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Interannual temperature variability is a principal
driver of low-frequency fluctuations in marine fish
populations

Peter van der Sleen® "2 Pieter A. Zuidema® 2, John I\/lorrongiello3, Jia Lin J. Ong4, Ryan R. RykaczewskiS,
William J. Sydeman®, Emanuele Di Lorenzo’ & Bryan A. Black®

Marine fish populations commonly exhibit low-frequency fluctuations in biomass that can
cause catch volatility and thus endanger the food and economic security of dependent coastal
societies. Such variability has been linked to fishing intensity, demographic processes and
environmental variability, but our understanding of the underlying drivers remains poor for
most fish stocks. Our study departs from previous findings showing that sea surface tem-
perature (SST) is a significant driver of fish somatic growth variability and that life-history
characteristics mediate population-level responses to environmental variability. We use
autoregressive models to simulate how fish populations integrate SST variability over mul-
tiple years depending on fish life span and trophic position. We find that simulated SST-
driven population dynamics can explain a significant portion of observed low-frequency
variability in independent observations of fisheries landings around the globe. Predictive skill,
however, decreases with increasing fishing pressure, likely due to demographic truncation.
Using our modelling approach, we also show that increases in the mean and variance of SST
could amplify biomass volatility and lessen its predictability in the future. Overall, biological
integration of high-frequency SST variability represents a null hypothesis with which to
explore the drivers of low-frequency population change across upper-trophic marine species.
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any marine fish populations experience conspicuous
M fluctuations in abundance on multiple-year to decadal

time scales!-3. These low-frequency fluctuations in fish
populations can negatively impact upper-trophic wildlife species
such as seabirds?, as well as the cultures and economies of coastal
societies dependent on fisheries®. Despite their significance, the
attribution of environmental, demographic, and catch-related
drivers of population fluctuations continues to be a major chal-
lenge in fisheries science®’. A lack of understanding may limit
attempts to forecast fisheries populations, thereby increasing the
risks of overestimating sustainable catch quotas®. To date,
quantitative models of low-frequency variability in marine fish
populations remain underdeveloped. Existing population models
are commonly species-specific and require high-precision data on
fish vital rates, limiting their application in data-poor situations
which characterize the majority of our global catch®.

While the mechanisms controlling fish population growth are
inherently complex, two sets of recent scientific insights aid the
development of predictive models of low-frequency dynamics in
marine fish populations. First, it is evident that variability in
somatic growth of individual fish is often tightly, and linearly,
related to variability in environmental conditions, especially sea
surface temperature (SST). This relationship is consistent across
latitudes and across species of different life spans (see review of
literature in Table S1). Second, comparisons among marine fish
populations suggest that biomass fluctuations linked to environ-
mental variability may be mediated by life history characteristics
such as generation time and trophic level!9-13. For example, small
and short-lived planktivorous fish like sardines and anchovies are
more prone to higher-frequency population fluctuations in
comparison to large and long-lived piscivorous fish populations
such as rock fish (Sebastes spp.). We illustrate this point by
comparing the magnitude of low-frequency variability in biomass
times series of fish species in the North- and Celtic seas (Fig. S1).
Shorter generation times due to life history or fishing-induced
demographic truncation may be linked to a faster environmental
response! L1415 In contrast, a buffering of environmental signals
by longer-lived predatory fish may be related to ‘bet-hedging’
strategies of fat storage and flexibility in spawning times that
serve to increase individual survival during stressful times and
ensure adequate recruitment when favourable conditions
arise!®=20, As a consequence, environmental stochasticity is
dampened in populations with a broad age structure (i.e., many
mature cohorts), resulting in conspicuous low-frequency varia-
bility in their temporal dynamics!41>.

Inspired by theoretical work on age-structured populations!®-11
we build upon these two concepts to present and validate a new
modelling approach in which the dynamics of marine organisms
are an “integration” of environmental variability over multiple
years through demographic processes!>1°. Specifically, we assess
to what extent observed low-frequency variability in fish popu-
lations could be attributed to integrated SST variability. Lastly, we
use our modelling approach to predict how fish biomass may
respond to increasing temperature mean state and variance under
a changing global climate.

Autoregressive modelling

To test the hypothesis that observed fish population dynamics
contain signatures of integrated SST variability, we used auto-
regressive models to simulate this integration or “biological
buffering”'2. For species at the first trophic level (TL1), we cal-
culate the annual anomaly in population biomass By ; at time ¢ as:

Brpi(t) = SST(t) + 7pi(Brpy (t — 1) 1

with SST representing standardized (ie., converted to z-score)

interannual SST variability, Byy;(t — 1) the standardized popula-
tion biomass in the previous year and 7y, a factor quantifying how
Brpi(t — 1) affects By, (£)12. The factor Ty, is calculated as:

o longevity — 1
ble ™ " ongevity

(@)

We chose this formulation because the biomass dynamics
generated are strongly dependent on fish longevity. For example,
for short-lived species with near annual life cycles, the 7y, =0,
causing B(f) to be independent of B(t — 1) and B(f) time series to
closely track environmental variability. For longevity <1 year, we
set Ty, to zero, which is generally the case at the first trophic level.
For long-lived species on the other hand, the formulation of Ty,
induces strong carry-over effects, creating much stronger patterns
of low-frequency variability relative to interannual variability.

For trophic levels 2-4, we assume food availably is a major
driver of population fluctuations. Thus, for these trophic levels,
SST(t) is replaced by B(f) (the standardized population size) of
the next-lower trophic level (TL-1), resulting in:

By () = By (8) + 7By (t — 1)) (3)

A “species” trophic position determines how many times
Eq. (3) is repeated, building on the dynamics of the next lower
trophic level. This method thus assumes a bottom-up propagation
of environmental signals at higher trophic levels (e.g., through
food availability?!). We do acknowledge potential top-down
controls on population growth?2, but in our simple model make
the implicit assumption that bottom-up effects are stronger. It is
commonly held that variability in marine populations is caused
primarily by recruitment variability?> which, regardless of adult
trophic position, may relate more directly to environmental
conditions and/or plankton availability and thus less so to the
next lower trophic level. Although recent studies challenge this
paradigm and show that somatic growth can be an important
driver of population fluctuations?l-?4, it is likely that our model
approach will overestimate low-frequency variability in popula-
tions for which recruitment success is an important driver of
changes in population size. In such cases, a lower number of
integrations (i.e., iterations of Eq. (3)) and/or adjustment of 7y;e,
commensurate with the age at which a species’ recruits to the
adult population, could be more appropriate. However, for many
species there is likely strong collinearity between vital rates, (e.g.,
high growth years coincide with years of low mortality and high
fecundity/recruitment, and vice versa), all driving population
growth in the same direction?®. Hence recruitment fluctuations
are implicitly included in our model. Our approach could thus be
regarded as a null model that quantifies the maximum level of
bottom-up influence through environmental forcing on fish
biomass dynamics. We stress that the output of our modelling
approach differs from a low-pass filter or a running average
which solely emphasise and attenuate properties of the focal time
series. Instead, autoregressive models induce phase shifts and
amplify low-frequency variability as environmental variability
passes through multiple tropic levels.

Results and discussion

A North Sea marine food web. Most fish species monitored in
stock assessment programmes are commercially important and
their population dynamics are likely strongly affected by exploi-
tation. The most common demersal fish species in the North Sea,
the grey gurnard, however, has no commercial importance and its
abundance has been surveyed consistently since 1977%6. We
illustrate the skill of our approach by modelling the dynamics of
grey gurnard and its main prey items (Fig. 1). The autoregressive
models closely match the low-frequency variability in observed
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Fig. 1 Integration of interannual SST variation corresponds to low-frequency fluctuations in biomass. In this example from the North Sea, autoregressive
modelling of high-frequency sea-surface temperature (SST; red lines) generates patterns that match variations in population biomass (black lines) across
three trophic levels. Results on the right show correlations at each trophic level between: spring SST data and biomass (rss); auto-regressed SST and

biomass (r.eq); and between a cubic smoothing spline (smoothing parameter: 0.5) through the biomass data and auto-regressed SST (freq_sp). The latter
was included for a more direct comparison of low-frequency variability that may be masked in relatively uncertain biomass assessments. The p-values are
determined using data simulations (see “Methods"). *Poor association for sandeels could be caused by substantial sampling errors in assessment data?8.

Data used can be found in Supplementary Data files 1 and 2.

grey gurnard populations, suggesting that interannual SST var-
iation is integrated through each trophic level of the food web,
and that our autoregressive modelling approach can generate
realistic decadal-scale fish population dynamics.

Modelling low-frequency populations dynamics globally. For a
global application of our modelling approach we first used a life
history database of 3917 fish species?’ to establish relationships
among longevity, temperature, and trophic level (ie., to para-
metrize Ty, in Egs. (1) and (3). We found that within a given
trophic position, average fish longevity decreased with mean SST
(Fig. S2 and Table S2), which is consistent with previous
findings?®2°. This pattern reflects a known trade-off between
metabolism and growth, which both increase with SST, versus
maturity and longevity, which both decrease with SST30-32. In

addition, the observed longevity-temperature relationship is likely
also related to the temperature size rule, which predicts an inverse
relationship between fish size and mean temperature, and thus a
positive relationship between size and latitude33.

Next, we developed autoregressive models from the inverse
relationship between temperature and longevity (Fig. S2 and
Table S2) and gridded SST anomalies (1950-2018) to simulate
fish biomass anomalies in each 1° x 1° grid cell across the world’s
oceans. This was done separately for trophic levels 2-4, excluding
species at trophic level >4, as these include highly migratory
species (e.g., tunas, swordfish, and large sharks) that can be more
responsive to basin-wide as opposed to regional environmental
conditions®4. We extracted the level of first-order autocorrelation
from the simulated biomass time series, where higher values
indicate greater low-frequency variability. As expected, auto-
correlation increased with trophic level (Fig. 2). Strong latitudinal
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Fig. 2 Spatial patterns of first-order autocorrelation (AC) in sea surface temperature (SST) and results of autoregressive models of fish populations at
different trophic levels (TL). For all 1x1° gridded time series, first-order autocorrelation was calculated over the period 1950-2018. Simulated fish
biomass dynamics is based on autoregressive models (Egs. 1-3), using annual SST time series and the relationship between temperature and fish longevity

(Fig. S2 and Table S2).

gradients also appeared, suggesting spatial differences in the
fundamental behaviour of populations even at the same trophic
level. Spatial patterns were especially apparent in low trophic-
level species (TL2; i.e., planktivorous species), and can logically be
attributed to greater longevities in cooler climates*® as well as
increasing SST autocorrelation with latitude (Fig. 2a). For mid
and upper trophic levels (TL3-4; i.e., omnivorous and piscivorous
species), latitudinal patterns were weaker. We repeated our
autoregressive models on gridded data of ocean NPP
(2003-2018), which are based on remote sensing data of surface
chlorophyll estimates, SST, and PAR3. Patterns of increasing
autocorrelation with latitude (for low trophic levels) were similar
to those found using the SST time series (Fig. S3).

High temporal autocorrelation may indicate slow recovery
rates of fish populations after exploitation, climate extremes, or
other disturbances?®. In contrast, populations with low auto-
correlation are likely to respond strongly to year-to-year changes
in climatic conditions, are therefore less buffered, and thus more
sensitive to climate anomalies?’. In these species, extreme climate
conditions may cause sudden population growth or collapse. Our
models indicate this is more likely to happen in short-lived and
lower-trophic-level fish species, which is in agreement with
results from stock-assessment data38:39,

Comparison to fisheries landings. We compared our global
simulation of fish population dynamics to fisheries landings (3789
time series spanning 1955-2014) reported by the Food and
Agriculture Organization and reanalyzed by Pauly and Zeller®.
For species at lower trophic levels (TL2), latitudinal gradients in
autocorrelation are mirrored in fisheries landings (Fig. S4). Yet
for mid and upper trophic levels, we found no significant cor-
relation between simulated and observed mean levels of auto-
correlation within large marine ecosystems (LMEs). This lack of
correspondence is likely a consequence of the small range of
autocorrelation values at these high trophic levels. Nonetheless,
for many LMEs, the simulated fish population time series track
observed landings remarkably well (Fig. 3). Indeed, we found
correlation coefficients of r>0.7 (r2>0.5) between the first
principal components of modelled and observed time series in 29,
54, and 62% of the tested LMEs for trophic levels 2, 3, and 4,

respectively. Very strong correlation coefficients (r> 0.9, r2 > 0.8)
were found in 0, 21 and 29% of the tested LMEs for trophic levels
2, 3 and 4, respectively (Tables S3-5). Running the same analyses,
but using random data instead SST in the models, indicated that
such high correlations are unlikely caused by chance or an artifact
of adding temporal autocorrelation to an explanatory time series
(Fig. S5). While long-term trends in SST and fishing intensity
may drive some high correlations, in many LMEs biomass
turning points are correctly simulated from SST (Fig. 3). This
indicates that the integration of environmental signals could be
responsible for a significant portion of observed low-frequency
variability in fish populations.

In recent decades, industrialized fishing has put tremendous
pressure on the World’s marine ecosystems (Fig. 4a), with strong
and lasting effects on fish stocks*’. We expected the correspon-
dence between simulated and observed population biomass to be
relatively low in heavily exploited populations as they have
suffered age and size truncation*’42 which would reduce
temporal autocorrelation and make these relatively long-lived
species behave like species with shorter lifespans. Indeed, when
comparing the first principal components of simulated fish stocks
to observed landings, we found stronger agreement in low-
exploitation LMEs than overexploited LMEs (Fig. 4b). Our
models do not account for this exploitation effect and could thus
overestimate the degree of low-frequency variability in intensively
exploited LMEs (Fig. S6).

Effects of climate change. The future marine climate will likely
be characterized by even greater warming and increasing climate
variance#344, Using data simulations, we tested how rising trends
in SST mean state (Fig. 5b) and/or variance (Fig. 5c, d) might
affect the low-frequency dynamics of fish populations. Results
from these simulations suggest that an increase of either mean
SST state or variance induces stronger fluctuations in population
biomass, with the greatest amplitudes occurring when SST mean
state and variance increase simultaneously (Fig. 5d). An impor-
tant caveat is that species may shift their distributions to follow
their thermal niche, which may help mitigate some of these
impacts#>40, Yet, our results suggest that rising SST averages and
variability must be considered as sources of increased volatility in
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Fig. 3 Simulated marine fish dynamics matches independent empirical data from landings. Examples of covariance between simulated (red) and
observed (black) fish populations in ten LMEs. Observed data is the first principal component of the catch data within the LME, while modelled data is the
first principal component of simulated populations across all 1x 1° grids within the LME (see Table S3 for variance explained per PC). Trophic levels 3 and 4
(TL3 & TL4) are both shown except for the Barents Sea and Faroe plateaus due to poor data availability. The thin grey line in each figure is the first principal
component of SST data in each LME. Numbers correspond to locations in Fig. 4a.
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Fig. 4 Overfishing can diminish climate-driven fluctuations in fish populations. a Stock status, defined as the percentage of stocks collapsed or
overexploited over 1950-2010 for all large marine ecosystems (data from®'). The numbers in the map correspond to the examples given in Fig. 3. b Fit of
simulated fish biomass dynamics to that observed in landings is highest in LMEs experiencing low exploitation pressure and decreases with stock status,
for trophic levels (TL) 3 and 4. Model fit was estimated as the correlation of the first principal component of landing data to the first principal component of
simulated fish populations within each LME. Only LMEs with at least 5 time series of landings were included here.

fish biomass and associated catch that could lead to greater
instability of wildlife populations and coastal economies depen-
dent on marine fish populations.

While we acknowledge the existence and influence of other
biological causes of low-frequency variability in biomass, our
autoregressive approach offers a simple and broadly applicable
null model of climate-induced fish population dynamics. Such
information may help disentangle the influence of physical
forcing from that of fishing pressure. It also affords some level of
predictive power given that biomass is a function of lagged
climate phenomena, which is of direct relevance to the manage-
ment and sustainability of these fish stocks. Moreover, these
autoregressive approaches may provide basic predictions of
population biomass responses to climate variability and climate
change not just for fish, but any upper-trophic species.

Methods

North Sea marine food web. The abundance of grey gurnard (Eutigla gurnardus)
has been consistently measured in ICES research vessel surveys since 1977. Grey
gurnards feed primarily on crustaceans as juveniles, increasing their consumption
of fish up to 95% of their diet as they grow?’. Sandeel species (Ammodytes,

Gymnammodytes, and Hyperoplus) are the main prey species of grey gurnards
>10 cm SL (about 30—50% of the fishes eaten). Sandeels are also surveyed in the
North Sea as part of ICES stock assessments (the abundance of six species are
grouped together). Sandeels are found across the entire North Sea and are exploited
only on the western side of the basin®. In turn, the abundance of sandeels has been
linked to the abundance of large copepod prey species*°%; abundance data of the
latter were published by Capuzzo et al.>!. Thus, the availability of abundance data
across three linked trophic levels allowed the testing of autoregressive models
(Fig. 1). We used spring sea surface temperature (SST in March and April)>? as a
potential climate driver of the food chain, as averaged across the North Sea (0-9°E
and 52-59°N). SST in spring reflects growing season length and has been reported
to affect the abundance of copepods®, as well as the period of highest growth for
sandeels®»%>. Autocorrelation was added to SST in our models based on species
longevity with a maximum age of 6-8 years for grey gurnard®®, 4-10 years for
sandeels*®%7, and 1-4 years for large copepods. Testing for significance: One issue
with high levels of autocorrelation is that statistical assumptions of serial inde-
pendence are violated, complicating efforts to establish the significance of corre-
lations or regressions®S. To address this problem, we apply an alternative
significance test based on data simulations®®. For the grey gurnard case study, we
created 100,000 random (i.e., artificial) “environmental” time series with the same
length, mean, standard deviation, and autocorrelation as the environmental data
(spring SST). We correlated each of these random “environmental” time series to
the biological time series studied (e.g., large copepods, sandeels and grey gurnard).
Those random “environmental” series that correlated as strongly to the biological
time series as the original ‘real’ SST data were retained (i.e., same Pearson r + 0.05).
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Fig. 5 Climate change may amplify marine fish biomass dynamics. a \We depart from a random time series representing SST variability without changes in
climate mean or variability (black line), and the simulated biomass dynamics of a marine fish species at trophic level 3 (red line). For this simple study
system, we next apply gradual climate change (blue lines) during a 100-year period by adding an SST warming trend (b), an increase in SST variance (¢),
and their combination (d). Each of these climate change scenarios was repeated 16,500 times using a range of fish longevities, varying degrees of warming
and variance trends, and with varying initial random SST time series (black line in @). The results of the simulations are summarized in the right panels.
Relative change in maximum peak-to-peak variance (PtoP) pre-trend vs. post-trend was calculated to represent changes in the amplitude of low-frequency
variability. PtoP values > 1 indicate an increase in low-frequency amplitude. First-order autocorrelation (AC) in the simulated fish populations before
climate change (i.e., from years 1 to 150) is shown on the x-axis of the three-dimensional plots.

Next, these retained “environmental” random time series were reddened (i.e.,
autocorrelation added), using autoregression models parameterized with species’
longevities, and we recorded the extent to which the correlation with the biological
time series changed. The goal here was to estimate the increase in correlation
coefficient in random, unrelated time series, simply by adding low-frequency
variability. We then compared this distribution of “baseline” correlation changes
from the simulated data to the change in correlation when autocorrelation was
added to instrumental SST. We deemed a relationship significant if the correlation
increase for the observed SST data was unusually high (>95th percentile) relative to
the ensemble of random “SST” data.

Assessing spatial patterns in fish longevity. The relationships among ocean
temperature, trophic position, and fish maximum age were analyzed using data of
3917 marine fish species from 21 LMEs (Fig. S2). These LMEs were chosen ran-
domly, but as such that they spanned a gradient from low- to high temperature
regions. For each LME, life-history trait data were retrieved from the online

databank Fishbase?”. For each marine ecosystem, mean annual sea surface tem-
perature from 1950 to 2018 was calculated over an central area at least 1°x 1° in
extent using the Hadley Centre Sea Surface Temperature dataset>2. Mean annual
SST in these ecosystems ranged from ~0 to 28 °C. We used linear regressions to
quantify relationships among temperature, trophic position, and fish maximum age
(Fig. S2; Table S2). A discussion of the robustness of this relationship in provided
in the supplementary information (under Fig. S2).

Applying autoregressive models to gridded SST and NPP. Autoregressive
models were applied to 1 x 1° gridded SST from 1950 to 2018 of the Hadley Centre
Sea Surface Temperature dataset®? (Fig. 2). At the lowest trophic position, the
environmental driver (E) in the model was set as the time series of regional sea
surface temperature from 1950 to 2018 (see main text for model description).
Autocorrelation was added to the SST time series using a Ty,;, parametrized based on
the relationship between mean annual temperature (of the grid cell from 1950 to
2018) and fish longevity (Fig. S2 and Table S2). In the same way, additional
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autocorrelation was added to this time series to model the next trophic level. These
models simulated variability in fish populations for a certain region, given (i)
variability of the physical environment (SST), including the level of autocorrelation
already present in that physical environment (Fig. 2a), and (ii) the expected longevity
of an “average” fish at a certain trophic position (Fig. S2). We repeated the analyses,
using gridded estimates of ocean net primary productivity instead of SST (Fig. S3).
Gridded NPP was based on the Vertically Generalized Production Model (VGPM)
of Behrenfeld and Falkowski3®, MODIS surface chlorophyll concentrations (Chlsat),
MODIS 4-micron sea surface temperature data (SST4), and MODIS cloud-corrected
incident daily photosynthetically active radiation (PAR). Monthly gridded data from
2003 to 2018 were obtained from Oregon State University’s Ocean Productivity
(https://www.science.oregonstate.edu/ocean.productivity/). We averaged higher-
resolution data (1080* 2160 grids) to a 1°x 1° gridded global database. Our model
approach was initially inhibited by the length of the NPP data series, spanning only
16 years. We, therefore, repeated the NPP time series in each grid cell once, so that it
yielded a 32 year sequence (i.e., 2003-2018 + 2003-2018). Such stitching of two
identical time series in each grid cell allowed the models the required time to build
up low-frequency variability, but created flawed model output. However, the goal
here was not to model the precise low-frequency pattern exhibited by fish popula-
tions, but to examine if general autocorrelation levels, and in particular their spatial
patterns, are comparable to the analyses based on SST data (1950-2018).

Autocorrelation in FAO global landings. Fisheries landings recorded by the Food
and Agriculture Organization (FAO) of the United Nations were used to verify
model output. Catch data were organized into 65 LMEs®. We used all data avail-
able, including marine finfish and invertebrates, but filtered data according to the
following conditions: (i) time period spanning 1955-2014 (60 years), (ii) less than
25% missing values, and (iii) having species-level identification (removing uni-
dentified and miscellaneous groups). This yielded 3789 species time series, with at
least 55 years of data for each species. No time series were further removed. Within
each LME, the average autocorrelation was calculated across all fisheries landing
time series within each trophic level. Next, we calculated the first principal com-
ponent of all landings within each trophic level of each LME (if n > 5 time series),
as well as the first principal component of the simulated fish populations (i.e.,
autoregression models per 1° grid cell based on SST) within each trophic level of
each LME. We then compared the leading principal component of landings with
the leading principal component of simulated fish populations as a way of broadly
assessing the fit between predicted and observed landings (Figs. 3, 4). The sign of
the PC of simulated data was reversed in upwelling areas, given the strong rela-
tionship between upwelling intensity (usually negatively related to sea surface
temperatures) and productivity in these regions®?.

Potential effects of climate change. We used data simulations to assess the
potential responses of fish populations to changes in climate mean, variance, and
their combination. We started each simulation with a random time series of 250
years, normalized to a mean of zero and a standard deviation of one. A theoretical
fish population at trophic level 3 was simulated by integrating this random data
across a number of longevity scenarios (Fig. 5a), ranging from 1 to 2 years for
trophic level 1, 1-3 years for trophic level 2, and 1-5 years for trophic level 3;
yielding 30 possible age combinations. Next, we used the original random time
series, but added an increasing linear trend ranging from 0.002 to 0.02 (in steps of
0.002) standard deviation per year over the last 100 years for a total of 11 scenarios
(Fig. 5b). This approach was repeated 16,500 times, using all possible combinations
between the longevity scenarios (n = 30), rates of climate change (none + 10 dif-
ferent trends), and random climate time series (50 per longevity x climate change
combination). For each simulation, we measured the change in the amplitude of
fluctuations over last 100 years between fish populations simulated from the
control and the climate change scenarios. This change in amplitude was defined as
the maximum peak-to-peak variance in the fish population simulated under a
climate change scenario divided by the maximum peak-to-peak variance in fish
population simulated under the control scenario. The same approach was also used
to simulate the effect of increasing climate variance (Fig. 5¢). To this end, we
multiplied the last 100 years of the random time series by a factor 1 (no change) to
2 (a doubling of variance), with steps of 0.1 for a total of 11 scenarios. We did not
simulate a gradual increase of climate variance, but induced a consistent change
across the entire last 100 years of the simulate data. Lastly, we combined increasing
mean and variance (Fig. 5d). We did not use all possible combinations, but instead
merged each level of the 11 scenarios in mean state with its respective level of the
11 scenarios of change in variance. The resulting 11 scenarios range from no
change in mean and variance to a maximum increase in mean of 0.02 standard
deviation per year over the last 100 years in combination with the maximum
consistent two-fold increase in variance during the last 100 years.

Statistics and reproducibility. Details about the statistical analyses performed in
this study are given in the respective sections of results and methods. The R-scripts
used for model simulations are included in Supplementary Data file 5.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sea surface temperature data used in this study was obtained from the Met Office
Hadley Centre (https://www.metoffice.gov.uk/hadobs/hadisst/). Monthly gridded data of
marine NPP was obtained from Oregon State University’s Ocean Productivity database
(https://www.science.oregonstate.edu/ocean.productivity/). FAO catch data for the
period 1955—2014 was obtain using https://rpubs.com/joyceongjl/catchARI. All other
data used are included in Supplementary Data files 1-4.

Code availability

The R-scripts used for the model simulations (e.g., Figs. 1, 2, and 5) are included in
Supplementary Data file 5. All other r-scripts used (e.g., for making the figures) are
available upon request.
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