evolution (HPSO-DE), which enhanced
population diversity by adopting mutation, crossover, and
selection operators. Although the optimization ability of
PSO is improved to some extent by the above techniques, the
randomness of the search process may be increased and they
lack consideration for jumping out of the local optima.

In the paper, an FS method based on adaptive PSO with
leadership learning (APSOLL) is proposed, which combines
parameter updating and population diversity updating strat-
egies to compensate for the shortcomings of PSO.)e adaptive
updating strategy for parameters is used to guide particles to
search in a more reasonable scope, and the leadership learning
strategy is utilized to enhance population diversity. Overall, the
main contributions of our work are as follows:

(1) Based on the population state, an adaptive updating
strategy for parameters is proposed to replace the
constant parameters which guide particles to search
in a more reasonable scope.

(2) Adopting leadership learning strategies to provide
valid population diversity by learning from the first
three leaders in the population that enhances the
exploration and exploitation capabilities of PSO.

(3) )e effectiveness of the proposed method is verified
by comparing it with six traditional methods
(ANOVA, CHI2, Pearson, Spearman, Kendall, and
MI) and seven metaheuristic algorithms-based FS
methods (GWO, HHO, FPA, SSA, LPSO, and
HPSO-DE).

2. Background and Related Work

2.1. Overview of PSO. PSO is a population-based meta-
heuristic algorithm for simulating the predatory activities of
bird and fish populations [45, 46], and each particle in the
population has two properties: velocity vector vi � (vi1, vi2,

· · · , vid) and position vector xi � (xi1, xi2, · · · , xid), where d
denotes the dimension. In the search process of PSO, the
velocity vectors are dynamically adjusted by the personal best
position (pbesti) and the global best position (gbest) at the
current stage, and the position vectors are the candidate
solutions to the optimization problems, all of which are
updated by equations (1)–(2).
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vi(t + 1) � ω × vi(t) + c1r1 p besti − xi(t)( 

+ c2r2 g best − xi(t)( ,
(1)

xi(t + 1) � xi(t) + vi(t + 1). (2)

where vi and xi represent the velocity and position vectors of
the i–th (i= 1, 2, . . ., N) particle, and the upper and lower
limits of each dimension are set to 1 and 0, respectively. ω is
defined as the inertia parameter, and it is a non-negative
number. c1 and c2 are acceleration parameters, and the
former represents the personal learning parameter and the
latter represents the global learning parameter, which is used
to control the search scope of particles and set by users. r1
and r2 are random numbers in [0, 1].

2.2. 0e Leadership Learning Strategy. Leadership learning
strategy is a management concept that describes the dynamic
process of feed-forward and feedback in a living system.
Hirst et al. [47] suggested that learning activities of indi-
viduals will affect the decisions of leaders, and it is called
feed-forward learning flow. Moreover, effective leaders may
quickly identify key information in group development and
have a lasting impact on the individuals and group activities
through their decisions in turn, which is regarded as
feedback learning flow. In the model of leadership learning
strategy, feed-forward and feedback learning flow among
individuals, groups, and leaders together determine the
scope of the system development, and the framework is
shown in Figure 1.

Based on the leadership learning strategy, GWO was
proposed with effective exploration capability and accept-
able time consumption by learning from the first three best
solutions (leaders) of each iteration [48–51]. In the search
process, the population is divided into four levels, se-
quentially α, β, δ, and ω, where α, β, and δ are regarded as
leaders, the remaining particles ω are considered as indi-
viduals, and the population is considered group. Moreover,
the particles and leaders learning from each other are
considered as the leadership learning strategy, and it is
shown in Equation (3).
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denote the distance between particles and leaders. C1
�→

, C2
�→

,
and C3

�→
are random numbers from 0 to 2.)e search scope of

particles is controlled by the convergence factor A
→
, which is

computed as Equation (4).

A
→

� 2a × r3 − a, (4)

where the variable a � 2(1 − t/T) is the control coefficient (T
denotes the maximum number of iterations), and it de-
creases linearly from 2 to 0 during the search process.

3. The Proposed Method

In this section, an FSmethod based on APSOLL is presented to
conduct classification on 10 UCI datasets. )e corresponding
techniques for the proposed method are described as follows:

3.1. Adaptive Updating Strategy for Parameters. During the
search process of PSO, the search scope of particles is af-
fected by convergence factor c1 and c2. In general, they are
usually less than 2 and set to constant values by users
[52–54]. However, the population is dynamically changed
according to the optimal fitness value, it is appropriate to
adaptively adjust c1 and c2 for better exploration and ex-
ploitation. Moreover, the change of fitness value during the
iteration reflects the state of the population, thus the
adaptive updating strategy is proposed based on this case,
and it is used to replace the convergence factor, which is
shown in equations (5)‒(6).

m � m + 1, if fitness(t) � fitness t − t1), 0, otherwise,(

(5)

c �
m

T
 

2/3
+ 1,

(6)

wherem is a variable and initially set to 0, and it is increased by
1 if the fitness value is improved in the next iteration, otherwise
the value of which is always 0. )us, c is dynamically changed
between 1 and 2 during the search process, and it is gradually
increased if the algorithm falls into the local optima.

3.2. 0e Search Process of Leadership Learning Strategy.
)e population diversity of PSO may be inadequate due to
the strategy learned from pbesti and gbest. Smith [55] pro-
posed that the more leaders of individuals engage feed-forward
and feedback in a living system, the more possible it is for the

Feedback learning flow

Individuals Group Leaders

…
…

Feed-forward learning flow

Figure 1: )e framework of leadership learning.
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group to change, innovate, and cooperate. However, the time
consumption will increase as the number of leaders increases
during the process. )erefore, inspired by GWO, the leadership
learning strategy from 3 leaders is used to reconstruct the ve-
locity vectors of PSO, which will increase population diversity
and provide more accurate information for better exploration
and exploitation. In addition, an adaptive parameter c is
combined to guide the particles to search in a more reasonable
scope, and the process is shown in Equation (7).

vi(t + 1) � ωΔvi(t) +
c

2
× r4 X1

�→
− xi(t) 

+
c

3
× r4 X2

�→
− xi(t) 

+
c

4
× r4 X3

�→
− xi(t) ,

(7)

where X1
�→

, X2
�→

and X3
�→

represent the leadership learning
strategy. r4 is a random number between 0 and 1. c is
updated by (6), it is dynamically changed between 1 and 2
during the search process, and it is gradually increased if the
algorithm falls into the local optima. )e cooperation of c/2,
c/3 and c/4 will allow particles to search in a more reasonable
scope with higher possibilities.

As for the leadership learning strategy, Hu et al. [50]
proposed that the convergence factor |A

→
| greater than 1

shows better exploration capability and less than 1 shows
better exploitation capability. However, it can be seen from
(4) that |A

→
| is linearly decreased and always less than 1in the

last 50% of iterations, and the exploration capability is in-
sufficient when the algorithm is trapped in the local optima
in this case. Hence, it is considered to increase the possibility
that |A

→
| is greater than 1 at this stage and it is modified as

shown in Equation (8).
A
→

� 2c
a × r5 − a. (8)

where r5 is a random number in [0, 1], and |A
→

| is adaptively
changed during the search process. It will be greater than 1
with a higher possibility and thus enhance the exploration
capability when the algorithm falls into the local optima.

3.3. 0e Encoding Schema. )e core object of the proposed
method is to select a suitable expression form for FS and
establish a reasonable mapping between the solutions and
the feature subsets. )e candidate solutions that are
binarized are used to represent the features, where “1”
denotes the feature is selected and “0” illustrates the feature
is abandoned. For instance, there is a feature dataset with 10
features, and the candidate solution is coded as 1010000011,
which means the 1st, 3rd, 9th, and 10th features are selected
and the others are abandoned. )e position vector of each
particle is binarized according to Equation (9).

Xbid �
1, if xid > 0.5,

0, otherwise,
 (9)

where Xbi � (Xbi1, Xbi2, · · · , Xbid), i and d denote the
number of particles and the number of features, respectively.

3.4.0eDefinition ofObjective Function. )e feature subsets
generated by FS methods for classification have two main
goals, which are maximizing the classification accuracy
(minimizing the classification error) and minimizing the
number of selected features. As a mainstream classifier, K
nearest neighbor (KNN) [56–58] is utilized for FS due to its
advantages of simplicity and insensitivity to noisy data.
Furthermore, how to reduce the number of selected fea-
tures is considered another core issue. )e ultimate goal is
to obtain the optimal feature subsets with essential in-
formation from the original datasets while achieving higher
classification accuracy with fewer features. Hence, the
objective function that combines the classification accuracy
and the number of selected features is adopted and it is
defined as Equation (10).

Fitness(X) � θ × acc(X) + (1 − θ) × 1 −
#X

N
 . (10)

where acc (X) denotes the classification accuracy of the
feature subsets, #X andN represent the number of features in
the feature subset and the original dataset. θ is a weighting
factor to balance the classification accuracy and the number
of selected features, and it is set to 0.7.

3.5. Implementation of the Proposed Method. )e main
process of APSOLL is to search for the optimal feature
subsets with essential information from the original
datasets and apply it for classification, and the pseudocode
is shown in Algorithm 1. Among these, the particles are
binarized to determine the corresponding feature subsets in
each iteration, and the leaders are determined by com-
puting the fitness function, which is used to guide the
search process. Figure 2 shows the flowchart of APSOLL.
When the algorithm starts running, it randomly initializes
the velocity vector vi, position vector xi, pbesti, gbest, and
sets m � 0 and t � 0. In each iteration, the fitness value of
each particle is calculated in order to find the optimal three
solutions (leaders). Based on the information provided by
the leader, the velocity of the particles and the position of
the population are updated. In this process, if the optimal
fitness value is not changed, the adaptive parameter m is
added by 1. )e algorithm run is ended and the optimal
solution is binarized when the maximum number of it-
erations is reached.

4. Experimental Design

All experimental procedures are implemented using Python
3.8 in a PCwith Intel(R) Core (TM) i5-9400 @ 2.9GHz CPU,
and 16GB DDR4 of RAM under Windows 10 Operating
System. 10 public datasets are used to assess the quality of the
proposed method. APSOLL is compared with 7 meta-
heuristic algorithms to evaluate the optimization ability, and
6 traditional FS methods such as ANOVA, CHI2, Pearson,
Spearman, Kendall, and MI are used to analyze the effec-
tiveness of the feature subsets selected by the proposed
method.
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4.1.DatasetsDescription. 10 datasets from the UCI machine
learning database are used to evaluate the performance of
the proposed method, including myocardial infarction
complications (MIC), urban, SCADI, arrhythmia, made-
lon, isolet5, multiple features (MF), Parkinson’s disease
(PD), CNAE-9, and QSAR, all of which have more than 100
features, with the number of classes ranging from 2 to 26

and instances ranging from 69 to 2600, and the details of
datasets are shown in Table 1. In the experiments, each
dataset is randomly divided into two parts: a total of 70% of
the instances are chosen as the training data, and the
remaining 30% are used as the testing data. Li et al. [54]
described in detail why the dataset dividing approach was
adopted.

Start

Randomly initialize
velocity vi position xi,

Pbesti, gbest,set m=0, t=0

Calculate fitness
value of each

particle

t<max_iterNo

fitness(t)=fitness(t-1) t=t+1

Yes

m=m+1

m=0

Output the best
particle

End

Update xα, xβ, and xδ

Update c by
equation (6)

Update the velocity
of each particle by
using equation (7)

Update the position
by using equation

(2)

Yes

No

Compute |X1| |X2|,
and |X3| by using

equation (3)

Update |A| by
equation (8)

Figure 2: )e flowchart of APSOLL.

Input: the number of iterations T, population size N
Output: )e classification accuracy and the number of features among the feature subsets
Initialization: xi � (xi1, xi2, · · · , xid)

Set ub� 1, lb� 0, m� 0, initial iteration t� 0
while t<T do

Binarize each particle by using Equation (9)
Compute the fitness value of each particle by using Equation (10)
Update xα, xβ, and xδ
Update c by Equation (6)
Update |A

→
| by Equation (8)

Compute X1
�→

, X2
�→

, and X3
�→

by using Equation (3)
Update the velocity of each particle by using Equation (7)

Update the population position by using Equation (2)
t� t+1
end while

Binarize xα by using Equation (9)
return the fitness value and the feature subset

ALGORITHM 1: FS based on APSOLL.
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4.2. Parameters Setting for Metaheuristic Algorithms. As for
APSOLL, the search process requires only one inertia weight
parameter ω to be set. In addition, some commonly used FS
methods based on metaheuristic algorithms are adopted to
evaluate the optimization ability, such as GWO, PSO, HHO,
FPA, SSA, LPSO, and HPSO-DE. Among them, LPSO [40]
and HPSO-DE [44] are classical benchmark PSO-based FS
methods by adopting parameter updating and population
diversity updating strategies, respectively. )e parameters of
each metaheuristic algorithm are set based on the published
literature, which is shown in Table 2. Furthermore, the binary
encoding scheme is utilized for each metaheuristic algorithm
and it is run independently 30 times to take the average as the
result in order to eliminate the influence of randomness.

5. Results and Discussion

5.1. Experimental Results of Different Metaheuristic
Algorithms. )e optimization ability of APSOLL is evalu-
ated from the fitness value, classification accuracy, number
of selected features, and CPU time.)e average convergence

curves of the fitness value are shown in Figures 3-4, and the
number of selected features in the search process is shown in
Figures 5-6. In the experiment, the t-test with a significance
level of 0.05 is used to determine whether the results ob-
tained from the proposed algorithm are statistically signif-
icantly different from other metaheuristic algorithms, and
the experimental results are presented in Tables 3-4, where
Fit, Acc, and #F denote the fitness values, classification
accuracy and number of selected features after 30 inde-
pendent runs, and Time presents the CPU time of the whole
process (in seconds). Sfit, Sacc, and Sf display the t-test results,
where “+” or “−” means the result is worse or better than the
proposed method and “�” means they are similar in the t-
test. In other words, the more “+”, the better the proposed
methods.

From the variation curves of the fitness value, it is shown
that APSOLL has achieved better fitness values on all
datasets, which means the optimization ability of APSOLL is
better than other metaheuristic algorithms by adopting the
adaptive updating and leadership learning strategy. From

Table 2: Parameters Setting of different metaheuristic algorithms.

Algorithms Parameters Values

Common settings

Number of iterations T�100
Population size N� 30

)e upper limit of particle position ub� 1
)e lower limit of particle position lb� 0

GWO Correlation coefficient a decreases linearly from 2 to 0

PSO Acceleration factor c1 � 2, c2 � 2
Inertia weight w � 0.9

HHO Levy component β� 0.8

FPA
Acceleration factor c1 � 2, c2 � 2
Levy component β� 1.5
Switch probability P � 0.8

SSA Convergence factor C decreases linearly from 2 to 0

LPSO
Acceleration factor c1 � 2, c2 � 2

Upper limit of inertia weight wmax� 0.9
Lower limit of inertia weight wmin� 0.4

HPSO-DE

Acceleration factor c1 � 2, c2 � 2
Crossover rate CR� 0.2
Scaling factor F� 0.5

Predefined generation G� 5
Inertia weight w � 0.9

APSOLL Inertia weight w � 0.9

Table 1: Details of datasets.

Dataset Number of features Number of instances Number of classes
MIC 124 1700 7
Urban 147 507 9
SCADI 205 69 6
Arrhythmia 279 452 13
Madelon 500 2600 2
Isolet5 617 1559 26
MF 649 2000 10
PD 754 756 2
CNAE-9 857 1080 9
QSAR 1024 1687 2
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Figure 3: )e average convergence curves of different metaheuristic algorithms for datasets below 500 dimensions.
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Figure 5: )e average number of selected features for datasets below 500 dimensions by different FS methods based on metaheuristic
algorithms.
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Figure 6: )e average number of selected features for datasets above 500 dimensions by different FS methods based on metaheuristic
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Figures 3–4, it can be observed that HHO and HPSO-DE
converge prematurely on most datasets, and PSO, SSA, FPA,
and LPSO converge slower and have poor overall perfor-
mance. In contrast, APSOLL achieves a balance in con-
vergence speed and performance. In terms of classification
accuracy, APSOLL-based FS method exceeds 80% on av-
erage in 9 of the 10 datasets, especially on MF, which has
reached 98.07%. As it can be seen in Figures 5–6, PSO, SSA,
FPA, and LPSO have limited performance in reducing the
size of feature subsets, while APSO performs better than
other methods on most datasets during the iterative process.
In Tables 3–4, the number of selected features by APSOLL is
less than those of other metaheuristic algorithms in most
cases. A total of 30%–50% of features in the original datasets
are selected by FPA and SSA, while less than 8% of features
are selected by APSOLL. In particular, only 7.58 features are
selected on average from the original 754 features on PD. As
for CPU time, APSOLL consumes less time on MIC and

madelon compared to other metaheuristic algorithms.
Moreover, although it consumes slightly more time on other
datasets, it performs better in the two main aims of the
classification accuracy and the number of selected features.

In summary, the optimization ability of APSOLL is
better than other metaheuristic algorithms, and the suitable
feature subsets are selected with higher classification accu-
racy and fewer features at an acceptable time.

5.2. Experimental Results of Traditional Methods. To dem-
onstrate the effectiveness of APSOLL-based FS method, the
performance is compared with that of 6 traditional methods.
Figures 7‒8 show the classification accuracy of 6 traditional
FS methods for different numbers of selected features, and
the optimal solutions of the proposed and traditional
methods are presented in Table 5.

Table 3: Comparisons between APSOLL and other metaheuristic algorithms for datasets below 500 dimensions.

Datasets Method Fit (std.) Sfit Acc (std.) Sacc #F (std.) S f Time

MIC

GWO 93.28 (0.27) + 91.03 (0.40) + 1.80 (0.65) � 125.37
PSO 87.04 (0.96) + 91.03 (0.48) + 27.40 (3.49) + 220.42
HHO 91.83 (1.76) + 89.08 (2.60) + 2.13 (2.42) � 162.52
FPA 82.66 (0.53) + 90.63 (0.75) + 44.2 (2.50) + 217.76
SSA 82.68 (0.87) + 90.65 (0.78) + 44.2 (3.23) + 122.10
LPSO 86.89 (0.89) + 91.08 (0.54) + 28.13 (3.48) + 220.95

HPSO-DE 92.99 (0.38) + 90.83 (0.45) + 2.43 (1.09) + 133.59
APSOLL 93.65 (0.35) ∗ 91.40 (0.56) ∗ 1.33 (0.47) ∗ 122.10

Urban

GWO 87.21 (4.12) � 85.03 (16.03) � 11.33 (2.70) + 96.00
PSO 65.57 (5.57) + 64.97 (13.90) + 48.53 (5.89) + 160.65
HHO 83.78 (3.18) + 79.43 (14.26) + 8.93 (5.41) � 94.06
FPA 57.64 (2.87) + 58.26 (10.28) + 64.40 (6.52) + 163.10
SSA 58.10 (3.92) + 58.17 (10.39) + 61.83 (5.88) + 162.84
LPSO 62.53 (4.90) + 60.41 (11.97) + 47.80 (5.17) + 163.89

HPSO-DE 86.06 (1.20) � 82.24 (14.30) � 7.40 (2.11) � 47.19
APSOLL 86.60 (2.18) ∗ 82.84 (20.46) ∗ 6.83 (1.91) ∗ 75.32

SCADI

GWO 95.13 (2.04) � 95.40 (2.88) � 11.23 (7.49) � 29.19
PSO 86.43 (3.22) + 93.33 (4.19) + 60.87 (8.10) + 124.32
HHO 91.95 (3.61) + 90.63 (4.51) + 10.23 (7.14) � 24.98
FPA 81.80 (3.48) + 92.38 (4.19) + 87.90 (7.17) + 147.73
SSA 81.05 (3.59) + 90.79 (4.59) + 85.47 (8.11) + 152.42
LPSO 86.01 (3.12) + 92.54 (4.20) + 59.90 (6.65) + 100.95

HPSO-DE 94.38 (2.38) + 93.65 (3.33) + 8.07 (2.89) � 23.31
APSOLL 97.04 (1.63) ∗ 97.22 (2.35) ∗ 6.92 (2.75) ∗ 33.66

Arrhythmia

GWO 78.11 (1.31) + 72.33 (1.70) + 23.48 (5.65) + 161.93
PSO 67.50 (1.28) + 68.97 (1.98) + 100.23 (8.12) + 164.50
HHO 74.48 (1.94) + 65.29 (3.20) + 11.40 (10.72) � 127.69
FPA 62.73 (1.07) + 65.59 (1.97) + 122.57 (7.68) + 160.16
SSA 62.56 (1.30) + 65.39 (1.77) + 122.93 (6.44) + 159.65
LPSO 67.92 (1.39) + 68.77 (1.80) + 95.03 (6.31) + 167.47

HPSO-DE 75.49 (0.86) + 66.96 (1.39) + 12.87 (2.50) � 80.80
APSOLL 80.82 (1.45) ∗ 74.14 (1.75) ∗ 10.08 (3.95) ∗ 113.36

Madelon

GWO 90.28 (1.00) + 89.71 (1.17) + 42.00 (7.01) + 310.38
PSO 74.72 (1.12) + 82.04 (1.18) + 211.73 (12.36) + 327.80
HHO 81.44 (3.82) + 78.95 (3.48) + 216.47 (10.49) + 399.71
FPA 75.08 (0.86) + 77.52 (1.16) + 236.67 (9.62) + 320.63
SSA 70.06 (1.21) + 77.53 (1.57) + 242.17 (8.97) + 322.84
LPSO 75.07 (1.18) + 82.94 (1.58) + 63.70 (37.22) + 325.15

HPSO-DE 79.98 (1.72) + 73.64 (2.56) + 26.13 (5.06) + 301.25
APSOLL 92.44 (0.44) ∗ 90.65 (0.62) ∗ 16.92 (4.75) ∗ 259.51
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It is observed from Figures 7‒8 that the traditional
methods are difficult to improve the classification accuracy
by sequentially increasing the number of features when a
certain level is reached. In comparison, more suitable feature
subsets are obtained by the metaheuristic algorithm-based
FS method, among these, APSOLL has better performance.
In addition, it is not the case that the more features selected,
the higher the classification accuracy is, which indicates that
the redundancy among features affects the classification
performance on most datasets.

As can be seen from Table 5, it is clear that the classi-
fication accuracy is improved by at least 1.28% on average via
the proposed method on 5 datasets, especially on arrhythmia
and isolet5, with 11.77% and 4.26%, respectively. Although
the classification accuracy of the proposed method is about
2% on average lower than traditional methods on myo-
cardial, MF, PD, and CNAE-9, the number of selected

features is lower than that of these methods, only 2, 21, 9, and
64 features are selected, respectively. To further analyze the
number of selected features, fewer features are selected by
the proposed method on 6 datasets. Among them, it is
noticed that more than 30% of the features are selected by
traditional methods on Isolet5 and MF, while only 7.46%
and 3.24% of the features are selected by the proposed
method, respectively. In terms of time consumption, tra-
ditional methods are affected by the number of features due
to the sequential addition of features to the feature subsets,
and its time consumption increase dramatically as the
number of features increases, while APSOLL performs more
stability on most datasets because its dynamic exploration
and exploitation capabilities, and the CPU time is still ac-
ceptable. In brief, the proposed method is dependable and
effective for solving FS problems compared with traditional
methods.

Table 4: Comparisons between APSOLL and other metaheuristic algorithms for datasets above 500 dimensions.

Datasets Method Fit (std.) Sfit Acc (std.) Sacc #F (Std.) Sf Time

Isolet5

GWO 89.66 (1.01) + 91.23 (1.38) � 86.53 (9.14) + 212.36
PSO 78.10 (1.04) + 87.31 (1.44) + 268.07 (10.71) + 219.31
HHO 82.61 (1.71) + 81.60 (1.83) + 92.57 (26.83) + 283.60
FPA 74.45 (0.89) + 83.50 (1.34) + 287.73 (10.48) + 211.13
SSA 74.25 (1.02) + 83.60 (1.45) + 293.53 (8.69) + 207.08
LPSO 78.61 (0.98) + 87.79 (1.40) + 264.42 (10.19) + 215.30

HPSO-DE 81.72 (1.08) + 76.42 (1.68) + 36.53 (5.12) − 215.85
APSOLL 91.37 (0.49) ∗ 91.08 (0.55) ∗ 48.92 (2.36) ∗ 219.14

MF

GWO 96.63 (0.54) + 97.77 (0.54) � 39.27 (6.89) + 225.82
PSO 86.86 (0.72) + 97.19 (0.54) + 241.73 (13.51) + 274.84
HHO 94.04 (0.95) + 94.98 (0.98) + 52.93 (13.66) + 303.36
FPA 84.31 (0.53) + 96.47 (0.60) + 286.13 (6.77) + 281.36
SSA 84.39 (0.53) + 96.67 (0.71) + 287.33 (9.16) + 275.93
LPSO 87.18 (0.63) + 97.19 (0.61) + 234.7 (8.29) + 267.64

HPSO-DE 94.05 (0.53) + 93.84 (0.77) + 35.57 (4.65) + 224.65
APSOLL 97.71 (0.33) ∗ 98.07 (0.53) ∗ 20.25 (1.23) ∗ 228.91

PD

GWO 85.54 (2.25) + 80.88 (3.54) � 27.00 (9.84) + 187.67
PSO 71.54 (1.62) + 74.60 (2.11) + 268.4 (11.07) + 185.17
HHO 86.78 (1.28) + 81.60 (1.90) + 8.43 (6.53) � 127.75
FPA 68.77 (1.31) + 74.60 (2.24) + 338.03 (12.81) + 174.27
SSA 68.59 (1.44) + 74.23 (1.99) + 336 (13.24) + 173.38
LPSO 71.38 (1.96) + 74.48 (2.60) + 270.43 (14.95) + 185.49

HPSO-DE 86.88 (0.87) + 83.26 (1.39) � 35.20 (4.53) + 197.66
APSOLL 88.44 (0.85) ∗ 83.92 (1.24) ∗ 7.58 (2.22) ∗ 152.82

CNAE-9

GWO 86.28 (1.22) + 88.80 (1.53) − 167.83 (20.93) + 203.26
PSO 77.41 (1.75) + 88.25 (2.47) − 409.80 (14.03) + 197.09
HHO 74.04 (1.83) + 79.55 (4.12) + 332.23 (80.68) + 269.84
FPA 73.91 (1.36) + 83.79 (1.99) + 420.70 (15.22) + 185.77
SSA 73.74 (1.85) + 83.80 (2.51) + 425.57 (12.44) + 183.18
LPSO 77.69 (1.27) + 88.79 (1.92) − 412.63 (14.06) + 195.26

HPSO-DE 69.52 (1.87) + 77.60 (2.43) + 422.40 (13.83) + 200.46
APSOLL 87.35 (0.55) ∗ 85.03 (0.93) ∗ 61.83 (5.38) ∗ 210.71

QSAR

GWO 92.45 (0.54) + 93.21 (0.66) � 95.57 (9.18) + 236.35
PSO 82.20 (0.62) + 92.01 (0.68) + 416.70 (17.62) + 327.26
HHO 92.68 (0.45) + 90.35 (0.83) + 19.10 (12.23) − 227.42
FPA 80.13 (0.49) + 91.16 (0.80) + 466.93 (10.49) + 323.93
SSA 80.06 (0.48) + 91.37 (0.71) + 474.40 (11.67) + 320.06
LPSO 82.40 (0.55) + 92.02 (0.59) + 410.13 (14.90) + 323.23

HPSO-DE 92.44 (0.27) + 91.14 (0.41) + 46.30 (6.15) + 207.01
APSOLL 94.10 (0.55) ∗ 93.11 (0.74) ∗ 36.83 (7.84) ∗ 231.28
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Figure 7: )e classification accuracy of 6 traditional FS methods in selecting different numbers of features for datasets below 500
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Figure 8: )e classification accuracy of 6 traditional FS methods in selecting different numbers of features for datasets above 500
dimensions.
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6. Conclusions and Future Work

In the paper, APSOLL is proposed for FS, which enhances
exploration and exploitation capabilities by utilizing an
adaptive updating strategy to guide the population search in
a more reasonable scope and the leadership learning strategy
to increase population diversity. Experimental results in
comparison with other FS methods based on metaheuristic
algorithms reveal that APSOLL offers better optimization
ability and selects the suitable feature subsets within an
acceptable time. Moreover, APSOLL-based FS method
achieves better or approximate classification accuracy by
selecting less than 8% of features from the original datasets
compared to other traditional methods. In conclusion, the
suitable feature subsets are selected by the proposed method
while ensuring a proper balance between the classification
accuracy and the number of selected features. In the future, it
is interesting to decrease the CPU time of APSOLL by
combining the feature ranking and applying it to process
ultrahigh dimensional datasets.
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