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A B S T R A C T   

Solar irradiation data is essential for the feasibility of solar energy projects. Notably, the inter-
mittent nature of solar irradiation influences solar energy use in all forms, whether energy or 
agriculture. Accurate solar irradiation prediction is the only solution to effectively use solar en-
ergy in different forms. The estimation of solar irradiation is the most critical factor for site se-
lection and sizing of solar energy projects and for selecting a suitable crop selection for the area. 
But the physical measurement of solar irradiation, due to the cost and technology involved, is not 
possible for all locations across the globe. Numerous techniques have been implemented to 
predict solar irradiation for this purpose. The two types of approaches that are most frequently 
employed are empirical techniques and artificial intelligence (AI). Both approaches have 
demonstrated good accuracy in various places of the world. To find out the best method, a 
thorough review of research articles discussing solar irradiation prediction has been done to 
compare different methods for solar irradiation prediction. In this paper, articles predicting solar 
irradiation using AI and empirical published from 2017 to 2022 have been reviewed, and both 
methods have been compared. The review showed that AI methods are more accurate than 
empirical methods. In empirical models, modified sunshine-based models (MSSM) have the 
highest accuracy, followed by sunshine-based (SSM) and non-sunshine-based models (NSM). The 
NSM has a little lower accuracy than MSSM and SSM, but the NSM can give good results in 
sunshine data unavailability. Also, the literature review confirmed that simple empirical models 
could predict accurately, and increasing the empirical model’s polynomial order cannot improve 
results. Artificial neural networks (ANN) and Hybrid models have the highest accuracy among AI 
methods, followed by support vector machine (SVM) and adaptive neuro-fuzzy inference system 
(ANFIS). The increase in efficiency by hybrid models is minimal, but the complexity of models 
requires very sophisticated programming knowledge. ANN’s most important input factors are 
maximum and minimum temperatures, temperature differential, relative humidity, clearness 
index and precipitation.   
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1. Introduction 

Energy is a fundamental requirement, not a luxury, and is crucial for sustainable development. Most energy produced today comes 
from fossil fuels, which are reliable yet unsustainable because their supplies deplete quickly and significantly negatively impact the 
environment. Greenhouse gas (GHG) emissions from fossil fuel combustion drive climate change and global warming. The Paris 
Agreement states that it is essential to decrease GHG emissions and keep the global temperature increase below 2 ◦C through the end of 
this century. Roughly 40% of GHG emissions are from the energy sector [1]. Energy source diversification is essential to transition to 
sustainable energy systems [2]. Including local renewable energy resources is necessary for diversifying energy sources and achieving 
carbon neutrality goals [3]. Based on the projected residual fossil fuel supply and worries about climate change, renewable energy will 
be an obligation, not a choice, for the next generation [4] and government in regions with higher potential renewable resources has 
started large-scale projects for a reduction in GHG emissions [5]. 

For this reason, numerous steps have been made to promote sustainable development since the United Nations (UN) Framework 
Convention on Climate Change was reinforced in 1994. One hundred ninety-six nations signed the Nationally Determined Contri-
butions in Paris in 2015. All participants in the UN Climate Change Conference in 2019 agreed to take immediate action to combat 
climate change. The energy sector’s recent shift toward Renewable energy sources (RES) has gained momentum [4]. 

Much academic research has been done to find environmentally friendly and energy-efficient alternatives to fossil fuel-based 
energy systems. Due to these initiatives, the energy cost of RES has decreased, making it more appealing to both developed and 
developing nations and most countries have started to modernize their energy systems [6,7]. 

According to International Renewable Energy Agency (IRENA) report IRENA 2021b [8], the proportion of renewable energy 
sources, including hydropower, in electricity generation has reached 26% and had a record growth of 1.1%in 2019. The amount of 
energy produced by RES in 2019 was 6963 TW h (TWh), of which hydro represented 61%, wind 20%, and solar 10%. Geothermal, 
marine, and bioenergy account for 9% of total energy production. Fig. 1 displays every RES contribution to power production. 

Renewable energy sources’ generation capacity will reach 2.8 TWh in 2020, expanding rapidly. The RES generation capacity is 
shown in Fig. 2. In the last ten years, the generation capacity has increased by 112%, with a growth rate of 10.23% in 2019. If the 
statistics for each RES are closely examined, it can be shown that in the last ten years, the total generation capacity of hydro has 
increased from 1056.7 GW to 1331.8 GW. The expansion of RES generation capacity is seen in Figs. 1 and 2. 2019 saw a 5.5% growth in 
renewable power generation, while solar power generation climbed by 23%. Additionally, the 46.7% growth in RES power output 
during 2015 has been related to solar energy [9]. 

Solar Energy, in particular, is widely accessible everywhere and may be used for various purposes, including crop drying, space and 
water heating and cooling, and power generation [10,11]. Due to the rapid advancement of solar energy systems, final energy costs are 
comparable to traditional energy systems, and solar energy has gained international attention. 

However, several obstacles must be removed from how solar energy is fully utilized before the project can be implemented. One of 
these obstacles is how to manage and anticipate its intermittent nature. The energy produced by a solar system depends on how much 
of the sun’s radiation reaches a particular location on earth [12]. The energy production from a solar system can be predicted if 
accurate solar radiation measurements are available for the chosen site. Without accurate solar radiation data, no solar system-
—photovoltaic (PV) or solar thermal—can be considered for implementation. It clarifies that correct solar radiation measurements are 
necessary for the best possible use of solar energy. 

Fig. 1. Share of each RES in RE Electricity [8].  
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Fig. 2. Res power generation capacity.  

Fig. 3. Methodology.  
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Solar irradiation varies from location to location and is a function of different meteorological and geographical parameters and 
physical parameters of the atmosphere. In close areas, solar irradiation values may not be the same. And using the nearby station data 
for any feasibility study may lead to project failure. Physically measuring this data for all locations is practically hard, especially in 
developing countries, due to the costs and difficulties involved [13,14]. In the past, researchers developed various strategies to get 
around the challenges and costs of assessing global horizontal irradiation (GHI) on the ground. Empirical models and models based on 
artificial intelligence (AI) have received the most research attention. GHI forecasting using AI models has yielded encouraging results 
[13,15]. ANN has been widely implemented in several worldwide regions, including Turkey, Oman, China, India, Australia, and other 
places, with promising results [16]. 

The main objective of this paper is to compare the performance of different empirical and artificial neural network (ANN) methods 
and the comparison of empirical and ANN for solar irradiation prediction. In this paper, first of all, articles discussing empirical 
methods and the comparison of empirical methods are reviewed. Then, the articles related to ANN are reviewed, and the last section 
compares ANN and empirical methods. In addition to comparison, an effort to identify influential input parameters has been made. The 
detailed methodology of the review article is shown in Fig. 3. 

2. Empirical methods 

Empirical techniques have typically been used to predict solar radiation (SR). It uses mathematical formulas that take several 
meteorological factors into account. In 1924, Angstrom created the first SR prediction model [17]. The empirical model can be 
categorized into three groups based on meteorological inputs.  

1. Sunshine Based Models (SSM)  
2. Modified sunshine-based Models (MSSM)  
3. Non-sunshine-based Models (NSM) 

Following are some of the most recent models in each area mentioned above. Somayeh Naserpour et al. [18] calibrated and 
evaluated the performance of 21 SSM empirical models developed in the past. The results confirmed that cubic and linear logarithmic 
models developed by C. Ertekin et al. and F. Newland respectively performed best among all models with the coefficient of correlation 
(R) values of 0.93 [19,20];. Ayse Gul Kaplan et al. [21] have developed three SSMs (Linear, Quadratic, and Cubic) for monthly GHI 
prediction in the Antalya region of Turkey. They compared the model’s performance yearly (2010–2016) with the 17 empirical models 
developed for the area using six statistical parameters. They found that the newly developed model’s accuracy is higher than the 
existing models, and all models were not the same for all years, which means that with time the model’s accuracy changes—the model 
accuracy changes with changing weather conditions. The average Mean absolute percentage error (MAPE) of the linear, quadratic, and 
cubic models was 6.28, 6.42, and 6.46, which confirms that the complexity of the model doesn’t improve the accuracy [21]. Md 
Shahrukh Anis et al. [22] compared the performance of 104 SSM in the literature and developed seven new models for solar irradiation 
prediction at 23 sites in India. New models outperformed the models present in the literature based on the global performance in-
dicator (GPI). The quartic form equation developed by researchers has the highest R and MBE values, 0.86 and − 0.0001, respectively. 

Yendoubé Lare et al. [23] developed an MSSM model for Togo, which combines linear and non-linear techniques with exponential 
and harmonic parts. They tested the model for five regional capitals across the country. The inputs incorporated in the model are 
latitude (L), relative humidity (RH), sunshine duration fraction (S/S0), and mean temperature (Tmean). They also checked their model 
against two best-performing models developed for the region. The first model is developed by Amou et al. [24], which is the only model 
for Togo present in literature, and the second model developed by Ajay et al. [25] is a model that applies to the largest country in Africa 
(Nigeria) and has been checked against a lot of other models. The MAPE of the model ranged from 7.73% in Lome to 10.50% in 
Dapaong. The Ajaye model ranged from 7.67% to 15.84 in the same cities. Finally, Yu Feng et al. [26] performed high-resolution solar 
radiation and energy assessment for 110 stations in China using 50 years of data. They used MSSM empirical model, which uses 
extra-terrestrial irradiation (H0), RH, S/S0, diurnal temperature range, precipitation (Prec), and mean air temperature as inputs. The 
Nash–Sutcliffe model efficiency coefficient (NS), relative root mean square error (RRMSE), mean average error (MAE), root mean 
square error (RMSE), and coefficient of determination (R2) values of the model were 0.893, 16.8%, 1.69 MJ per meter square per day 
(MJ/m2/d), 2.3 MJm− 2d− 1 and 0.89 respectively. After confirmation of model accuracy by statistical indicators, the model was used to 
predict the missing GHI in all 110 stations. 

Nejib Ghazouani et al. [27] assessed the performance of four NSM (temperature-based) models using 35 years of data for Arar city 
in Saudi Arabia. Among these models, two models use mean monthly temperature (Tmean), the third one uses maximum Temperature 
(Tmax) and minimum Temperature (Tmin), and the fourth model uses the difference between Tmax and Tmin, temperature difference 
(ΔT). All the models’ R values are more significant than 0.99, while R2 is higher than 0.96, which shows that all the models have 
accurately predicted the monthly GHI and confirms good fitting [27]. Y. El Mghouchi tested 42 NSM (temperature-based) models for 
six different climatic zones in Morocco. The best R2 value obtained for clear sky conditions is 0.967, while for all sky conditions are 
0.909. In the last step, the models are optimized using four machine learning algorithms. After optimization, the R2 value reached 
closer to 1, which means that the optimization has improved the accuracy of models. The testing of many models confirmed that the 
complexity of the model doesn’t improve the accuracy, and the same results can be obtained using simple models. They also concluded 
that some unfavourable weather conditions like dust storms and hot winds result in higher temperatures, and the dust storms also 
result in lower radiations value, which results in poor performance of models [28]. Junliang Fan et al. [29] compared fourteen existing 
temperature-based models developed in Refs. [30–43] with six newly proposed temperature-based models for solar irradiation 
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prediction at 20 sites in China. Among existing models, eight models only use temperature, while six use other meteorological pa-
rameters in addition to temperature. In the proposed models, two models use only temperature, while the other uses pressure and RH 
in addition to temperature. The model developed by Ref. [32] performed best among existing models, while the complex proposed 
models incorporating temperature, RH, and precipitation performed best among all models. The results also confirmed that only 
temperature-based models could predict with high accuracy, but adding RH and precipitation improves the accuracy of 
temperature-based models. 

Oliveira Lima et al. [44] assessed monthly solar irradiation for Rio de Janeiro, Brazil, using the Hargreaves-Samani and 
Bristow-Campbell models. The results confirm the superiority of the Bristow-Campbell model for regions with R2 and RMSE values 
ranging from 0.60 to 0.85 and 1–2.99 MJ/m2/d. De Souza [45]developed a new model using ambient temperature for solar irradiation 
prediction in Trinidad and Tobago. The results of the newly developed model were also compared with five existing models. The results 
confirmed the superiority of the newly developed model with the RMSE value of 0.51 MJ/m2/d. Finally, Mohamed Blal et al. [46] 
reviewed six temperature-based models and evaluated all the model’s performances under different weather conditions in Adrar, 
Algeria, over four years. Three of the six models use Tmean as input, while the other three use ΔT. The results showed that ΔT models 
outperform Tmean models. In addition, two different models performed best for different years. The authors concluded that 
temperature-based empirical model performance changes with changing weather conditions. 

Keith De Souza [47] compared the performance of five existing models developed in Refs. [30,34,48–50], one modified form of 
[30], and a newly developed model for solar irradiation prediction in Trinidad and Tobago. The new model uses only monthly mean 
temperatures for solar irradiation. The results confirmed that the new model developed in this research outperformed all the models 
with R2, RMSE, and NSE values of 0.94, 0.51 MJ/m2/d, and 0.346, respectively. Followed by the modified form of [30]. The superior 
accuracy and elimination of H0 make the newly developed model suitable for solar irradiation prediction in other regions. H. Yakoubi 
et al. [51] evaluated 24 clouds cover-based (CC) models’ (NSM) performance for predicting monthly average GHI in 14 cities of 
Morocco. They used 18 years of data for the training and testing of models. Out of 24, seventeen models are newly developed by 
authors, and eight are taken from literature. The highest R2 value was 0.77. They concluded that exponential and logarithmic models 
performed worse among all the models, while the increase in polynomial order positively impacted the model’s performance. Simi-
larly, the models that use RH, T, and wind speed (Ws) in addition to C/C0 have shown good performance compared to models that use 
C/C0. 

Muhammad Uzair Yousuf and Syed Muhammad Rashid Hussain [52] checked the accuracy of nine NSM (day of the year (DOY)) 
based models for 30 cities across Pakistan. The authors tested two sine wave-based models, one cosine wave-based model, one 
Gaussian Form model, one Lorentzin Correlation model, one 4th Order polynomial model, two hybrid sine-cosine models, and one 
Two-Gaussian Form model. The results showed that all the model’s nRMSE and nMBE values are less than 10% for all cities except 
Muzaffarabad. The normalized mean bias error (nMBE) values of all models for all cities ranged from 0.22% to 15.52%, with an 
average value of 4.39%. The results showed that all day-of-the-year (DOY) based models could be used with acceptable accuracy at any 
location in Pakistan. Among all models, the Two-Gaussian Form model has the highest precision, while the sine wave model is pre-
dicted with the lowest accuracy. Shaban G. Gouda et al. [53] evaluated the performance of nine NSM (DOY-based) for five zones in 
China using 84 meteorological station data. They conclude that different models predicted best for different zones. Among all these 
models’ hybrid sine cosine wave models performed best. They concluded that the models performed best for zones with high GHI 
potential, and the model’s performance decreased with a decrease in GHI value across the zones. Shohreh Didari et al. [54] predicted 
solar irradiation in central and southern Iran under different sky conditions. For clear sky conditions, Alen [55] model was used, and 
for different cloud cover conditions, Angstrom [56] (SSM) and Kasten and Czeplak [57] (NSM) models were used. The Allen model 
RMSE value for clear sky conditions was 1.1 MJ/m2/d. While in different cloudy conditions, the Angstrom model (SSM) outperformed 
the Kasten and Czeplak models with an RMSE value of 2.62 MJ/m2/d. 

S. Nabi Mughal., Y.R. Sood, and R. K. Jarial [58] proposed a novel model for predicting hourly solar radiation on the tilted surface 
of Kashmir. Using the non-linear autoregressive (NAR) model, they first predicted GSR and diffuse radiation. Then in the second step, 
they fed the results of the NAR model to the empirical model developed by Boxwell in 2010 [59], which will give the solar radiation on 
a specific tilt angle. They also checked the performance of 9 existing models. The proposed model MAPE is 5.61%, while the least error 
among the existing models is 31% which means that the proposed hybrid model result is far better than the current models. They also 
concluded that when a solar panel is tilted at a specific angle, the radiation reception increases by 9%. 

Rahul G. Makade, Siddharth Chakrabarti, and Basharat Jamil [60] developed three empirical models for India using 20 weather 
station data and then compared the results of the developed model with three previously developed models present in the literature. 
The first model was Angstrom Prescot linear form (SSM), which uses S/S0 as input. At the same time, the other two are cubic forms 
(MSSM) of the Angstrom Prescot model. The first cubic form relates the GHI with L, Alt, and S/S0, and the second cubic model adds RH 
as additional input to inputs used by the first cubic form model. The statistical evaluation showed that newly developed models 
outperformed the existing model. The freshly developed second cubic model, which uses L, Alt, and S/S0 as inputs, has led to the 
highest accuracy among all the models. The results confirmed that adding the input parameters such as RH, L, and Alt improves the 
accuracy of sunshine-based models. In the Fiji Islands, Olanrewaju M. Oyewola et al. [61] assessed 20 empirical models (six SSM, 14 
MSSM) from previous studies for SR prediction. They initially checked the accuracy of satellite SR data by comparing it to SR data from 
the Naudi and Laucali meteorological stations. Satellite data PME is 12.5%, according to the authors. For all stations, the MSSM models 
that connect S, S0, H0, and air temperature to SR produced the best results. In addition, adding humidity to a collection of parameters 
enhance model performance. Recep Kulcu and Rabia Elsan [62] tested seven empirical models (5 SSM, 2 MSSM) for GHI prediction in 
the Hatay province of Turkey. They found that models incorporating S/S0 and Ws results are more accurate than other models. At the 
same time, the model that contains only S/S0 gave the worst results. The researchers recommend that for GHI prediction in a specific 
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region, first several models should be tested, and after validation, the best model should be used. Tchilabalo E. Patchali et al. [58] 
assessed 20 empirical models (6 SSM, 14 MSSM) created by earlier researchers for four cities in Togo. ME values ranged between 0.550 
MJ/m2 to 28.9 MJ/m2. The best five models are MSSM, whereas the top 5 models with the worst results are SSM and suggesting that SR 
prediction requires more than just S, So, and H0. Air temperature and RH, in addition to these three, are crucial input parameters that 
have enhanced the accuracy of SR prediction. 

Alhassan Ali Teyabeen et al. [63] compared seven empirical models developed in the past literature for twelve cities in Libya. 
Among seven models, two SSMs and five are NSM (three temperature, one RH and one RH with temperature). The results confirmed 
that the model incorporating Sunshine S/S0 and (S/S0)2 was developed by AA El Sabaii et al. [64] for Jeddah in Saudi Arabia and 
performed best. The MAPE for the best model ranges from 1.12% to 3.52%. Results confirmed that for each location, empirical co-
efficients are different. For four Indian cities, Mahima Sivakumar et al. [65] compared the performance of nine SSM and eight NSM 
models based on temperature. SSM has outperformed NSM for two sites, whereas models NSM have produced better results for the 
other two sites. The study also found that simple models performed better than complex ones that contained quadratic or cubic 
equations. Jawed Mustafa et al. [66] developed 121 empirical models for Najran, Saudi Arabia. The R-value of 121 developed and six 

Table 1 
Empirical models.  

References Models Country Accuracy 

Naserpour et al. [18] SSM Iran – 
Ayse Gul et al. [21] SSM Turkey – 
Anis et al. [22] SSM India – 
Lare et al. [23] MSSM Togo – 
Feng et al. [26] MSSM China – 
Ghazouani et al. [27] NSM (T) Saudi Arabia – 
Mghouchi [28] NSM (T) Morocco – 
Fan et al. [29] NSM (T) China – 
Lima et al. [44] NSM Brazil – 
De Souza [45] NSM (T) Trinidad and Tobago – 
Yakoubi et al. [51] NSM (CC) Morocco – 
Yousuf et al. [52] NSM (DOY) Pakistan – 
Gouda et al. [53] NSM (DOY) China – 
Didari et al. [54] SSM 

NSM  
SSM > NSM 

Mughal et al. [58] NSM India – 
Makade [60] SSM 

MSSM 
India MSSM > SSM 

Oyewola [61] SSM 
MSSM 

Fiji Islands MSSM > SSM 

Kulcu [62] SSM 
MSSM 

Turkey MSSM > SSM 

Patchali [79] SSM 
MSSM 

Togo MSSM > SSM 

Teyabeen et al. [63] SSM 
NSM 

Libya SSM > NSM 

Sivakumar et al. [65] SSM 
NSM 

India Two sites 
SSM > NSM 
Last two sites 
NSM > SSM 

Mustafa [66] SSM 
MSSM 
NSM (T, RH) 

Saudi Arabia MSSM > SSM > NSM 

Uckan [67] SSM 
NSM (L, Alt etc.) 

Iraq NSM > SSM 

Balli [68] SSM 
NSM (T) 

Turkey SSM > NSM 

Bouchouicha et al. [69] SSM 
NSM (T, DOY) 

Algeria SSM > NSM(T)>NSM(DOY) 

Martins [70] SSM 
NSM (T) 

Brazil SSM > MSSM 

Al-Ghamdi [71] SSM 
MSSM 
NSM 

Saudi Arabia NSM > MSSM > NSM 

Masabi et al. [73] SBDART 
SSM 
MSSM 
NSM (T, RH)  

SBDART > SSM > MSSM > NSM 

Chen [78] SSM 
MSSM 
NSM (T) 

China NSM > MSSM > SSM (OSM using MODIS)  
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selected models are more than 0.95, indicating that the models are accurate. R values for three of the models were less than 0.95. They 
also found that MSSM is more accurate than SSM and NSM. 

Irfan Kuckan and Kameran Mohammad Khudhur [67] evaluated 21 models developed in the past and also developed three new 
models for GHI prediction in Arbil, Duhok, and Sulemania regions in northern Iraq. 11 SSM models and 13 NSM models (including 
three new models) performance is evaluated in this study. The result of this article confirmed that NSM models’ predictions are more 
accurate than SSM. The R2 value for best SSM models ranged from 0.97 to 0.99, while the R2 value for NSM was above 0.99. Ozgur Balli 
[68] developed six SSM models and 6 NSM (ambient temperature (Ta)-based) models using Eskisehir city-data. The statistical eval-
uation of models showed that all the models have predicted the GHI accurately and have the potential to be used by engineers. SSM 
outperformed the NSM. They also suggested that most developing countries’ stations don’t record sunshine duration data. So in the 
case of Sunshine duration-based data unavailability, the ambient temperature-based models can be used for GHI estimation as they 
have predicted GHI accurately. Kada Bouchouicha et al. [69] compared ten SSM and twenty NSM models (ten temperature and 10 
DOY) for solar irradiation prediction in four Algerian cities. The results confirm that SSM models outperformed NSM models, with 
RMSE values ranging from 1.470 to 2.425 MJ/m2 day. Among NSM models, temperature-based models have higher accuracy than 
DOY-based models. Ana Fla’via Martins Monteiro and Fabrina Bolzan Martins [70] tested 13 empirical models (6 SSM, 7 NSM) 
developed in previous studies for Means Gerais in South-eastern Brazil. After testing 13 models, they validated the top 5 models with 
an independent validation data set. They found that each model’s coefficients change with location and must be determined separately 
for each location. The models incorporating Tmax, Tmin, and P performed worst on the fitness test, while the models using S/S0 as 
inputs performed best. The authors suggested that Tmax and Tmin models can be used for prediction when S/S0 data is unavailable. 

Saeed A. Al-Ghamdi [71] compared the performance of several SSM, MSSM, and NSM empirical models developed in the past 
literature and also proposed five new models for solar irradiation prediction in Al-Aqiq, Saudi Arabia. The results confirmed that 
models that NSM models that incorporate temperature, RH, and pressure produced better results than other models. The results also 
demonstrated that linear models are accurate, and the performance decreases when the model’s polynomial order increases by three. 
The linear model [72], which incorporates temperature and RH, performed best with GPI and R2 values of 0.037 and 0.87. Bijan 
Sedaqat Masabi, Zahra Aghashariatmadari, and Somayeh Hejabi [73] tested the performance of the parametric model (Santa Barbara 
DISORT atmospheric radiative transfer (SBDART)) performance with seven empirical models (2 SSM, 4 MSSM, 1 NSM) present in the 
literature for four cities in Iran. The R2 value of all models ranged from 0.25 to 0.95, of which SBDART has the highest value (0.95) and 
the lowest value related to the Hargreaves model [30]. According to all statistical indicators, the SBDART model has the highest 
accuracy, followed by the Angstrom model. This research concludes that increasing the number of inputs in a model only increases the 
complexity and has no significant effect on the model’s accuracy. 

Cotrim Gomes et al. [74] predicted direct and diffuse components of global solar radiation for the coastal city of Salvador in Brazil. 
This research tested three diffuse component modeling models present in the literature. The models evaluated for the diffuse 
component are Ridley [75], Marques Filho [76] and Lemos et al. [77]. The Ridley and Lemos et al. models use five predictors to predict 
diffuse fractions and have shown greater prediction accuracy. In contrast, Filho models only use the clearness index (Kt) to predict the 
diffuse fraction. According to statistical evaluation using MBE, RMSE, and R2, the Ridley model predictions are more accurate. After 
predicting diffuse fraction, they checked the consistency of GHI using the Angstrom-Prescot model. The R2 value 0f 0.98 confirms the 
consistency of the data. 

Ji-Long Chen et al. [78] coupled empirical models with Moderate Resolution Imaging Spectroradiometer (MODIS) products. They 
discovered that linear and non-linear models performed equally well, indicating that changing the model’s structure to non-linear has 
little impact. Incorporating air temperature and atmospheric pressure in sunshine-based models results in higher accuracy, and adding 
RH and Prec does not affect the model’s performance. While for temperature-based models, the models using only Tmax or Tmin are 
unsuitable for GHI prediction, while models using both have a little higher accuracy. Incorporating RH and Tmean in these models has 
shown higher accuracy, which means that RH and Tmean induction in models results in higher accuracy. And also, the addition of 
atmospheric pressure and ΔT has a positive effect on model accuracy. Among newly developed models, the model which uses all 
MODIS products as inputs has the highest accuracy. The coupling of the empirical model with freshly developed models has improved 
the accuracy of all the empirical models. Most of the research articles, also shown in Table 1, states that MSSM has the highest accuracy 
than NSM and SSM. 

3. Artificial intelligence methods 

Artificial Intelligence is gaining scope in every field of life. John McCarthy, who invented AI, stated that AI combines Science and 
engineering to develop intelligence devices for human welfare. Researchers have widely used AI in the past decade to solve complex 
problems in various fields. The AI has also shown compatibility in the renewable energy sector and has been widely used for predicting 
weather-dependent energy resources and power output from intermittent power plants such as wind and solar. AI models have sur-
passed the other models in solar radiation prediction [80]. AI consists of five groups which include ANN, GA, Fuzzy Logic, Hybrid 
systems (HS), and Expert systems (ES) [81]. This section reviews recent efforts in solar radiation prediction using AI methods. 

For Semarang, Indonesia, Djoko Adi Widodo, Purwanto Purwanto, and Hermawan Hermawan [82] predicted monthly GHI. Sat-
ellite data were the source for this study’s input. L, Lon, Alt, RH, Tmax, Prec, and Ws serve as the inputs. The outcomes demonstrated 
that ANN was capable of highly accurate solar prediction. The model’s MAPE was 6.6%, which shows how accurate ANNs are in 
forecasting monthly GHI. Using ANN (FFNN), N. B. Sushmi and D. Subbulekshmi [83] forecasted hourly GHI for Chenia, India. 
Initially, the Pearson Coefficient Test was used to choose the influential characteristics. The test found that the most important 
characteristics were Zenith angle, RH, Ta, CC, and Precipitable water. An FFNN model is developed using these parameters to forecast 
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hourly GHI. The model’s MAPE and NRMSE values were 44.43% and 7.21%, respectively. Adi Kurniawan and Anisa Harumwidiah 
[84] evaluated the performance of the ANN model for Surabaya city in Indonesia. The input parameters used in this study are Tmax, 
Tmin, RH, Tmean, Prec, Ws, month (m), and sunshine duration (S). The data found that the amount of solar irradiation in Surabaya city is 
increasing yearly while input parameters such as Tmax, Tmin, and RH have been at the same level for the last five years. This trend of 
data confuses the ANN model. The ANN model MAPE for the first two years was 8.77% and 8.82%, but in the last two years, the model 
accuracy decreased due to an increase in GHI, and MAPE for 2018 and 2019 was 11.38% and 12.41%. The study recommends that the 
accuracy of the ANN model can be increased if separate models are used for rainy and dry seasons. Using chained ANN, Bashar Shboul 
et al. [85] predicted hourly GHI and wind speed for the Northern and Southern Arabian Peninsula (Jordan and Oman). First, an ANN 
model using m, d, and clock time was created to predict meteorological parameters such as Cloud Quality (CQ), Azimuth Angle, Ta, RH, 
Atmospheric Pressure (Pa), and Perceptible water. Then the predicted parameters, in addition to m, d, and clock time, are fed into 
another ANN model, which predicts GHI, Direct Normal Irradiation (DNI), Diffuse Horizontal Irradiation (DHI), and wind speed. The 
R2 values for all parameters in Jordan and Oman are 0.96 and 0.97, respectively. The highest MAPE for GHI was 4%, while for wind, it 
was only 3%. The results confirmed the accuracy of ANN for wind and GHI prediction. Using L, Lon, Alt, m, d, RH, and Tmean for 
training ANN, Nait Mensour et al. [86] predicted solar irradiation for Abu Mousa, Morroco. The research confirmed that ANN could 
predict solar irradiation accurately, and ANN’s R and RMSE values were 0.98 and 0.234 kWh/m2/d. 

Pratima Kumari and Durga Toshniwal [87] analyzed 31 different combinations of five input parameters (Tmax, Tmin, S, ΔT, H0) 
using FFNN. In the first five combinations, each input parameter is tested alone, then in the 2nd and 3rd steps, ten combinations of 2 
inputs and three inputs are developed. Five combinations contain four input parameters, and one subset comprises all five. The results 
confirmed that models with two and three inputs have higher accuracy than other combinations, and the model with the combination 
of Tmax, Tmin, and ΔT from the third group has the lowest MAPE of 2.635%. Babatunde, Munda, and Hamam [88] analyzed the 
performance of ANN with weights calculated by differential evolution for monthly GHI prediction in Iseyin, Nigeria. Monthly averages 
of Tmax, Tmin, and S are input parameters. The results confirmed the potential of ANN for monthly GHI prediction. RMSE, NSE, and R2 

values of models are 1.01967 kWh/m2/d, 0.8137, and 0.8254. Olusola Bamisile et al. [89] developed four ANN (FFNN) models of 
different hidden layers (1–4) for Nigeria and tested all four models for six locations. Inputs for the training of ANN were years, m, d, 
hour, Ta, Ws, and sun elevation. R2 values for all location ranges from 0.90 to 0.97. ANN3, with three hidden layers, has the lowest 
average RMSE and MAE of 89.63 W/m2 and 39.62 W/m and the highest average R-value of 0.93, declaring this model the best model. 
The study also confirmed that for high solar irradiation potential areas, the error is small compared to the error for areas with lower 
potential. Adi Kurniawan and Eiji Shintaku [90] predicted monthly GHI, DNI, and DHI for five cities in Japan and also predicted only 
GHI for another six cities using ANN (FFNN). Eleven input parameters were used to train the ANN, including L, Lon, Alt, m, Tmax, 
Tmean, Tmin, S, Prec, Ws, and RH. The average MAPE for DNI, DHI, and GHI in the first five locations was 6.30%, 5.75%, and 3.70%, 
respectively. At the same time, the average MAPE for GHI in another six locations was 6.96%. Cahit Gurlek and Mustafa Sahin [91] 
predicted solar irradiation for Sivas, Turkey using ANN. Input parameters applied in the research were L, Lon, Alt, m, Tmean, and S. Four 
station data were used for training and testing ANN. The R2 of the model ranged from 0.994 to 0.984. 

Heng et al. [92] tested four different combinations of three inputs (Tmean, RH, and Ws) with FFNN using LM, Bayesian regularization 
(BR), and scaled conjugate gradient (SCG) as training algorithms for Kuala Terengganu, Malaysia. The results confirmed that 
BR-trained FFNN using all three inputs is the best model with R, RMSE, MAE, and MAPE values of 0.81 MJ/m2/d, 0.2581 MJ/m2/d, 
0.1789, and 10.64%, respectively. The results showed that RH and temperature are the effective input parameters for GHI prediction. 
In Tamil Nadu, India, A. Geetha et al. [93] used ANN with different training algorithms for hourly solar radiation prediction. The ANN 
used was FFNN, while the training algorithms used were Levenberg Marquardt (LM), Resilient Back Propagation (RP), and scaled 
conjugate gradient (SCG). The input data set consisted of seven input parameters which are L, Lon, day (d), month (m), ambient 
temperature (Ta), hour (h), and Ws. The LM algorithm proved superior to the other two algorithms regarding statistical metrics. The 
R-value for the best model was 0.9376 for training and 0.9340 for testing. Olanrewaju M. Oyewola et al. [94] predicted monthly GHI 
for 31 locations in Fiji Islands using FFNN. Tmean, RH, Prec, m, Alt, Lon, and L were the input parameters used for prediction of GHI 
prediction. LM and SCG were tested as training algorithms for ANN. Six different combinations of hidden layer layers and hidden layer 
neurons are tested using LM and SCG algorithms. Two hidden layer networks with ten neurons in each layer LM algorithm trained was 
the best model with 0.93 kWh/m2/d MSE and 0.93 R for testing dataset. Zahraa E. Mohamed [95] predicted daily and monthly GHI for 
three cities in Egypt. ANN network has two backpropagation algorithms, i.e., basic backpropagation and backpropagation with mo-
mentum and learning rate coefficients. The ranking of models was done using RMSE. Tmax, Tmin, Tmean, RH, and atmospheric pressure 
were the inputs for the training of ANN. Based on RMSE values, the backpropagation algorithm with momentum and learning rate 
coefficients has better accuracy than the basic algorithm. The best model’s average RMSE, MAPE, and R2 values are 2.05 MJ/m2, 
4.98%, and 0.999. 

Nawab et al. [96] evaluated the performance of three types of ANN: Feed-forward Neural Network (FFNN), Cascaded feed-forward 
neural network (CFNN), and Elman Neural Network (EMNN) for solar irradiation prediction in Pakistan. All networks were tested for 
nine cities in different climatic zones of Pakistan. The results confirmed that all the networks had predicted very well. The FFNN has 
the highest accuracy among all the networks, with MAPE values ranging from 3.50% to 16.48%. Satellite data inputs were used to 
predict the ground-measured solar irradiation. The results also confirmed that RH, Satellite global horizontal irradiation (Gsat) are the 
most influential input parameters. The hourly GHI predictions of FFNN, K closest neighbour (k-NN), Auto Regressive Integrated 
Moving Average (ARIMA), and SVM for the Tetouan region of Morocco were compared by Brahim Belmahdi, Mohamed Louzazni, and 
Abdelmajid El Bouardi [97]. The input parameters, as determined by the Pearson Coefficient Test, are Kt, T, Ratio Temperature, Tmean, 
Tmax, and H0. The statistical measures proved that FFNN trained with the LM approach outperforms other models in terms of accuracy. 
The MAPE, NRMSE, RMSE, MBE, and t-stat values for the top-performing model were 1.80%, 0.57, 15.8, 23.88, and 6.68, respectively. 
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Using Ws, RH, cloud cover, temperature, wind direction, and other airborne contaminants, R Nisha Nandhini and A Geethakarthi [98] 
compared RSM with ANN. In terms of R and MSE, they discovered that ANN performed better than the RSM. R and MSE for ANN were 
0.89 and 0.48 kWh/m2/d, respectively. According to the study, atmospheric contaminants have a greater impact on solar radiation 
than meteorological factors. For four Turkish provinces, Ümit Abulut, Ali Etem Gürel, and Yunus Biçen [99] predicted GHI. With input 
parameters Tmax, Tmin, CC, S0, and H0 recorded by Turkish meteorological stations, they employ ANN, k-NN, SVM, and Deep 
Learning (DL). All models had R2, MABE, and RMSE values between 0.855 and 0.936, 2.273 and 2.820 MJ/m2, and 1.87 and 2.32 
MJ/m2, respectively. According to the findings, ANN forecasts outperform all other models, followed by DL, SVM, and K-NN. Leila 
Naderloo [100] compared RSM, ANFIS, RSM, and ANN for solar irradiation prediction in Sarpol-e-Zahab Township, Kermanshah, Iran. 
The input parameters were S/S0, RH, monthly Tmean, and evaporation. The results confirmed that ANN and RSM outperformed the 
ANFIS model. The R and MSE values for ANN, RSM and ANFIS models are, 0.99 and 0.00029 0.99 kWh/m2/d and 0.00027 kWh/m2/d 
and 0.99 and 0.00005 kWh/m2/d. The results also confirmed that ANN and RSM are superior in speed and simplicity compared to 
ANFIS. 

Sara Bamehr and Samaneh Sabetghadam [101] estimated GHI for Mashad, Iran, using FFNN and (Multi Linear Regression) MLR. 
The input data was collected from MODIS and the ozone monitoring instrument (OMI). The input parameters were aerosol optical 
depth, Angstrom exponent, cloud fraction, cloud optical depth, and precipitable water vapour amount from MODIS and Ultraviolet 
aerosol index from OMI. Seven subsets of input parameters were used to develop MLR and FFNN models. The seasonal evaluation of 
models showed that both models have high accuracy in the winter and autumn seasons and lower accuracy in summer and spring. The 
ANN models outperformed the MLR models with 20.2% and 21.4% MAPE values. The RMSE and MSE values for ANN and MLR models 
are (3.7 and 3.9) and (2.3 and 2.7), respectively. A. Burak Guher et al. [102]predicted hourly GHI for Mersin province in Turkey using 
ANN, SVR, and k-NN. First, they selected the most influential parameters using the WEKA program. After confirming significant input 
parameters (year (Y), m, d, h, Ta, P, RH, Ws, S), the ANN (FFNN), SVR, and k-NN models are developed using MATLAB. ANN pre-
dictions are superior to other models with a MAPE value of 6.12%, followed by k-NN and SVR with MAPE values of 7.22% and 12.72%. 
Tamara Rosemary Govindasamy and Naven Chetty [103] investigated the performance of ANN, SVR, General Regression Neural 
Network (GRNN), RF, and the effect of Particulate Matter (PM10) for solar radiation prediction for nine sites in South Africa. In this 
study, 36 (6 include only H0, S/S0, eight models are temperature based, which use Tmax, Tmax

2 Tmin, Tmean, ΔT raised to different powers, 
six models use RH, four models are linear hybrid, and 12 models are non-linear hybrid) input combination without PM10 was 
developed first. The accuracy of all networks is checked with these input combinations. Then 16 input combinations from the above 
groups are selected, and PM10 is added to each combination. The addition of PM10 has improved the accuracy of all models, and also, in 
this model, ANN accuracy was superior to other networks. The ANN model outperformed all the models with R2 and MBE values of 
0.99 and 0.06199 kWh/m2/d. 

Md. Bengir Ahmed Shuvho et al. [104] predicted monthly solar irradiation and performed a performance evaluation of an 80 kWp 
PV plant in Bangladesh. For solar irradiation, ANN and Fuzzy logic were used. Input parameters used for ANN were Ta, RH, Pa, Ws, and 
earth temperature, while the inputs for fuzzy logic were Ta, Ws, and RH. The R2 and A values for the ANN model were 0.99 and 97.44%, 
and for fuzzy logic, the values were 0.999 and 98.78%. Results confirmed that ANN model predictions are more accurate than Fuzzy 
logic. Taghadomi-Saberi et al. [105] evaluated the performance of ANN and ANFIS for solar irradiation prediction in Isfahan, Iran. 
Inputs used to train models were Tmax, Tmin, S, S0, d, clear sky insolation, RH, Prec, and H0. The RH and Prec are eliminated in the first 
stage as they don’t follow the behaviour of solar irradiation and other input parameters. This research developed seven combinations 
of the remaining seven inputs to train the ANN and ANFIS. The ANN outperformed the ANFIS with an R-value of 0.92, while the best 
ANFIS model has an R-value of 0.89. Mohammad Mehdi Lotfinejad et al. [106] compared GRNN and ANFIS with ANN using a Bat 
Algorithm for soar irradiation prediction in four cities in Iran. Input parameters were S, Tmean, Wh, RH, and broadband solar irradi-
ation. The R2 values of ANN, GRNN, and ANFIS were 0.98, 0.96, and 0.65. The results confirmed that ANN outperformed GRNN and 
ANFIS in terms of accuracy. A. Khosravi et al. [107] developed one input-based and one-time series model for solar irradiation pre-
diction in Abu Musa Island, Sharjah. SVR, RBN, ANN, Fuzzy inference system (FIS), and ANFIS were evaluated using input-based and 
time-series models. Input based model uses RH, P, Ws, Tmean, and local time as input parameters. For both models, SVR performed best 
with R = 0.99, followed by ANN with R = 0.98. 

Ellysia Jumin et al. predicted solar irradiation for Malaysia using Boosted Decision Tree regression (BDTR) model for Malaysia. The 
researchers used two different data splits to train and test the model and then compared the results with neural network and linear 
regression models. All the models are optimized using conventional manual adjusting of the learning rate, while in the second method 
tune model hyperparameter is introduced for adjusting the learning rate. The results confirmed that 75% training and 25% testing data 
split gave more accurate results than 80%–20% data split, and also, the conventional optimization outperformed the models optimized 
with tune hyperparameter. The BDTR model results are more accurate, followed by linear regression [108]. 

Mohammad Ehteram et al. developed a model for solar irradiation prediction using a hybrid model consisting of a multi-objective 
shark algorithm and ANFIS for Iran. The model results are compared with multi-objective GA-ANFIS and multi-objective Particle 
swarm optimization-based ANFIS. The result confirmed that the multi-objective Shark algorithm-based ANFIS model has the best 
predictions among all models [109]. 

Hamidreza Ghazvinian et al. proposed the Improved Particle Swarm Based Optimization algorithm (IPSO) based SVR for solar 
irradiation prediction in two provinces of Turkey. The IPSO was integrated with SVM for optimal selection of SVM parameters. The 
proposed model results are then compared with the M5 tree model, Genetic programming, SVR integrated with optimization algo-
rithms, and Multi Adaptive Regression models. The results confirmed that SVR-IPSO results are more accurate than other models 
[110]. 

The effectiveness of ANN and LSTM for predicting solar irradiation in Turkey was compared by Tugba Ozdemir et al. [111]. The 
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inputs include the power output of three types of solar panels, Tmean, panel temperature (Tp), RH, S, and CC. The study’s findings 
showed that, in terms of accuracy, LSTM surpassed ANN, with R2, MSE, RMSE, MAE, and MBE of 0.93, 0.008, 0.089, 0.17, and 0.09, 
respectively. Most of the reviewed articles, as clear from Table 2, confirm that ANN has the best accuracy among Artificial Intelligence 
models. 

4. Comparative studies 

For Lalibela in Ethiopia, Tegenu Argaw Woldegiyorgis et al. [112] compared the effectiveness of the ANN model and three 
empirical models. The Angstrom-Prescot and Louche sunshine duration-based models are examples of empirical models. The Glover 
McCulloch model, the third one, also takes latitude into account in addition to sunshine duration. The empirical model’s value ranged 
from 0.126 to 0.17, whereas the ANN R2 value was 0.799. The empirical model’s MBE values ranged from − 0.468 to − 0.05, while the 
MBE for the ANN was − 0.0005. Similar to this, ANN had an RMSE value of 0.331 kWh/m2, whereas empirical models had RMSE 
values that ranged from 1.071 kWh/m2 to 1.263 kWh/m2. The ANN model forecasts are more accurate than the sunshine 
duration-based models, according to all three statistical measures. 

Table 2 
Artificial Intelligence methods.  

References Networks No. of Inputs Country Accuracy 

Widodo et al. [82] FFNN 7 Indonesia FFNN 
Sushmi et al. [83] FFNN 5 India FFNN 
Kurniawan et al. [84] FFNN 8 Indonesia FFNN 
Shboul et al. [85] FFNN 9 Jordan and Oman FFNN 
Mensour et al. [86] FFNN 7 Morroco FFNN 
Kumari et al. [87] FFNN 5 India FFNN 
Babtunde [88] FFNN 3 Nigeria FFNN 
Bamisile et al. [89] FFNN 7 Nigeria FFNN 
Adi Kurniawan [90] FFNN 11 Japan FFNN 
Gurlek [91] FFNN 6 Turley FFNN 
Heng et al. [92] FFNN 3 Malaysia FFNN 
Geetha et al. [93] FFNN 7 India FFNN 
Oyewola et al. [94] FFNN 7 Fiji Island FFNN 
E. Mohamed [95] FFNN 5 Egypt FFNN 
Nawab et al. [96] FFNN 

CFNN 
EMNN 

12 Pakistan FFNN > CFNN > EMNN 

Belmahdi et al. [97] FFNN k-NN 
ARIMA 
SVM 

6 Morocco FFNN > ARIMA > k-NN > SVM 

Nandhini et al. [98] FFNN 
RSM 

6 India FFNN > RSM 

Agbulut et al. [99] FFNN 
SVM k-NN 
DL 

5 Turkey FFNN > DL > SVM > k-NN 

Naderloo [100] FFNN 
RSM 
ANFIS 

4 Iran FFNN > RSM > ANFIS 

Bamehr et al. [101] FFNN 
MLR 

6 Iran FFNN > MLR 

Guher et al. [102] FFNN 
SVR k-NN 

9 Turkey FFNN > k-NN > SVR 

Govindasamy et al. [103] FFNN 
GRNN 
SVM 
RF 

8 South Africa FFNN > SVR > RF > GRNN 

Ahmed Shuvho [104] FFNN, 
Fuzzy Logic 

5, 
3 

Bangladesh FFNN > Fuzzy Logic 

Saberi et al. [105] FFNN 
ANFIS 

9 Iran FFNN > ANFIS 

Lotfinejad et al [106] FFNN 
ANFIS 
GRNN 

5 Iran FFNN > ANFIS > GRNN 

A. Khosravi et al. [107] FFNN 
SVR 
FIS 
ANFIS 
RBN 

5 UAE SVR > FFNN > ANFIS > FIS > RBN 

Ozdemir et al. [111] FFNN 
LSTM 

8 Turkey LSTM > FFNN  
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Cícero Manoel dos Santos et al. [113] compared ten empirical models, six linear regression models (LRM), and five SVM and ANN 
models for solar irradiation prediction in Campo Grande, MS, Brazil. All the models are NSM (temperature based) and use Tmax, Tmin, 
ΔT, and Tmean as inputs. The results confirmed that the empirical model developed by Ref. [114] outperformed all the models with R2 

= 0.693. The empirical models performed better among all models, while the ANN models performed worst. 
Yu Feng et al. [115] compared the performance of 4 temperature-based machine learning (ML) and four temperature-based 

empirical models using data from 4 stations in the temperate continental region of China. All four empirical models use ΔT as an 
input parameter. The machine learning models are ANN, a Hybrid mind Evolutionary algorithm that combines ANN, Random Forest 
(RF), and Wavelet neural network. The comparison showed that all the ML models outperformed the empirical models. Regarding R2, 
the hybrid models performed best among all the models for four stations, followed by ANN with a minimal margin. 

Qian et al. [116] developed ANN for GHI prediction in the Yellow River Basin, China, with input parameters Tmax, Tmin, Tmean, Ws, 
RH, S, and S0. After the development of the model, the results are compared with the Angstrom Prescot model using RMSE, R2, MSE, 
and MAE. The result confirmed that the ANN model accuracy is higher than Angstrom Prescot Model. The average R2 value of the 
Angstrom Prescot was 0.88, while for ANN, it was 0.91. In terms of MSE, the ANN model MSE is 25.93% less than Angstrom Prescot 
Model. At the same time, The RMSE and MAE of the ANN model are 5.25% and 2.28% less than the Angstrom Prescot model. 

Ali Etem Gürel, Ümit Ağbulut, and Yunus Biçen [17] evaluated the performance of 4 different methods named Machine learning 
(Feed Forward Neural Network), Time Response (Hot Winters), empirical (Three Angstrom Based models), and response surface 
methodology (RSM) for four provinces in Turkey. The empirical models used are linear, quadratic, and third-order polynomial-based 
models. The R2 values of ANN, best empirical model, RSM, and time response model are 0.991, 0.984, 0.978, and 0.985. While the MBE 
values are 0.1323 MJ/m2-day, 0.3191 MJ/m2-day, 0.3689 MJ/m2-day, 0.1884 MJ/m2-day for ANN, time response, RSM and empirical 
models. And the MAPE values are 4.92%, 7.55%, 8.31%, and 7.83% for ANN, time response, RSM, and empirical models. The results 
concluded that the ANN model performed best verified by all the statistical indicators, followed by empirical models, which were the 
second-best predictors. Empirical modeling is the simplest method to predict GHI, but the empirical models cannot relate complex and 
non-linear relationships among variables. 

Babak Jahani & Babak Mohammadi [117] compared one sunshine base and one temperature-based empirical performance with 
two simple ANN (1 temperature and one sunshine model) and 2 ANN coupled Genetic Algorithm (GA) (1 temperature and one sun-
shine model) models using data from the station of the Islamic Republic of Iran Meteorological organization. In terms of R2, RMSE, and 
MBE, the sunshine-based empirical models (0.93, 37 J/cm2, and 179 J/cm2) outperformed the simple ANN model (0.90, 55.7 J/cm2, 
243.5 J/cm2). When ANN has coupled with GA, the models’ accuracy improved with R2, RMSE, and MBE of 0.92 J/cm2,38.4 J/cm2 

and 185.5 J/cm2. In all three types, the accuracy of sunshine models is superior to temperature-based models. 
Saeed Samadianfard et al. [118] compared six empirical models with data-driven models like Support Vector Machine (SVM), 

Model Trees (MT), Gene Expression Programming (GEP), and adaptive neuro-fuzzy inference system (ANFIS) in Tabriz, Iran. The 
inputs used for data-driven models are H0, Tmax, Tmin, Tmin, RH, DOY, S, S0, and corrected clear sky solar irradiation. Nine different 
models of each data-driven method have been developed using nine combinations of input parameters. The testing of different 
combinations confirmed that S and RH are the most influential input parameters for data-driven techniques, followed by Tmin, Tmax, 
and H0. The SVR models with inputs H0, RH, Tmax, Tmin, and S/S0 proved to be the most accurate model with R, RMSE, and MAE values 
of 0.98, 1.656 MJ/m2, 0.99 MJ/m2, respectively. Among all methods, SVR performed best. 

Vassilis Z. Antonopoulos [119]compared the performance of the empirical model (Hargreaves model (Hargreaves, 1994)), ANN, 
and Multi Linear Regression (MLR) for AUTH and Amin stations in Greece. Two Hargreaves models were tested, one using default 
coefficient value and the second using adjusted local coefficient value. Three ANN models with inputs [Tmax, Tmin, Tmean, RH, and 
Ws], [H0, ΔT, (ΔT)0.5, RH], and [H0, (ΔT)0.5] were developed and tested for each station. Four MLR models are developed, using 
Tmax, Tmin, Tmean, RH, Ws, and H0, while the other uses ΔT and (ΔT)0.5. They found that MLR results were more accurate for AUTH 
station, while ANN performed more accurately for the Amin station. 

Junliang Fan et al. [120] compared the performance of 12 sunshine-based empirical models with 12 machine-learning models for 
different climatic zones in China. The comparison confirmed that all machine learning models had outperformed the empirical models. 
The accuracy of all ML models was in an acceptable range. Among ML models, ANFIS models outperformed other models. 

Vahid Nourani et al. [121] used three temperature-based empirical models developed by Refs. [30,33,122], one ANFIS, one ANN, 
one MLR, and two ensemble networks. The input parameters used for AI and MLR were Tmax, Tmin, Tmean, RH, and Ws. In single models, 
the ANFIS outperformed all the models with NRMSE values ranging from 0.099 to 0.104, followed by ANN with 0.097–0.116. Also, the 
ensemble networks improve the accuracy of single models by 16.8%. 

M. Marzouq et al. [123] proposed an evolutionary ANN for solar irradiation prediction in Fez, Morocco. To validate the model; the 
researchers compared the proposed model results with the k-NN model and three temperature-based empirical models present in the 
literature [35,38,81]. The evolutionary ANN is a simple FFNN network, but a genetic algorithm is used for input selection. The results 
confirmed that the newly proposed model has the highest accuracy among all models with R2 = 0.97, followed by k-NN with 0.96 R2. 

R. Meenal and A. Immanuel Selvakumar [124] compared sixteen empirical models (8 SSM, 4 MSSM, 4 NSM), 16 SVM, and 3 ANN 
models for solar irradiation prediction in 8 stations in India. Among empirical models, MSSM predicted best for all locations with R 
values ranging from 0.92 to 0.98. The SVM and ANN R-values are 0.9916 and 0.9968. The results confirmed that ANN outperformed 
SVM and empirical models in accuracy. The results also demonstrated that S and Ta are the most influential parameters for solar 
irradiation prediction. The RH alone is insignificant, but its addition to S and Ta improves the accuracy. 

DV Siva Krishna Rao et al. [125]developed 32 ANN models from combinations of six inputs (Tmin, Tmax, S, S0, H0, and ΔT) for solar 
irradiation prediction in Tiruchirappalli, India. The results of ANN models are then compared with temperature- and sunshine-based 
empirical models developed by the authors in Refs. [65,126]. The results confirmed that models with two and three input parameters 
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performed best among ANN models. The models with input parameters ΔT, S0, and H0 and ΔT, S0 performed best with RRMSE values 
of 4.90% and 5.23%, respectively. The RRMSE values of the temperature-based and sunshine-based empirical models were 7.58% and 
10.72%, respectively. 

Ling Zou et al. [127] compared the performance of two improved forms of the empirical model developed by Bristow and Campbell 
(MSSM) [34] and Yang model [128] (modified Prescot (SSM) [129]) and one ANFIS model for three stations in China. For ANFIS, four 
combinations of S, RH, Prec, P, ΔT, Tmax, and Tmin. Results confirm the superiority of the ANFIS model to other models, followed by the 
Yang model. ANFIS model R2 values ranged from 0.94 to 0.98, while the Yang model R2 values ranged from 0.79 to 0.86. 

Prado da Silva [130] compared the performance of SVM, ANN, and Angstrom Prescot (SSM) for solar irradiation prediction in 
Botucatu, Brazil. Four input combinations of input parameters, Tmax, Tmin, RH, S/S0, H0, and precipitation, are used to train SVM and 
ANN. The SVM model outperformed the ANN and SSM with RMbE and RRMSE values ranging from − 2.7% to 1.06% and 9.4%–12.5%. 
On the other hand, ANN results are the worst of the three models, with RMBE and RRMSE values of − 13%–8.1% and 15.6%–16.6%, 
respectively. Most of the articles reviewed in this section, as clear from Table 3, confirms that AI methods have better accuracy than 
empirical models. 

Table 3 
Comparative studies.  

References Models Country Accuracy 

Woldegiyorgis et al. [112] FFNN 
EM 

Ethiopia FFNN > EM 

Zhang et al. [116] FFNN 
EM 

China FFNN > EM 

Feng et al. [115] FFNN 
HE-FFNN 
RF 
WNN 
EM 

China HE-FFNN > FFNN > RF > ENN > EM 

Gürel et al. [17] FFNN 
Time response 
RSM 
EM 

Turkey FFNN > RSM > Time response > EM 

Jahani et al. [117] FFNN 
EM 

Iran FFNN > EM 

Antonopoulos et al. [119] FFNN 
MLR 

Greece FFNN (1 location) 
MLR (1 location) 

Fan et al. [120] FFNN 
ELM 
SVM 
ANFIS 
M5TREE 
XGBoost 
RF 
EM 

China ANFIS > ELM > LSVM > MARS>
XGBoost > EM 

Santos et al. [113] FFNN 
EM 
SVM 
RSM 

Brazil SVM > EM > RSM > ANN 

Qian et al. [116] FFNN 
EM 

China FFNN > EM 

Samadianfard et al. [118] SVM 
MT 
GEP 
ANFIS 
EM 

Iran SV > MT > ANFIS > GEP > EM 

Nourani et al. [121] ANFIS 
FFNN 
MLR 
EM 

Iraq ANFIS > FFNN > MLR > EM 

Marzouq et al. [123] E-FFNN k-NN 
EM 

Morroco E-FFNN > k-NN > EM 

Meenal et al. [124] SVM 
FFNN 
EM 

India FFNN > SVM > EM 

Rao et al. [125] FFNN 
EM 

India FFNN > EM 

Zou et al. [127] ANFIS 
EM 

China ANFIS > EM 

Silva et al. [130] SVM 
FFNN 
EM 

Brazil SVM > EM > A’NN  
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5. Summary  

1. Sunshine-based models have been employed frequently, producing favorable outcomes among empirical models. Modified 
sunshine-based models are among the most accurate sunshine-based models. However, since temperature and day-of-the-year data 
are readily available for most sites, the lack of sunshine data opens the door for temperature-based and day-of-the-year models. 

2. SVR, SVM, ANFIS, ANN, k-NN, and RSM and Hybrid models have been utilized for GHI prediction globally among artificial in-
telligence models. The literature review indicates that AI has produced the most precise results, particularly FFNN and Hybrid 
models. But the hybrid models require very sophisticated programming knowledge and are very time-consuming, but their ac-
curacy improvement as compared to other AI models is very minimal  

3. The comparative studies confirm that AI models have produced good results than empirical models.  
4. Air pressure and wind speed hardly ever affect a model’s accuracy confirmed by most of the articles.  
5. ANN’s most important input factors are maximum, minimum, temperature differential, relative humidity, Kt, and precipitation. 

And in future research, these inputs should be combined with other input parameters.  
6. The location dependability of models can be tackled by checking different input combination-based models for vast areas.  
7. Advantages and Disadvantages of different methods are shown in Table 4. 

6. Research gaps  

1. All the models rely on inputs from meteorological stations, which restricts their applicability to regions with those stations and 
cannot predict data for areas without stations. Future models that correlate satellite data with ground-measured data should be 
developed in order to reduce the error present in satellite data since satellite data is readily available for the majority of sites.  

2. Other factors could be taken into account, including ozone and pollutant chemicals, which are known to affect light transmission 
through the atmosphere, especially at particular wavelengths. Additionally, it is important to examine how these parameters affect 
the model’s accuracy.  

3. Some unfavourable weather conditions like dust storms and hot winds result in higher temperatures, and the dust storms also result 
in lower radiations value, which results in poor performance of models. So the effect of dust storms and hot winds on the model 
accuracy should be evaluated.  

4. Greenhouse gases increasing volume in the atmosphere should be considered in solar irradiation prediction as greenhouse gases 
contribute to an increase in temperature while solar irradiation remains the same. This can affect the accuracy of the model 
incorporating temperature as input.  

5. For ANN, the tick and trial selection of neurons is very time-consuming, and research should be done on identifying the rule for 
optimum neuron selection.  

6. The location dependability of models is the main problem discussed in most articles. As the researchers stated, different models 
gave accurate results for different locations. 

7. Conclusion 

Notably, the intermittent nature of solar irradiation influences solar energy use in all forms, whether energy or agriculture. Ac-
curate solar irradiation prediction is the only solution to effectively use solar energy in different forms. The estimation of solar 
irradiation is the most critical factor for site selection and sizing of solar energy projects and for selecting a suitable crop selection for 
the area. A thorough review of research articles discussing solar irradiation prediction has been done to compare different methods for 
solar irradiation prediction. First, articles relating to empirical models are reviewed, and a comparative analysis of different empirical 
models is done. The articles relating to artificial intelligence models have been reviewed in the second step, and various methods are 
compared. Articles comparing empirical and artificial intelligence methods have been reviewed in the last stage. The comparative 
study confirms that Artificial Intelligence methods have surpassed the empirical model in accuracy. The empirical models are divided 

Table 4 
Pros and cons of methodologies.  

Serial 
No: 

Methodology Pros Cons 

1. Empirical Methods  
a. SSM Greater accuracy Data is easily unavailable as most meteorological stations don’t 

have Sunshine hours recording facility.  
b. MSSM Best Accuracy among Empirical Models Data is easily unavailable as most meteorological stations don’t 

have Sunshine hours recording facility.  
c. NSM The data is readily available as most stations record the 

required climatic parameters. 
Have lower accuracy than MSSM and NSM 

2. AI Methods  
a. Single AI 
models 

Easy to develop models as they don’t require 
sophisticated programming knowledge. 

Has accuracy lower than Hybrid models  

b. Hybrid AI 
Models 

Accuracy higher than Single AI models Has the best accuracy among all methods.  
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into three categories, i.e., sunshine-based, modified, and non-sunshine-based. Modified sunshine-based models have the highest ac-
curacy among these three categories, followed by sunshine-based models. The non-sunshine-based model’s accuracy is lower than the 
sunshine-based model’s. Still, the unavailability of sunshine data provides space for non-sunshine-based models, especially 
temperature-based and day-of-the-year-based models, as these input data are available for most locations. The ANN and Hybrid models 
had the highest accuracy among artificial intelligence models, followed by SVM and ANFIS. The hybrid model improvement in ac-
curacy is very minimal, but their complexity makes it difficult to use for most of the researchers For ANN, the maximum temperature, 
minimum temperature, temperature differential, relative humidity, clearness index, and precipitation are the significant inputs that 
can be considered for predicting solar irradiation. 
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[12] D. Guijo-Rubio, A.M. Durán-Rosal, P.A. Gutiérrez, A.M. Gómez-Orellana, C. Casanova-Mateo, J. Sanz-Justo, S. Salcedo-Sanz, C. Hervás-Martínez, Evolutionary 
artificial neural networks for accurate solar radiation prediction, Energy 210 (2020), 118374. 

[13] Tamer Khatib, Azah Mohamed, Kamarulzaman Sopian, M. Mahmoud, Assessment of artificial neural networks for hourly solar radiation prediction, Int. J. 
Photoenergy 2012 (2012). 

[14] Ayu Wazira Azhari, Kamaruzzaman Sopian, Azami Zaharim, Mohamad Al Ghoul, A new approach for predicting solar radiation in tropical environment using 
satellite images-case study of Malaysia, WSEAS Trans. Environ. Dev. 4 (4) (2008) 373–378. 

[15] Aljanad Ahmed, ML Tan Nadia, Vassilios G. Agelidis, Shareef Hussain, Neural network approach for global solar irradiance prediction at extremely short-time- 
intervals using particle swarm optimization algorithm, Energies 14 (4) (2021) 1213. 

[16] Tamer Khatib, Azah Mohamed, K. Sopian, M. Mahmoud, Modeling of solar energy for Malaysia using artificial neural networks, in: The 11th WSEAS/IASME 
International Conference on Electric Power Systems, High Voltages, Electric Machines, 2011, pp. 486–489. 
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[99] Ümit Ağbulut, Ali Etem Gürel, Yunus Biçen, Prediction of daily global solar radiation using different machine learning algorithms: evaluation and comparison, 

Renew. Sustain. Energy Rev. 135 (2021), 110114. 

F. Nawab et al.                                                                                                                                                                                                         

http://refhub.elsevier.com/S2405-8440(23)04246-9/sref59
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref59
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref60
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref60
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref61
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref61
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref62
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref63
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref63
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref64
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref64
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref65
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref65
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref66
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref66
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref67
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref67
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref68
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref69
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref69
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref70
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref71
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref71
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref72
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref72
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref73
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref73
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref74
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref74
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref75
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref76
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref76
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref76
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref77
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref77
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref78
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref78
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref79
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref79
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref80
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref80
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref81
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref81
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref82
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref82
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref83
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref83
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref84
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref84
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref85
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref85
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref86
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref86
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref87
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref87
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref88
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref88
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref89
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref89
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref90
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref90
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref91
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref91
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref92
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref92
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref93
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref93
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref94
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref94
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref95
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref96
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref96
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref97
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref97
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref98
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref98
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref99
http://refhub.elsevier.com/S2405-8440(23)04246-9/sref99


Heliyon 9 (2023) e17038

17

[100] Leila Naderloo, Prediction of solar radiation on the horizon using neural network methods, ANFIS and RSM (case study: Sarpol-e-Zahab Township, Iran), 
J. Earth Syst. Sci. 129 (1) (2020) 1–11. 

[101] Sara Bamehr, Samaneh Sabetghadam, Estimation of global solar radiation data based on satellite-derived atmospheric parameters over the urban area of 
Mashhad, Iran, Environ. Sci. Pollut. Control Ser. 28 (6) (2021) 7167–7179. 

[102] A Burak Guher, Sakir Tasdemir, Determining of solar power by using machine learning methods in a specified region, Teh. Vjesn. 28 (5) (2021) 1471–1479. 
[103] Tamara Rosemary Govindasamy, Naven Chetty, Machine learning models to quantify the influence of PM10 aerosol concentration on global solar radiation 

prediction in South Africa, Cleaner Eng. Tech. 2 (2021), 100042. 
[104] Md Bengir Ahmed Shuvho, Mohammad Asaduzzaman Chowdhury, Shameem Ahmed and Mohammod Abul Kashem, "Prediction of solar irradiation and 

performance evaluation of grid connected solar 80 KWp PV plant in Bangladesh, Energy Rep. 5 (2019) 714–722. 
[105] S. Taghadomi-Saberi, S.J. Razavi, Evaluating potential of artificial neural network and neuro-fuzzy techniques for global solar radiation prediction in isfahan, 

Iran, J. Agric. Sci. Technol. 21 (2) (2019) 295–307. 
[106] Mohammad Mehdi Lotfinejad, Reza Hafezi, Majid Khanali, Seyed Sina Hosseini, Mehdi Mehrpooya, Shahaboddin Shamshirband, A comparative assessment of 

predicting daily solar radiation using bat neural network (BNN), generalized regression neural network (GRNN), and neuro-fuzzy (NF) system: a case study, 
Energies 11 (5) (2018) 1188. 

[107] A. Khosravi, R.N.N. Koury, L. Machado, J.J.G. Pabon, Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms, J. Clean. 
Prod. 176 (2018) 63–75. 

[108] Ellysia Jumin, Faridah Bte Basaruddin, Md Yusoff Yuzainee Bte, Sarmad Dashti Latif, Ali Najah Ahmed, Solar radiation prediction using boosted decision tree 
regression model: a case study in Malaysia, Environ. Sci. Pollut. Control Ser. 28 (2021) 26571–26583. 

[109] Mohammad Ehteram, Ali Najah Ahmed, Chow Ming Fai, Haitham Abdulmohsin Afan, Ahmed El-Shafie, Accuracy enhancement for zone mapping of a solar 
radiation forecasting based multi-objective model for better management of the generation of renewable energy, Energies 12 (14) (2019) 2730. 

[110] Hamidreza Ghazvinian, Sayed-Farhad Mousavi, Hojat Karami, Saeed Farzin, Mohammad Ehteram, Md Shabbir Hossain, Chow Ming Fai, Huzaifa Bin Hashim, P 
Singh Vijay, Faizah Che Ros, Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction, 
PLoS One 14 (5) (2019), e0217634. 

[111] Tugba Ozdemir, Fatma Taher, Babajide O Ayinde, Jacek M. Zurada, Ozge Tuzun Ozmen, Comparison of feedforward perceptron network with LSTM for solar 
cell radiation prediction, Appl. Sci. 12 (9) (2022) 4463. 

[112] Tegenu Argaw Woldegiyorgis, Ashenafi Admasu, Natei Ermias Benti, Ashenafi Abebe Asfaw, A comparative evaluation of artificial neural network and 
sunshine based models in prediction of daily global solar radiation of Lalibela, Ethiopia, Cogent Eng. 9 (1) (2022), 1996871. 
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