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ABSTRACT 

The EU FP6 project carcinoGENOMICS explored the combination of toxicogenomics and in 
vitro cell culture models for identifying organotypical genotoxic- and non-genotoxic carcino-
gen-specific gene signatures. Here the performance of its gene classifier, derived from expo-
sure of metabolically competent human HepaRG cells to prototypical non-carcinogens (10 
compounds) and hepatocarcinogens (20 compounds), is reported. Analysis of the data at the 
gene and the pathway level by using independent biostatistical approaches showed a distinct 
separation of genotoxic from non-genotoxic hepatocarcinogens and non-carcinogens (up to 
88 % correct prediction). The most characteristic pathway responding to genotoxic exposure 
was DNA damage. Interlaboratory reproducibility was assessed by blindly testing of three 
compounds, from the set of 30 compounds, by three independent laboratories. Subsequent 
classification of these compounds resulted in correct prediction of the genotoxicants. As ex-
pected, results on the non-genotoxic carcinogens and the non-carcinogens were less predic-
tive. In conclusion, the combination of transcriptomics with the HepaRG in vitro cell model 
provides a potential weight of evidence approach for the evaluation of the genotoxic potential 
of chemical substances. 
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INTRODUCTION 

Exposure to potential human carcinogens 
and possible subsequent occurrence of can-
cer is of major concern for the safety of man 
and his environment. For decades, the 2-year 
rodent carcinogenicity assay has been the ul-
timate model for evaluating the carcinogenic 
potential of substances (EU, 1988). In gen-
eral, this test is indicated by positive results 
obtained in an in vitro screening battery, 
usually followed by subsequent positive in 
vivo follow-up genotoxicity tests. The 2-year 
carcinogenicity assay, however, has several 
scientific drawbacks as the tested doses are 
unrealistically high and important interspe-
cies differences exist, thus questioning hu-
man relevance of data obtained. Indeed, a 
substantial number of false positive results 
(i.e. identified as carcinogens in the rodent 
cancer bioassay but actually proven non-
carcinogens for humans) are generated 
(Ennever et al., 1987; Gold and Slone, 
1993). Furthermore, ethical and economic 
obstacles relate to the use of large numbers 
of animals, high doses and long duration 
times, and large costs (Ferdowsian and Beck, 
2011; Doktorova et al., 2012). Furthermore, 
regulatory requirements for in vivo testing of 
various compounds differ substantially 
worldwide. In Europe, for example, in vivo 
testing of cosmetic products and their ingre-
dients is prohibited because of the imple-
mentation in Directive 76/768/EC of strict 
testing and marketing bans. Both have been 
taken over in the actual cosmetic Regulation 
1223/2009 (EU, 2009). Exemptions can only 
be claimed when the tested compound is 
equally in use in other consumer and indus-
trial products for which animal testing may 
be necessary to ensure compliance with the 
legal frameworks applicable to these prod-
ucts (EC, 2013) e.g. cosmetic products are 
generally also subject to the horizontal 
REACH (Registration, Evaluation, Authori-
zation and restriction of Chemicals) re-

quirements, which impose testing of a large 
amount of chemicals. Although only for high 
production volume chemicals carcinogenici-
ty testing is required, and this still will in-
volve a large number of animals (SCCP, 
2006). Therefore, the development of as-
says/strategies able to identify carcinogens in 
a shorter timeframe, at a lower cost and pref-
erably not using animals presents a huge 
challenge. Different approaches have been 
proposed, among which the use of genetical-
ly modified animals, the incorporation of 
histopathological data derived from repeat-
ed-dose toxicity studies, and toxicogenomics 
as an endpoint combined with in vivo treat-
ment or in vitro cell culture exposure (Bercu 
et al., 2010; Doktorova et al., 2012; 
Magkoufopoulou et al., 2012). A toxicoge-
nomics approach allows investigation of the 
entire genome response to toxicant effects 
and is an acknowledged strategy for discov-
ering the mode of action of compounds and 
for identifying potential biomarkers of expo-
sure and toxicity. It also allows to quantify 
and validate biomarker signatures (Bercu et 
al., 2010; Van Hummelen and Sasaki, 2010; 
Waters et al., 2010). 

In this respect, the recently ended EU 
framework 6 project, carcinoGENOMICS 
(www.carcinogenomics.eu), had as final goal 
the development of an organ-specific battery 
of mechanism-based in vitro tests, account-
ing for various modes of carcinogenic action, 
using "omics" technologies coupled with in 
vitro cell systems from rat and human origin 
(Vinken et al., 2008). The project was con-
veyed in two phases and during the first one 
(Phase I) the best performing liver-, kidney- 
and lung-derived in vitro models were se-
lected mostly based on "omics" responses 
generated from a well-defined set of 15 
model compounds causing genotoxicity and 
carcinogenicity (Doktorova et al., 2013) (Ta-
ble 1). The choice of the compounds was 
based on several strict criteria including di-
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versity and selectivity, biochemical and bio-
physical properties, and availability of toxi-
cological information (Vinken et al., 2008). 
With regard to the liver-based in vitro mod-
els, which were used to evaluate the 15 pro-
totypical compounds, the human hepatoma 
cell line HepaRG generated the best per-
forming gene classifier, differentiating 
DNA-reactive from DNA non-reactive 
mechanisms (Doktorova et al., 2013). In the 
second phase of the project (Phase II), an ad-
ditional number of 15 carefully selected 
compounds (thus resulting in a total of 30 
analyzed compounds, shown in Table 1) 
were tested using HepaRG cells. The chemi-
cal selection for the second phase of the pro-
ject was mostly focused on human relevance, 
e.g. whether the compounds are known hu-
man carcinogens. The global study results 
are reported here, including the classification 
performance and assessment of the interla-
boratory reproducibility in three independent 
laboratories of three blindly tested com-
pounds: as a prototypical genotoxic (GTX) 
carcinogen Benzo(a)pyrene was used, as a 
non-genotoxic (NGTX) carcinogen Tetra-
decanoyl phorbol acetate and as a non-
carcinogen (NC) Clonidine hydrochloride 
were used, respectively. 

 
MATERIALS AND METHODS 

Compounds, cell culture and treatment 
For the in vitro experiments which were 

aiming at enrichment of the classifier, human 
hepatoma-derived HepaRG cells (Biopredic 
International, France) were cultivated as pre-
viously described (Gripon et al., 2002; 
Guillouzo et al., 2007). At day 13 of cultiva-
tion, dimethylsulfoxide (DMSO)-containing 
medium was added for 7 days (Gripon et al., 
2002). At day 19, using the same study con-
ditions as applied during the first phase of 
the project (Doktorova et al., 2013), the cells 
were exposed for 72 h to the second set of 15 
prototypical compounds chosen during the 
second phase of the project, i.e. 5 GTX (N-
nitrosomorpholine, NMP; Hydroquinone, 
HQO; Hydrazine dihydrochloride, HHC; 2-

acetylaminofluorene, TAF; 2-amino-3-
methylimidazo(4,5-f)quinoline, AMQ), 5 
NGTX (Fumonisin B1, FMB; Cyclosporine 
A, CsA; Acetamide, ACE; Diethylhexyl 
Phthalate, DHP; Ethanol, ETH), 5 NC (4-
acetylaminofluorene, FAF; D,L-Menthol, 
DLM; Benzoin, BEN; Benzyl Alcohol, 
BEA; Triclosan, TRI). IC10 concentrations 
(reducing cell viability by 10 %) were de-
termined by a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide test (MTT 
test) (see Table 1) (number of replicates 
n = 3) (Mosmann, 1983) following 72 h in-
cubation with the selected chemicals. Further 
exposure to the IC10 concentrations was ini-
tiated and RNA samples were collected at 
24 h and 72 h. Technical and experimental 
specifications are presented in Table 1. 

For the interlaboratory reproducibility 
study coordinated by the European Union 
Reference Laboratory for Alternatives to An-
imal Testing (EURL ECVAM), three com-
pounds from the Phase I list of chemicals 
were blindly labelled as D (Benzo(a)pyrene), 
E (Clonidine hydrochloride), F (Tetradeca-
noyl phorbol acetate) (EURL ECVAM), dis-
tributed (Maastricht University) and inde-
pendently tested in three laboratories (Vrije 
Universiteit Brussel (VUB), Belgium; Uni-
versity Hospital of Valencia (HUL), Spain; 
Biopredic International (BPI), France). Each 
laboratory had to determine the IC10 con-
centrations by a MTT test and to expose at 
the selected doses for 24 h or 72 h. The ex-
periments were executed according to a 
standard operating procedure distributed to 
the participating laboratories prior to the start 
of the experiments. The laboratories in-
volved also attended an experimental train-
ing session organized by the Consortium. 
Maastricht University generated all microar-
ray data and Genedata and Max Plank Insti-
tute performed all the data analyses. Tech-
nical and experimental specifications for the 
interlaboratory study are present in Table 2. 
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Table 1: IC10 concentrations of the 30 compounds (10 GTX, 10 NGTX and 10 NC) used in both 
phases of the carcinoGENOMICS project. The compounds were either dissolved in DMSO with 0.5 % 
v/v final concentration in the medium or in phosphate-buffered saline (*). The experiments were per-
formed in triplicate. 

 
 
 
Table 2: IC10 concentrations of 3 blindly tested compounds (D, E, F) obtained by 3 different laborato-
ries. The compounds were dissolved in DMSO with 0.5 % v/v final concentration. The experiments 
were performed in triplicate. (BPI, Biopredic International; HUL, University Hospital of Valencia; VUB, 
Vrije Universiteit Brussel) 
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Total RNA isolation 
Cell samples for RNA isolation were col-

lected by removing cell culture media and 
adding lysis buffer (QIAshredder kit, Qi-
agen)(n = 3 for each compound). Total RNA 
extraction (RNA extraction kit, Qiagen), in-
cluding a DNase digestion step, was done 
according to the manufacturer’s instructions. 
Quality control was carried out by gel analy-
sis using RNA 6000 Nano chips on an Ag-
ilent 2001 Bioanalyzer (RNA integrity num-
ber (RIN) > 7). 

 
Microarray data hybridization 

Complementary RNA targets were pre-
pared and hybridized according to the manu-
facturer's procedures on high-density oligo-
nucleotide microarrays (i.e. Affymetrix 
U133 Plus 2.0 GeneChip). They were 
washed and stained using an Affymetrix flu-
idics station and subsequently scanned by 
means of an Affymetrix GeneArray scanner. 
Normalization quality controls, including 
scaling factors, average intensities, present 
calls, background intensities, noise and raw 
Q-values were within acceptable limits for 
all chips. Hybridization controls were identi-
fied on all chips and yielded the expected in-
creases in intensities.  

 
Microarray data re-annotation and  
normalization  

For the gene- and pathway-based anal-
yses, the data of the 15 phase II compounds 
generated in this study were added to the 
previously obtained results of the 15 phase I 
chemicals. The raw microarray data were 
annotated to Ensembl version 61 genome 
and Gene Chip Robust Multi-array Average 
(GC-RMA) normalized. This resulted in 
18,919 probe sets. 

For classification analysis, the raw mi-
croarray data were annotated using the chip 
description files from Affymetrix and GC-
RMA normalized. In order to eliminate batch 
effects, data from the different studies were 
half-z normalized (adjusting logarithmic ex-
pression values of transcripts within a group 

in such a way that each transcript has a zero 
mean). 

 
Microarray data analysis:  
Enrichment of the existing gene classifier  

Gene as well as pathway level approach-
es were used to evaluate the global perfor-
mance of the gene classifier composed of the 
30 compounds tested during phase I and 
phase II of the project. For analysis at the 
gene level, the relative ratios (treatment ver-
sus control) were computed and a multivari-
ate ANOVA analysis between the three 
groups (GTX carcinogens, NGTX carcino-
gens and NC) was applied. Only the top dis-
criminative genes between the three groups 
selected after applying a p-value cut-off 
(0.01 or 0.05) were further selected for anal-
ysis. Hierarchical clustering analysis (HCA) 
(Euclidean Distance, Ward’s Linkage) was 
performed to visualize the discriminative ca-
pacity of differentially expressed genes. 
Considering the direction of deregulation 
(i.e. up- or down-regulated), the genes were 
further assigned to biochemical and toxico-
logical categories. 

The second approach aimed at analyzing 
treatment-induced expression changes at the 
pathway level. First a response score (SiJ) for 
each gene “i” in each treatment “j” was cal-
culated as described previously (Yildir-
imman et al., 2011). Further p-values and 
fold changes were generated per gene “i” by 
comparing the average value of the intensity 
data of each treatment to the average of the 
respective control elements. These genes 
were further assigned to pathways using 
ConsensusPathDB (Kamburov et al., 2011; 
2013). For the pathway response analysis, 
the response score for each pathway was de-
fined as the average score derived from all Sij 

within a certain pathway “j”. In order to 
make the pathway response scores compara-
ble across the experimental panel of com-
pounds, relative pathway response (RPR) 
scores were calculated. This was done by di-
viding the individual scores for each experi-
ment by the median pathway response score 
of that experiment. To identify pathways 
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discriminative between GTX, NGTX and 
NC, a multivariate ANOVA analysis was 
performed and the p-value was set at 0.01. 
PCA and HCA were performed to visualize 
the discriminative capacity of the selected 
pathways. 

 
Microarray data analysis:  
Classification analysis 

The Analyst module from the Genedata 
Expressionist© system was used for super-
vised classification analysis. Raw data from 
the Affymetrix arrays were assessed for 
quality and pre-processed using the Refiner 
Array module from the Genedata Expres-
sionist© software package as follows. Defec-
tive areas, gradient and distortions on the ar-
rays were diagnosed and expression values 
for all probe sets were obtained by applying 
the Gene Chip Robust Multi-array Average 
(GC-RMA) condensing method to the arrays. 
The Analyst module from the Genedata Ex-
pressionist© system was used for supervised 
classification analysis. A support vector ma-
chine was used for assessing the perfor-
mance of classification (Cristianini and 
Shawe-Taylor, 2000). For SVM a linear ker-
nel was used, and the penalty factor was set 
to 10. The kernel defines how the scalar 
product between two data points is evaluat-
ed, while the penalty factor determines how 
rigid the margin of the SVM classifier is. As 
a sampling method K-fold Cross Validation 
was used. For K-fold the number of folds 
was set to 10, and the number of repeats to 
10. Categories for cross validation were 
GTX, NGTX and NC. Cross validation was 
performed using the GC-RMA and half-z 
normalized data. 

 
Interlaboratory reproducibility and  
compound prediction 

The interlaboratory reproducibility anal-
ysis was based on the comparison of the 
ranking of fold-changes (treatment versus 
control) per laboratory. Thus, the overlaps of 
the top 20, 50, 100, 200, 500, 1000, 2000, 
5000, 10000, and 20000 ranked transcripts 
for each treatment/time group were deter-

mined. Random overlaps were determined as 
number of top ranked expression values di-
vided by the number of transcripts on the 
microarray. Further, the area under the curve 
(AUC) for the top ranked transcripts (rang-
ing from the 20th to the 5000th transcript) was 
estimated for all comparisons.  

For the prediction of the three blinded 
compounds (D, E, F), two different kinds of 
data analysis were applied. The first ap-
proach was based on using SVM as classifi-
er. Classification of the three blinded com-
pounds was performed with the top 5000 
ranked transcripts of the reference compen-
dium (i.e. gene classifier composed of the 30 
compounds from phases I and II) using the 
three toxic categories (GTX, NGTX, NC). In 
the second approach, a multivariate ANOVA 
argument was used. The total of 30 com-
pounds, combined from phase I and II, were 
assigned to three classes, namely GTX, 
NGTX and NC. Every blinded compound 
(D, E or F) was consecutively assigned to 
each of the 3 classes and an ANOVA test 
was performed. Further, the number of sig-
nificantly deregulated genes was computed 
(p = 0.05). The blinded compounds were 
then assigned to the class with the largest 
number of significantly deregulated genes. A 
more detailed description of both bioinfor-
matics approaches will be given in a separate 
manuscript (Herwig et al., in preparation). 
 

RESULTS 

Analysis at the gene and pathway level 
At the gene level, the results of the 

ANOVA analysis showed that after 24 h and 
72 h of exposure, 440 genes and 353 genes 
(Figure 1), respectively, were significantly 
deregulated. Most GTX carcinogens were 
separated from the NGTX carcinogens and 
NC, irrespective of the time of exposure. A 
survey of the involved pathways, however, 
revealed more carcinogen-specific processes 
after 72 h of exposure in comparison to 24 h 
of exposure. Briefly, the most prominent 
changes after 72 h of exposure consisted of 
upregulation of genes involved in apoptosis, 
DNA-repair and DNA damage (Figure 1). 
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Also increased oxidative stress, intra- and in-
tercellular transport and metabolism were 
demonstrated. Downregulated genes were 
mostly involved in cellular metabolism and 
xenobiotic biotransformation, probably re-
flecting a dedifferentiation response as a re-
sult of GTX exposure. In comparison, after 
24 h of exposure, these downregulated genes 
were associated with amino acid, carbohy-
drate and lipid metabolism, which may be in-
terpreted as a dedifferentiation trigger, 
whereas the upregulated genes were involved 
in cell cycle progression, DNA replication, 
immunity and defense and oxidative stress. 
The latter may be explained as a cell cycle 
progression and general stress response. Af-
ter 24 h of exposure, the DNA damage re-
sponse appeared not yet activated. 

Consequently for analysis at the pathway 
level, emphasis was laid on data generated 
from samples after 72h of exposure. The re-
sults showed that all GTX grouped together 
as such providing a better discrimination of 
GTX from NGTX and NC in comparison 

with the results obtained at the gene level 
(Figure 2). A pre-selection with respect to 
the top 30 significant pathways showed that 
p53-dependent DNA damage was among the 
most affected and differentially expressed 
processes (Figure 3 A). In Figure 3 B, modu-
lation of the p53 signaling pathway by the 30 
prototypical compounds is presented as an 
example of a discriminative pathway. Fur-
ther, similar to the results at the gene level, 
at the pathway level no separation was pos-
sible between NGTX carcinogens and NC. 

 
Classification analysis 

After 72 h of exposure, the correct classi-
fication rate was slightly higher than after 
24 h of exposure (Figure 4). Inclusion of the 
second set of 15 compounds (the phase II 
compounds) decreased this percentage. Fi-
nally, the lowest misclassification rate was 
observed when the data from both time-
points were combined. The compounds most 
frequently wrongly classified, belonged to 
the NGTX and NC groups. 

 
Figure 1: Hierarchical clustering analysis of (A) 440 genes and (B) the 353 genes following 24 and 
72h of exposure that were significantly deregulated (False Discovery Rate ≤ 0.05) according to ANO-
VA analysis. The red color indicates upregulation of the genes whereas green downregulation.  
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Figure 2: (A) Principal component analysis and (B) hierarchical clustering analysis of the pathways 
that were significantly deregulated (p ≤ 0.05) according to ANOVA analysis following 72 h of exposure.  
The red dots are the genotoxic (GTX) carcinogens, the blue dots are the non-genotoxic (NGTX) car-
cinogens and the green dots are the non-carcinogens (NC).  
 
 
Interlaboratory reproducibility and  
classification of the coded compounds 

The last part of the analysis focused on 
the interlaboratory reproducibility among the 
three laboratories for the three blindly tested 
compounds (D, E and F) which were part of 
the original set of 30 compounds. The calcu-
lations, using AUC for the top ranked tran-
scripts, showed overall interlaboratory re-
producible results (Figure 5). Compounds D 
and E generated reproducible results with 

AUC values above 20 %. The outcome of 
compound F exposure, especially after 72 h 
of exposure, was less reproducible.  

The compound prediction was further 
performed by using two approaches. In the 
first one, SVM was applied as algorithm and 
compound D was by the three laboratories 
unequivocally classified at all time-points as 
a GTX carcinogen (Figure 6). Compounds E 
and F were classified as either NGTX or NC. 
The response was uniform among the three 
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laboratories confirming a good interlaborato-
ry reproducibility.  

When compound prediction was carried 
out using an ANOVA argument, compound 
D was unequivocally classified as GTX 
whereas compounds F and E could not be 

classified (Figure 7). In the figure red indi-
cates the highest probability of a compound 
to belong to a specific class (e.g. GTX, 
NGTX, NC), whereas green indicates the 
lowest probability that a compound could be 
classified in the respective group. 

 
Figure 3: Top discriminative pathways (A) A pre-selection with respect to the top 30 significant path-
ways. (B) The p53 signaling pathway as an example of a discriminative pathway.  
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Figure 4: Classification analysis -Percentages of correctly classified experiments following GC-RMA 
and half-z normalization are indicated. As an algorithm Support Vector Machine is used. The cross 
validation is performed with the samples generated after 24h and 72h of exposure, separately or 
pooled together. The compounds tested in phase I and II of the project are shown. The experiments 
were performed in triplicate. (IC10, inhibitory concentration 10 %) 

 

 

Figure 5: Interlaboratory reproducibility - Results among three laboratories of three blindly tested 
compounds denoted as D, E and F using Area Under the Curve for the top ranked transcripts. Darker 
green indicates higher reproducibility of results among the compared laboratories. (BPI, Biopredic In-
ternational; HUL, University Hospital of Valencia; VUB, Vrije Universiteit Brussel) 

 

 

Figure 6: Interlaboratory reproducibility - The results obtained among three laboratories of three blind-
ly tested compounds (denoted as D, E and F) using Support Vector Machine as algorithm, are pre-
sented. Red indicates the highest probability of a compound to belong to a specific class (e.g. DMSO 
control, GTX, NGTX, NC), whereas green indicates the lowest probability that a compound could be 
classified in the respective group. The experiments were performed in triplicate. (BPI, Biopredic Inter-
national; HUL, University Hospital of Valencia; VUB, Vrije Universiteit Brussel) 
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Figure 7: Interlaboratory reproducibility  
Results among three laboratories of three blindly tested compounds denoted as D, E and F using 
ANOVA approach. Red indicates the highest probability of a compound to belong to a specific class 
(e.g. GTX, NGTX, NC), whereas green indicates the lowest probability that a compound could be 
classified in the respective group. The experiments were performed in triplicate. (BPI, Biopredic Inter-
national; GTX, genotoxic, HUL, University Hospital of Valencia; NC, non-carcinogens; NGTX, non-
genotoxic; VUB, Vrije Universiteit Brussel) 
 
 
 

DISCUSSION 

The ability of a chemical to induce can-
cer is traditionally assessed by a 2-year ro-
dent carcinogenicity assay. Although this as-
say is far from ideal, for the time being it is 
the most commonly used model for human 
cancer risk assessment (EU, 2008). Ap-
proaches to at least partially substitute the 
necessity for in vivo testing are ongoing and 
among the different strategies proposed, tox-
icogenomics is a promising methodology 
(Benfenati et al., 2009; Bercu et al., 2010; 
Doktorova et al., 2012; Magkoufopoulou et 
al., 2012). Indeed, the combination of tran-
scriptomics with short-term in vivo exposure 
has been proposed by several teams (El-
linger-Ziegelbauer et al., 2005; Nakayama et 
al., 2006; Ellinger-Ziegelbauer et al., 2008; 
Fielden et al., 2008; Uehara et al., 2008; 
Matsumoto et al., 2009; Doktorova et al., 
2011). Majorly involved discriminative 
pathways are DNA damage, cell cycle pro-
gression, oxidative stress and detoxification 
response. Interpretation of transcriptomics 
data derived from in vitro exposure studies is 
even more challenging. 

In the current study, the performance of 
the gene classifier generated following expo-

sure of HepaRG cells to 30 prototypical 
GTX, NGTX carcinogens and NC was as-
sessed. The choice of the in vitro model was 
based on a previously performed study 
(Phase I of the project) in which the HepaRG 
model was chosen among 5 commonly-used 
liver-based in vitro models as the system 
able to generate the best discriminative gene 
classifier (Doktorova et al., 2013). The re-
sults shown here were generated to obtain a 
gene classifier based on a larger group of 
compounds as such covering more diverse 
mechanisms of action. After analyzing the 
global gene expression data of the 30 com-
pounds by using several statistical approach-
es including cross validation and classifica-
tion analysis, a slightly higher misclassifica-
tion rate in comparison to the initial test set 
was observed. This could be attributed to the 
fact that inclusion of additional compounds 
diversified the pool of involved mechanisms 
of action and might as such have lead to a 
slightly lower correct prediction rate. On the 
other hand, diversification usually contrib-
utes to the generation of a more reliable gene 
classifier. Additionally, some difficulties as-
sociated with the selection of appropriate test 
compounds should be acknowledged, espe-
cially when human relevance is required. In-
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terestingly, despite the slightly higher mis-
classification rate, DNA damage remains the 
most characteristic pathway after exposure of 
the cells to GTX carcinogens. Indeed, the 
normal reaction of cells upon disruption of 
DNA integrity following chemical exposure 
consists of the activation of a number of 
downstream targets including tumor suppres-
sor p53 and murine double minute 2 (Mdm2) 
(Lu, 2010; Oliver et al., 2011). Further, the 
effect is transferred onto a number of target 
genes involved in cell cycle, apoptosis, DNA 
repair and several others associated with the 
maintenance of normal cellular homeostasis 
and response to stimuli (Ellinger-Ziegelbauer 
et al., 2005; Ellinger-Ziegelbauer et al., 
2008). Indeed these genes were found dereg-
ulated following GTX insults by the majority 
of the selected compounds. This finding pro-
vides an opportunity for developing in vitro 
assays aimed at identifying genotoxicants in 
particular.  

The second class of investigated chemi-
cals consists of NGTX carcinogens. Unlike 
most GTX carcinogens, which directly or in-
directly affect DNA, NGTX carcinogens do 
not bind to DNA, yet these substances can 
cause cancer in animal models and possibly 
also in humans (Hernandez et al., 2009). In-
deed, in this study the tested NGTX carcino-
gens showed to act through various process-
es such as endocrine modification, immune 
suppression, inhibition of gap junction inter-
cellular communication and apoptosis, epi-
genetic modifications, tissue-specific toxicity 
and general inflammatory/stress responses. 
Some of the GTX carcinogens as well as 
some NC, however, often induce these 
events. For example, TRI is classified in this 
study as a NC, but induces peroxisome pro-
liferation, a feature typically attributed to 
NGTX carcinogens (Rodricks et al., 2010). 
Therefore, discrimination was possible most-
ly based on the GTX-specific pathways such 
as DNA damage. As NC, being predomi-
nantly liver toxicants, were equally involved 
in the above described processes, they clus-
tered together with the NGTX.  

It has to be pointed out, however, that the 
current separation of selected prototypical 
chemicals into classes is liable to change. An 
interesting example in this regards is FB1, 
which is currently classified as being NGTX, 
but the incubation of methanolic extracts of 
Fusarium cultures with DNA in the presence 
of rat liver S9 proteins results in the for-
mation of DNA adducts (Bever et al., 2000). 
Therefore, the possibility exists that com-
pounds present in Fusarium fungi might al-
kylate DNA and exert GTX properties (Bev-
er et al., 2000). On the other hand, HQO is 
classified as a GTX according to our study as 
it shows genotoxicity or chromosomal aber-
rations in rodent bone marrow cells but evi-
dence for any genotoxic effect in vivo is ra-
ther weak and the responses are only mar-
ginally positive (McGregor, 2007). Addi-
tionally, a NGTX mode of action of HQO is 
proposed that involves exacerbation of a 
spontaneously occurring rodent renal disease 
and chronic progressive nephropathy 
(McGregor, 2007). The misclassification of 
the compounds into the different toxic clas-
ses might be one of the causes for the slight-
ly higher misclassification rate when the 
second set of chemicals has been added. In-
deed, this set of compounds had a less clear-
cut mechanism of action than the chemicals 
of the first part of the project. Also it remains 
difficult to discriminate between compounds 
that might share some mechanism of action 
e.g. GTX versus NGTX versus NC.  

Apart from the classification perfor-
mance of the HepaRG model (up to 88 % 
correct prediction), the transferability and 
reproducibility of the model among different 
laboratories were assessed. These parameters 
represent major steps in the validation of any 
test method. In this study, it was found that 
the interlaboratory reproducibility was situ-
ated within a range of 20-35 % overlap of 
the AUC of the top ranked transcripts. The 
most reproducible results among the three 
laboratories were those that were obtained 
after exposure to the GTX compound D. The 
classification exercise of the 3 coded com-
pounds, when used as a validation set, re-
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sulted in a high correct prediction rate for the 
GTX carcinogen. Indeed compound D was 
correctly identified as a GTX and recognized 
as BaP. The two other blinded compounds 
could not be predicted. These results were 
overall reproducible among the three labora-
tories. 

In conclusion, the HepaRG model is a 
promising tool for identification of genotoxi-
cants. The assay, however, could not dis-
criminate between NGTX carcinogens and 
NC and in its present form cannot be regard-
ed as an alternative to carcinogenicity test-
ing. Currently, the standard in vitro assays 
for the detection of genotoxicants produce an 
unacceptably high number - up to 70 % and 
more - of irrelevant positive results (i.e. low 
specificity), meaning that compounds are in 
vitro identified as being genotoxicants 
whereas in vivo they are not genotoxic (Kirk-
land et al., 2005; 2011; Kirkland and Fowler, 
2010). This leads, for example in the case of 
candidate-pharmaceuticals, to follow-up con-
firmatory in vitro and in vivo genotoxicity 
testing which is not only expensive and con-
sumes a lot of animals but it also slows down 
the development process of new chemical 
entities (Goodsaid et al., 2010). In the case 
of cosmetics, for which confirmatory in vivo 
tests are no longer possible in Europe as 
from July 2013 (EU, 2009), interesting com-
pounds such as UV-filters and preservatives 
could erroneously be considered genotoxic, 
and thus restricted or even rejected (Ates et 
al., 2013). In such a case, identification of 
“not being a genotoxicant” as shown in this 
study, could be a valuable result to be added 
in a weight of evidence approach. However, 
in order to increase the reliability of this in 
vitro approach more reference compounds 
are needed in order to represent the high di-
versity of mechanisms involved in genotoxi-
city. This approach could in particular be of 
interest to be used in a tired testing strategy 
to obtain additional mechanistic information. 
This type of strategy is under investigation 
by the pharmaceutical industry in the USA to 
de-risk false positive results obtained in 
standard genotoxicity testing batteries. Its 

application is already under discussion with 
the US Food and Drug Administration 
(Goodsaid et al., 2010).  

As shown in this study, genotoxicants 
could be clearly identified using HepaRG 
cells as in vitro exposure model. A positive 
aspect of applying a toxicogenomics ap-
proach is the generation of detailed infor-
mation on the mechanism of action of the 
tested compounds. In addition, the use of 
human-based cells also contributes to more 
reliable results since interspecies differences 
are avoided.  
 

DATA ACCESS 

The microarray data is available at 
http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?token=wtmfuemkddudnup&acc=GSE48
990 
 

FUNDING 

The study was financially supported by 
the European 6th Framework Program car-
cinoGENOMICS (PL 037712). 
 

CONFLICT OF INTEREST 

The authors declare that they have no 
conflict of interest. 
 

REFERENCES 

Ates G, Pauwels M, Doktorova T, Rogiers V. Retro-
spective analysis of the mutagenicity/genotoxicity da-
ta of the cosmetic ingredients present on the Annexes 
of the Cosmetic EU legislation (2000-12). Mutagene-
sis 2013;29:115-21. 

Benfenati E, Benigni R, Demarini DM, Helma C, 
Kirkland D, Martin TM et al. Predictive models for 
carcinogenicity and mutagenicity: frameworks, state-
of-the-art, and perspectives. J Environ Sci Health C 
Environ Carcinog Ecotoxicol Rev 2009;27:57-90. 

Bercu JP, Jolly RA, Flagella KM, Baker TK, Romero 
P, Stevens JL. Toxicogenomics and cancer risk as-
sessment: a framework for key event analysis and 
dose-response assessment for nongenotoxic carcino-
gens. Regul Toxicol Pharmacol 2010;58:369-81. 

Bever RJ Jr., Couch LH, Sutherland JB, Williams AJ, 
Beger RD, Churchwell MI et al. DNA adduct for-



EXCLI Journal 2014;13:623-637 – ISSN 1611-2156 
Received: April 23, 2014, accepted: May 08, 2014, published: May 28, 2014 

 

 

636 

mation by Fusarium culture extracts: lack of role of 
fusarin C. Chem Biol Interact 2000;128:141-57. 

Cristianini N, Shawe-Taylor J. An introduction to 
support vector machines. Cambridge, UK: Cambridge 
Univ. Press, 2000. 

Doktorova T, Ellinger-Ziegelbauer H, Vinken M, 
Vanhaecke T, van Delft J, Kleinjans J et al. Compari-
son of hepatocarcinogen-induced gene expression 
profiles in conventional primary rat hepatocytes with 
in vivo rat liver. Arch Toxicol 2011;86:1399-411. 

Doktorova TY, Pauwels M, Vinken M, Vanhaecke T, 
Rogiers V. Opportunities for an alternative integrating 
testing strategy for carcinogen hazard assessment? 
Crit Rev Toxicol 2012;42:91-106. 

Doktorova TY, Yildirimman R, Vinken M, Vilardell 
M, Vanhaecke T, Gmuender H et al. Transcriptomic 
responses generated by hepatocarcinogens in a battery 
of liver-based in vitro models. Carcinogenesis 
2013;34:1393-402. 

EC. Communication from the Commission to the Eu-
ropean Parliament and the Council on the animal test-
ing and marketing ban and on the state of play in rela-
tion to alternative methods in the field of cosmetics. 
Brussels: European Commission, 2013.  

Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann 
W, Ahr HJ. Comparison of the expression profiles in-
duced by genotoxic and nongenotoxic carcinogens in 
rat liver. Mutat Res 2005;575:61-84. 

Ellinger-Ziegelbauer H, Gmuender H, Bandenburg A, 
Ahr HJ. Prediction of a carcinogenic potential of rat 
hepatocarcinogens using toxicogenomics analysis of 
short-term in vivo studies. Mutat Res 2008;637:23-39. 

Ennever FK, Noonan TJ, Rosenkranz HS. The predic-
tivity of animal bioassays and short-term genotoxicity 
tests for carcinogenicity and non-carcinogenicity to 
humans. Mutagenesis 1987;2:73-8. 

EU. B.32. Carcinogenicity test. Commission Directive 
88/302/EEC of 18 November 1987 adapting to tech-
nical progress for the ninth time Council Directive 
67/548/EEC on the approximation of laws, regula-
tions and administrative provisions relating to the 
classification, packaging and labelling of dangerous 
substances. Off J Eur Union 1988;L133:37-42. 

EU. B.32 Carcinogenicity test. Council regulation 
(EU) No 440/2008 of 30 May laying down test meth-
ods pursuant to Regulation (EC) No 1907/2006 of the 
European Parliament and of the Council on the Regis-
tration, Evaluation, Authorization and Restriction of 
Chemicals (REACH). Off J Eur Union 2008;L142: 
338-43. 

EU. Regulation 1223/2009 of the European Parlia-
ment and of the Council of 30  November 2009 on 
cosmetic products. Off J Eur Union 2009;L342:59-
209. 

Ferdowsian HR, Beck N. Ethical and scientific con-
siderations regarding animal testing and research. 
PloS One 2011;6:e24059. 

Fielden MR, Nie A, McMillian M, Elangbam CS, 
Trela BA, Yang Y et al. Interlaboratory evaluation of 
genomic signatures for predicting carcinogenicity in 
the rat. Toxicol Sci 2008;103:28-34. 

Gold LS, Slone TH. Prediction of carcinogenicity 
from two versus four sex-species groups in the car-
cinogenic potency database. J Toxicol Environ Health 
1993;39:143-57. 

Goodsaid FM, Amur S, Aubrecht J, Burczynski ME, 
Carl K, Catalano J et al. Voluntary exploratory data 
submissions to the US FDA and the EMA: experience 
and impact. Nat Rev Drug Discov 2010;9:435-45. 

Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, 
Cannie I et al. Infection of a human hepatoma cell line 
by hepatitis B virus. Proc Natl Acad Sci U S A 
2002;99:15655-60. 

Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, 
Guguen-Guillouzo C. The human hepatoma HepaRG 
cells: a highly differentiated model for studies of liver 
metabolism and toxicity of xenobiotics. Chem Biol 
Interact 2007;168:66-73. 

Hernandez LG, van Steeg H, Luijten M, van Benthem 
J. Mechanisms of non-genotoxic carcinogens and im-
portance of a weight of evidence approach. Mutat Res 
2009;682:94-109. 

Kamburov A, Pentchev K, Galicka H, Wierling C, 
Lehrach H, Herwig R. ConsensusPathDB: toward a 
more complete picture of cell biology. Nucleic Acids 
Res 2011;39:D712-7. 

Kamburov A, Stelzl U, Lehrach H, Herwig R. The 
ConsensusPathDB interaction database: 2013 update. 
Nucleic Acids Res 2013;41:D793-800. 

Kirkland D, Fowler P. Further analysis of Ames-
negative rodent carcinogens that are only genotoxic in 
mammalian cells in vitro at concentrations exceeding 
1 mM, including retesting of compounds of concern. 
Mutagenesis 2010;25:539-53. 

Kirkland D, Aardema M, Henderson L, Muller L. 
Evaluation of the ability of a battery of three in vitro 
genotoxicity tests to discriminate rodent carcinogens 
and non-carcinogens I. Sensitivity, specificity and rel-
ative predictivity. Mutat Res 2005;584:1-256. 



EXCLI Journal 2014;13:623-637 – ISSN 1611-2156 
Received: April 23, 2014, accepted: May 08, 2014, published: May 28, 2014 

 

 

637 

Kirkland D, Reeve L, Gatehouse D, Vanparys P. A 
core in vitro genotoxicity battery comprising the 
Ames test plus the in vitro micronucleus test is suffi-
cient to detect rodent carcinogens and in vivo geno-
toxins. Mutat Res 2011;721:27-73. 

Lu X. Tied up in loops: positive and negative auto-
regulation of p53. Cold Spring Harbor Perspect Biol 
2010;2:a000984. 

Magkoufopoulou C, Claessen SM, Tsamou M, Jennen 
DG, Kleinjans JC, van Delft JH. A transcriptomics-
based in vitro assay for predicting chemical genotoxi-
city in vivo. Carcinogenesis 2012;33:1421-9. 

Matsumoto H, Yakabe Y, Saito K, Sumida K, Sekiji-
ma M, Nakayama K et al. Discrimination of carcino-
gens by hepatic transcript profiling in rats following 
28-day administration. Cancer Inform 2009;7:253-69. 

McGregor D. Hydroquinone: an evaluation of the 
human risks from its carcinogenic and mutagenic 
properties. Crit Rev Toxicol 2007;37:887-914. 

Mosmann T. Rapid colorimetric assay for cellular 
growth and survival: application to proliferation and 
cytotoxicity assays. J Immunol Meth 1983;65:55-63. 

Nakayama K, Kawano Y, Kawakami Y, Moriwaki N, 
Sekijima M, Otsuka M et al. Differences in gene ex-
pression profiles in the liver between carcinogenic 
and non-carcinogenic isomers of compounds given to 
rats in a 28-day repeat-dose toxicity study. Toxicol 
Appl Pharmacol 2006;217:299-307. 

Oliver TG, Meylan E, Chang GP, Xue W, Burke JR, 
Humpton TJ et al. Caspase-2-mediated cleavage of 
Mdm2 creates a p53-induced positive feedback loop. 
Molecular Cell 2011;43:57-71. 

Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot 
RR, Shipp AM. Triclosan: a critical review of the ex-
perimental data and development of margins of safety 
for consumer products. Crit Rev Toxicol 2010;40: 
422-84. 

SCCP, Scientific Committee on Consumer Products. 
The SCCP’S notes of guidance for the testing of cos-
metic ingredients and their safety evaluation. 6th rev., 
adopted by the SCCP during the 10th plenary meeting 
of 19th December 2006. SCCP, 2006.  

Uehara T, Hirode M, Ono A, Kiyosawa N, Omura K, 
Shimizu T et al. A toxicogenomics approach for early 
assessment of potential non-genotoxic hepatocarcino-
genicity of chemicals in rats. Toxicology 2008;250: 
15-26. 

Van Hummelen P, Sasaki J. State-of-the-art genomics 
approaches in toxicology. Mutat Res 2010;705:165-
71. 

Vinken M, Doktorova T, Ellinger-Ziegelbauer H, Ahr 
HJ, Lock E, Carmichael P et al. The carcino-
GENOMICS project: critical selection of model com-
pounds for the development of omics-based in vitro 
carcinogenicity screening assays. Mutat Res 2008; 
659:202-10. 

Waters MD, Jackson M, Lea I. Characterizing and 
predicting carcinogenicity and mode of action using 
conventional and toxicogenomics methods. Mutat Res 
2010;705:184-200. 

Yildirimman R, Brolen G, Vilardell M, Eriksson G, 
Synnergren J, Gmuender H et al. Human embryonic 
stem cell derived hepatocyte-like cells as a tool for in 
vitro hazard assessment of chemical carcinogenicity. 
Toxicol Sci 2011;124:278-90. 

 

Abbreviations: 2NF, 2-nitrofluorene; ACE, acetam-
ide; AFB1, aflatoxin B1; AMQ, 2-amino-3-
methylimidazo(4,5-f)quinoline; AUC, area under the 
curve; BaP, benzo(a)pyrene; BEA, benzyl alcohol; 
BEN, benzoin; BPI, Biopredic; cDNA, complemen-
tary DNA; CND, clonidine; CsA, cyclosporine A; 
CYCLO, cyclophosphamide; DHP, diethylhexyl 
phthalate; DLM, D,L-menthol; DMSO, dimethyl-
sulfoxide; ETH, ethanol; EURL ECVAM, European 
Union Reference Laboratory for Alternatives to Ani-
mal Testing; FAF, 4-acetylaminofluorene; FDR, false 
discovery rate; FMB, fumonisin B1; GC-RMA, gene 
chip robust multi-array average; GTX, genotoxic; 
HCA, hierarchical clustering analysis; HHC, hydra-
zine dihydrochloride; HQO, hydroquinone; HUL, 
University hospital of Valencia; IC10, inhibitory con-
centration reducing viability by 10 %; LOO, leave one 
out; MAN, D-mannitol; Mdm2, murine double minute 
2; MPH, methapyrilene hydrochloride; MTT test, 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide test; NC, non-carcinogen; NGTX, non-
genotoxic; NIF, nifedipine; NMP, N-nitroso-
morpholine; NNK, 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone; PIPB, piperonylbutoxide; PBS, 
phosphate-buffered saline; PCA, principal component 
analysis; qRT-PCR, quantitative reverse transcription 
polymerase chain reaction; REACH, Registration, 
Evaluation, Authorization and restriction of Chemi-
cals; RIN, RNA integrity number; RPR, relative 
pathway response; SDF, diclofenac sodium; SPB, 
phenobarbital sodium; SVM, support vector machine; 
TAF, 2-acetylaminofluorene; TOL, tolbutamide; 
TPA, tetradecanoyl phorbol acetate; TRI, triclosan; 
VUB, Vrije Universiteit Brussel; WYE, Wy-14643.  


