
Genome analysis

PBSIM2: a simulator for long-read sequencers with a

novel generative model of quality scores

Yukiteru Ono1, Kiyoshi Asai1,2 and Michiaki Hamada 3,4,5,6,*

1Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa

277-8561, Japan, 2Artificial Intelligence Research Center (AIRC), National Institute of Advanced Industrial Science and Technology

(AIST), Tokyo 135–0064, Japan, 3Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering,

Waseda University, Tokyo 169–8555, Japan, 4Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of

Advanced Industrial Science and Technology (AIST), Tokyo 169–8555, Japan, 5Institute for Medical-oriented Structural Biology,

Waseda University, Tokyo 162–8480, Japan and 6Graduate School of Medicine, Nippon Medical School, Tokyo 113–8602, Japan

*To whom correspondence should be addressed.

Associate Editor: Robinson Peter
Received on June 22, 2020; revised on August 20, 2020; editorial decision on September 8, 2020; accepted on September 11, 2020

Abstract

Motivation: Recent advances in high-throughput long-read sequencers, such as PacBio and Oxford Nanopore
sequencers, produce longer reads with more errors than short-read sequencers. In addition to the high error rates of
reads, non-uniformity of errors leads to difficulties in various downstream analyses using long reads. Many useful
simulators, which characterize long-read error patterns and simulate them, have been developed. However, there is
still room for improvement in the simulation of the non-uniformity of errors.

Results: To capture characteristics of errors in reads for long-read sequencers, here, we introduce a generative
model for quality scores, in which a hidden Markov Model with a latest model selection method, called factorized
information criteria, is utilized. We evaluated our developed simulator from various points, indicating that our
simulator successfully simulates reads that are consistent with real reads.

Availability and implementation: The source codes of PBSIM2 are freely available from https://github.com/yukiter
uono/pbsim2.

Contact: mhamada@waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput DNA sequencing technology has markedly
changed the style of biological research, from hypothesis-driven
biology to data-driven biology. Notably, recent advances in long-
read sequencers, including Pacific Biosciences (PacBio) and Oxford
Nanopore Technologies (Nanopore), have accelerated studies on the
genome (Bowden et al., 2019; Chaisson et al., 2015; Dilthey et al.,
2019; Jain et al., 2018; Korlach et al., 2017), epigenome (Simpson
et al., 2017) and transcriptome (Weirather et al., 2017), among
others (Mantere et al., 2019; van Dijk et al., 2018).

It is known that reads generated by long-read sequencers include
more errors than those generated by short-read sequencers (e.g.
Illumina HiSeq), and many tools and algorithms that specifically
target long-read sequencers have been developed (Amarasinghe
et al., 2020; Makałowski and Shabardina, 2019; Sedlazeck et al.,
2018). However, in the development of tools/algorithms for long-
read sequencers, it is generally difficult to evaluate those using real
data. This is because real data that meets the necessary conditions
cannot always be prepared; in addition, the true error information

of real data is not easy to obtain. Therefore, simulators that gener-
ate reads with error information, such as alignments between reads
and the reference sequences, are useful for the evaluation of new
tools/algorithms (see Alosaimi et al., 2020; Escalona et al., 2016)
for comprehensive reviews of read simulators.) Moreover, these
simulators are useful for experimental design such as estimating
the depth coverage required for genome assembly and variant de-
tection. To make this possible, it is crucial to be able to properly
simulate the characteristics of real reads, especially the characteris-
tics of errors.

PacBio sequencers have lesser systematic (or context-specific)
errors (e.g. errors in high- and low-GC regions and at homopolymer
runs) than that of short-read sequencers, such as Illumina (Eid et al.,
2009; Laehnemann et al., 2016; Ross et al., 2013). In contrast, it
has been reported that PacBio reads have regional bias of error
distribution within the reads, and very low-quality regions are some-
times observed (e.g. see Myers’ report, https://dazzlerblog.word
press.com/2015/11/06/). Low-quality regions are caused by chime-
ras and undetected adapter sequences, as well as non-uniformity of
errors. Figure 1 clearly shows the non-uniformity of quality scores,
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with the distributions of accuracy of 800 bp disjoint intervals in
reads (Here, quality scores are used instead of actual errors, because
it is difficult to obtain the true error information for reads, especially
long reads. Note that the quality score is logarithmically related to
error probability; Cock et al., 2010.). ‘Random models’ randomly
generate quality scores according to real frequencies of quality
scores, leading to a normal distribution of quality scores. When
compared with random models, the distributions of real reads have
broader accuracy ranges of 800 bp interval, especially for low read
accuracy. Our previously developed simulator, PBSIM (Ono et al.,
2013), employs a random model (Eid et al., 2009), and the reads
generated by it are simpler and easier to handle than real reads; this
is a problem when evaluating the tools/algorithms for long-read
sequencers.

Currently, there are several simulators that generate long reads
(see Supplementary Table S1 for summary). With regard to simula-
tion of low-quality regions, NanoSim (Yang et al., 2017) generates a
set of read profiles from alignment-based analysis, and simulates
low-quality regions using the profiles. PaSS (Zhang et al., 2019)
adopts preset high error rates for both ends of the reads, to simulate
low-quality regions. Badread (Wick, 2019) can introduce chimeras,
adapter sequences, low-quality regions and low-complex repetitive
sequences into simulated reads. However, there is still room for
improvement in the simulation of the non-uniformity of errors (or
quality scores).

To simulate the non-uniformity of quality scores, in this study,
we developed a generative model for quality scores, based on a hid-
den Markov model (HMM) in combination with latest model selec-
tion criteria. Our computational experiments show that PBSIM2,
the new version of PBSIM, simulates reads that have a tendency
similar to real reads.

This article is organized as follows: In Section 2, after introduc-
ing a novel generative model for quality scores, we describe the
detailed design of PBSIM2. In Section 3, we report comprehensive
evaluations of PBSIM2 and related discussions. PBSIM2 newly
added the function to simulate Nanopore reads, whereas it removed
the function to simulate circular consensus sequencing (CCS also
known as HiFi) reads. This is because the average accuracy of CCS
exceeds 99%, which is outside the purpose of PBSIM to simulate
error-prone reads. PBSIM2 is freely available from https://github.
com/yukiteruono/pbsim2, and it will be useful for various studies
using long reads.

2 Materials and methods

2.1 Datasets for long-read sequencers
In this study, we utilized various types of datasets for PacBio (seven
datasets of CLR) and Nanopore sequencers (nine datasets), as sum-
marized in Supplementary Tables S2 and S3, respectively.

2.2 Basic statistics of long reads
To learn the features of long reads, we obtained basic statistics, such
as read length, accuracy distribution and quality score distribution,

from the real reads in Supplementary Tables S2 and S3. As shown in
Figure 2, in PacBio, quality score distributions are very similar
within the same chemistry. Conversely, Nanopore has a wider range

and more diverse distribution of quality scores than those of PacBio.
Additionally, we conducted local alignments of real and simu-

lated reads to reference sequences, and got error rates from the
alignment results for several analyses. These local alignments were
executed by LAST version 1047 (Kiełbasa et al., 2011). Alignments

were filtered using last-map-probs. lastal was executed
with parameters trained by last-train (Hamada et al., 2017) and

‘-m100 -j7’. lastdb, last-train, and last-map-probs
were executed using the default parameters.

2.3 Generative model for quality scores
To construct a generative model for quality scores, we employed a
HMM, which generates observed data from hidden states that fol-

low the Markov model. Note that HMMs are utilized in many bio-
informatics tools (e.g. Yoon, 2009). In our HMM, the emission

probability distributions from each hidden state are provided by a
categorical distribution, whose output is one of the quality scores. It
should be emphasized that the parameters in categorical distribution

with hidden states are different from each other.
In conventional HMM, the number of hidden states should be

provided beforehand. In this study, we utilized HMM with the latest
model selection criteria, called factorized information criteria (FIC-
HMM; Hamada et al., 2015). This method is theoretically sound,

enabling us to train not only parameters in HMM but also the num-
ber of hidden states (Fujimaki and Hayashi, 2012).

In this study, we adopted the model whose (lower bound of) FIC
is maximum among five trials with different initial parameters, be-

cause FIC-HMM affects local optimal solutions in their training.
The models were trained for each read accuracy of each chemistry
(e.g. for 80% accuracy, training data comprise a read group with an

accuracy of 79.5–80.4%). For read accuracy with insufficient train-
ing data, constant quality scores that match the accuracy were used.

2.4 Detailed design of PBSIM2
Given a reference sequence, PBSIM2 generates FASTQ file (Cock
et al., 2010), including reads with quality scores, where the genera-

tive process is summarized as follows:

1. Determine read length according to the read length distribution

in Section 2.4.1.

2. Determine read accuracy according to the read accuracy distri-

bution in Section 2.4.2.

(a) (b)

Fig. 1. Non-uniformity of quality scores for real and simulated reads. After grouping reads by their accuracy, reads were segmented into 800 bp disjoint intervals, and accuracy

of each interval was computed from quality scores. Each graph shows the distribution of averaged accuracy of 800 bp intervals, where colors of plotted lines represent read

groups (e.g. ‘Acc.78’ refers to a read group with an accuracy of 77.5–78.4%). In random models, a house-made program randomly sampled quality scores according to the

quality score distribution of each accuracy of real reads
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3. Generate quality scores of each position in the read using the

generative model, which was trained for each read accuracy of

each chemistry.

4. Sample a random position from the reference sequence and cut

out a nucleotide sequence of the read length.

5. Introduce errors (substitution, insertion and deletion) into the

nucleotide sequence according to a quality score at each position

of the read and the ratio of error types as described in Section

2.4.3.

2.4.1 Read length distribution

On both PacBio and Nanopore sequencers, we utilized gamma dis-
tribution for read length, although log-normal distribution was
employed in the previous version of PBSIM. This is because gamma
distribution is more suitable than log-normal distribution for latest
real datasets of both PacBio and Nanopore in our preliminary
experiments (Supplementary Fig. S1). Note that DAZZ_DB/simula-
tor ( https://github.com/thegenemyers/DAZZ_DB/blob/master/simu
lator.c), SimLoRD (Stöcker et al., 2016), and NPBSS (Wei and
Zhang, 2018) employ log-normal distribution for PacBio; SiLiCO
(Baker et al., 2016) employs log-normal distribution for PacBio, as
well as gamma distribution for Nanopore; DeepSimulator1.5 (Li
et al., 2020) employs beta, exponential and mixed gamma distribu-
tion for Nanopore; and Badread employs gamma distribution for
both PacBio and Nanopore.

The distribution is defined by:

f ðxÞ ¼ xk�1 expð�x=hÞ
CðkÞhk

(1)

where shape and scale parameters (k and h) are determined by aver-
aged length and SD of reads in each dataset, respectively, which can
be specified by the user as input parameters. PBSIM2 computes
probability mass in each length, between the maximum and min-
imum length.

2.4.2 Read accuracy distribution

Both PacBio and Nanopore sequencers utilize exponential distribu-
tions for read accuracy, although normal distribution has been
employed in the previous version of PBSIM. In other simulators,
Badread employs beta distribution for both PacBio and Nanopore.
Our preliminary experiments indicated that exponential distribu-
tion was more suitable than any other distribution for latest real
datasets of both PacBio and Nanopore (Supplementary Fig. S2).

Precisely, we define read accuracy distribution by:

pðxÞ ¼ f ðxÞPmax
i¼min f ðxiÞ

(2)

where

f ðxÞ ¼ expð0:22xÞ (3)

and the minimum and maximum of accuracy are determined by
averaged accuracy of reads, which can be specified by the user as in-
put parameters. PBSIM2 computes probability mass in each accur-
acy between the maximum and minimum accuracy.

2.4.3 Simulation of errors

A nucleotide sequence of a read is uniformly sampled from the refer-
ence sequence, and errors are introduced into the sequence as fol-
lows: For each position of the read, all error types (substitution,
insertion and deletion) are introduced according to quality score at
that position. In the previous version of PBSIM, deletion rate is uni-
form throughout all positions of every simulated read, but the latest
datasets show that the rates of all error types are related to the qual-
ity scores (Supplementary Fig. S16). All error rates are calculated
from quality scores and the ratio of error types given by the user.
With regard to a deletion, there is no quality score for the deletion it-
self; thus, the quality score of the 5’neighbor is used. As in the previ-
ous version of PBSIM, half of the inserted nucleotides are chosen to
be the same as their following nucleotides, and the other half are
randomly chosen.

2.4.4 Sampling-based simulation

Sampling-based simulation implemented in PBSIM can also be used
in PBSIM2. In this simulation, the length and quality scores of a
read are randomly sampled from real data provided by the user.
Subsequently, a nucleotide sequence is randomly extracted from the
reference sequence, and errors are introduced in the same way as
described in Section 2.4.3.

2.5 Execution of other simulators
To evaluate the ability of PBSIM2 to simulate the non-uniformity of
real reads, we conducted simulations using other simulators and
observed their non-uniformity. For NPBSS, we simulated PacBio
CLR using the default error model. For PaSS, we simulated PacBio
CLR using a prepared profile (sim.config). For LongISLND (Lau
et al., 2016), we built models from real reads and simulated PacBio
CLR using the models. For Badread, we built models from real reads
and simulated PacBio CLR and Nanopore reads using the models.
For DeepSimulator1.5, we simulated Nanopore fast5 using context-
independent kmer pore model and basecalled using Guppy.

3 Result and discussion

3.1 CPU time and memory consumption
For each simulator, CPU time and maximum memory usage were
measured for generating a total of 100 Mb of reads. NPBSS was exe-
cuted on a Windows system equipped with Intel(R) Core(TM)

(a) (b)

Fig. 2. Quality score distributions of real reads. The frequency of quality scores was counted for each of the datasets in Supplementary Tables S2 and S3. Colors of plotted lines

represent datasets. Dataset name is species (e.g. E.coli_K12) þ chemistry (e.g. P4C2). The horizontal axis is PHRED33 quality score defined in terms of the estimated error

probability (e.g. quality scores 4, 7 and 10 represent error probabilities of 40%, 20% and 10%, respectively; Cock et al., 2010)
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CPU(i7-8565U@1.80 GHz). The others were executed on the
National Institute of Genetics supercomputer system. The execution
of DeepSimulator1.5 included basecalling by Guppy and checking
read accuracy by Minimap2, and used ‘-c 8’ option (CPU number).
Results are shown in Table 1. PBSIM is the fastest and consumes
minimal memory, which enables users to simulate reads on their
laptops.

3.2 Evaluation of a generative model of quality scores
To evaluate PBSIM2 that implemented a novel generative model of
quality scores trained using FIC-HMM, we compared simulated
reads of PBSIM2 with real reads in terms of non-uniformity of
quality scores. PBSIM2 simulated reads with the same parameters
(e.g. mean and SD of read length and accuracy) as real reads. We
also evaluated simulated reads of Markov Model (MM), because in
Nanopore sequencing, the raw current signal is mainly influenced
by 5- or 6-mer that occupies the pore simultaneously (Rang et al.,
2018), and Faucon et al. (2017) showed that the strongest feature
for predicting the accuracy of each k-mer was the accuracy of

(a) (b)

Fig. 3. Simulation of non-uniformity of quality scores and evaluation by KL divergence. Each graph shows distributions of accuracy of 800 bp disjoint intervals in reads in the same

way as Figure 1. Read groups (e.g. Acc.78) with insufficient data are not shown in the graphs. PBSIM2, the new version of PBSIM, generated reads using model-based simulation.

‘1st-order MM’, our in-house software tool, generated quality scores for each read group, by a 1st-order MM of transition probabilities of the quality score of real reads. Badread

built a model and generated reads. DeepSimulator1.5 generated Nanopore fast5 using context-independent kmer pore model and basecalled using Guppy. KL divergence of distribu-

tion of accuracy of fixed size (50, 100, 200, 400, 800, 1600 and 3200bp) intervals between real and simulated reads. Upper-limit value of KL divergence was 10

Table 1. CPU time and maximum memory for each simulator

Simulator CPU time (s) Maximum memory (Gb)

PBSIM 5 0.2

PBSIM2 (this work) 7 0.2

LongISLND 565 26.7

NPBSS 1024 0.1

DeepSimulator1.5 113 344 15.3

PaSS 14 0.8

Badread 1498 3.5

Note: CPU time and maximum memory usage were measured for generat-

ing a total of 100 Mb of reads. NPBSS was executed on a Windows system

equipped with Intel(R) Core(TM) CPU(i7-8565U@1.80 GHz). The others

were executed on the National Institute of Genetics supercomputer system.

The execution of DeepSimulator1.5 included basecalling by Guppy and

assessing read accuracy by Minimap2; when using ‘-c 8’ option (CPU num-

ber), wall-clock time was 20 662 s.
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neighboring k-mers, one step away. MM generates quality scores by
first- and second-order MM (referred to as ‘1st-order MM’ and
‘2nd-order MM’, respectively) of transition probabilities of quality
scores of real reads.

It is clear that the non-uniformity of simulated reads of PBSIM2
is sufficiently similar to that of real reads in both PacBio and
Nanopore (Fig. 3 and Supplementary Figs S3 and S4 show graphs of
all the interval sizes). Figure 3b also indicates that 1st-order MM is
able to simulate the non-uniformity, as well as PBSIM2 in
Nanopore. We utilized the Kullback–Leibler (KL) divergence for
observing similarity between non-uniformity (see Fig. 3). For P (real
distribution) and Q (simulated distribution), the KL divergence
from Q to P is defined to be;

DKLðPjjQÞ ¼
X

i

PðiÞ log2

PðiÞ
QðiÞ :

Figure 4 and Supplementary Figure S5 show that features of the
transition probability matrix are clearly different between PacBio
and Nanopore, and the transition ranges in Nanopore are narrower
than those in PacBio. Thus, MM is successful in Nanopore.
Furthermore Figures 5, 6 and Supplementary Figures S6 and S7
show that in FIC-HMM, the transition ranges of states in Nanopore
are narrower than those in PacBio, and the emission ranges of states
in Nanopore are narrower and simpler than those in PacBio. These
observations in MM and FIC-HMM are consistent. We decoded
training data for FIC-HMM into states using the Viterbi algorithm,
and examined continuous length of state (e.g. if the same state is
lined up five times in a row, the continuous length is 5).
Supplementary Figure S8 shows that the continuous length of state
in PacBio is longer than that in Nanopore. In both PacBio and
Nanopore R9.5, 2nd-order MM was a slightly better simulation
than 1st-order MM (Supplementary Figs S9–12). However, in
Nanopore R10.3, they were almost the same (Supplementary Figs
S13 and S14).

Supplementary Figures S9–14 also show comparisons with other
long-read simulators. In simulation of PacBio reads, PBSIM2 is able
to simulate the non-uniformity of real reads more than that of any
other simulator (see Supplementary Fig. S10). Even in the simulation
of Nanopore reads, PBSIM2 is one of the best simulators for overall
read accuracy, but at 86–90% read accuracy of Supplementary

Figure S12 and at 84–88% of Supplementary Figure S14,
DeepSimulator1.5 is the best. However, DeepSimulator1.5 has nar-
row ranges of read accuracy.

3.3 Correlation between read length and accuracy
The previous version of PBSIM was unable to simulate realistic
correlation between length and accuracy for each read (Stöcker
et al., 2016; Wei and Zhang, 2018). As shown in Figure 7 and

Supplementary Figure S15, PBSIM2 is able to simulate realistic

(a) (b)

Fig. 4. Transition probability matrixes of quality scores of real reads. The vertical

and horizontal axes are PHRED33 quality scores defined in terms of the estimated

error probability (e.g. quality score 4, 7 and 10 represent error probabilities of

40%, 20% and 10%, respectively; Cock et al., 2010). Quality scores on the vertical

axis transition to ones on the horizontal axis. The sum of transition probabilities on

each quality score of the vertical axis is 100%. These are matrixes of ‘Acc84’, denot-

ing a read group whose accuracy is 83.5–84.4%. In Nanopore matrix, quality scores

above 25 are not displayed

(a) (b)

Fig. 5. Transition probability matrixes of states of FIC-HMM. The vertical and

horizontal axes represent states of FIC-HMM, which are sorted in order of increas-

ing averaged quality score emitted by them. States on the vertical axis transition to

ones on the horizontal axis. The sum of transition probabilities on each state of the

vertical axis is 100%. These are matrixes of ‘Acc84’, a read group with an accuracy

of 83.5–84.4%

(a) (b)

Fig. 6. Emission probability matrixes of states of FIC-HMM. The vertical axis repre-

sents states of FIC-HMM, which are sorted in order of increasing averaged quality

score emitted by them. The horizontal axis is PHRED33 quality score defined in

terms of the estimated error probability (e.g. quality scores of 4, 7 and 10 represent

error probability of 40%, 20% and 10%, respectively; Cock et al., 2010). States on

the vertical axis emit quality scores on the horizontal axis. The sum of emission

probabilities on each state of vertical axis is 100%. These are matrixes of ‘Acc84’, a

read group with an accuracy of 83.5–84.4%. In the matrix of Nanopore, quality

scores above 25 are not displayed
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correlations. This improvement was mainly due to change in read
accuracy distribution, as mentioned in Section 2.4.2.

3.4 Relationship between error rate and quality scores
In the previous version of PBSIM, the relationship between error
rate and quality score deviated from the correct one with increasing
quality score (Wei and Zhang, 2018). As shown in Supplementary
Figure S16, the relationship is improved by changing the deletion
rate, as mentioned in Section 2.4.3.

3.5 Nucleotide sequence-based error model
Using nucleotide sequence context (or k-mer)-based error models,
generated from alignment-based analysis of real reads, several simu-
lators are able to simulate features of real reads, such as error length
(Faucon et al., 2017; Lau et al., 2016; Wick, 2019; Zhang et al.,
2019). Thus, we investigated 6-mer error bias by analyzing align-
ments of reads to the reference sequences. As shown in
Supplementary Figures S17 and S18, we observed that PacBio reads
had small 6-mer bias, whereas Nanopore reads had significant
6-mer bias, which is consistent with a previous study (Faucon et al.,
2017). It has been reported that homopolymers are difficult to be
called accurately by base-callers; therefore, many deletions occur at
homopolymers in read sequence of Nanopore (Rang et al., 2018).
Concurrent with this report, we observed high deletion rate at
homopolymers in Nanopore (see Supplementary Tables S4–6). We
also observed that insertion and deletion (indels) were longer in
Nanopore (R9.5) than those in PacBio (Supplementary Fig. S19a
and b). Recently, the latest Nanopore chemistry, R10, has improved
resolution of homopolymeric regions (Amarasinghe et al., 2020).
Actually, indels are shorter in R10 than those in R9, and the indel
length distribution becomes similar to that of PBSIM2
(Supplementary Fig. S19b and c), compared with PBSIM. In con-
trast, with regard to 6-mer error bias, R10 shows features similar to
those of R9 (see Supplementary Fig. S18). Although it may be neces-
sary to simulate 6-mer error bias, especially homopolymer-specific
error, to simulate Nanopore reads accurately, this version of
PBSIM2 does not address this issue because, as mentioned earlier,
Nanopore R10 has improved for homopolymer, and basecalling
software is improving for homopolymer basecalling (Wick et al.,
2019).

3.6 Future directions
In addition to the low-quality regions, artifacts such as chimeras and
adapter sequences are frequently observed in long reads (see Myers’
report, https://dazzlerblog.wordpress.com/2017/04/22/1344/). These
errors are the major cause of poor genome assembly. Badread has pre-
viously simulated these errors, and we also plan to implement similar
functions in the next version of PBSIM.

After PacBio Sequel sequencer, quality code is a fixed value and
does not represent the actual error rate, so in this study, only RS II
CLR was used as training data for quality scores. PBSIM2 is targeted

at error-prone reads, so we are unsure if it can properly simulate
HiFi reads. However, if a generative model of quality scores is cre-
ated using the error information obtained from the alignment of
reads to the reference sequences instead of the quality score, the
latest PacBio Sequel II data can be used as the training data of FIC-
HMM. Even though there are many problems, such as handling
unaligned regions or regions where it is difficult to obtain accurate
error information, including low-quality regions, learning alignment
by FIC-HMM is expected to significantly improve the error model
of long reads.

4 Conclusion

In this study, we proposed a novel simulator for long reads produced
by PacBio and Nanopore sequencers, in which a novel generative
model for quality scores is employed.

One of the novel points in this study was introducing a genera-
tive model of quality scores, based on a HMM with a model selec-
tion procedure. Our experiments showed that the generative model
simulates quality scores that are more consistent with real reads of
PacBio and Nanopore than other existing simulators.
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