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Abstract

Homologous recombination (HR) faithfully restores DNA double-strand breaks. Defects in

this HR repair pathway are associated with cancer predisposition. In genetic engineering,

HR has been used extensively to study gene function and it represents an ideal method of

gene therapy for single gene disorders. Here, we present a novel assay to measure HR in

living cells. The HR substrate consisted of a non-fluorescent 3’ truncated form of the eGFP

gene and was integrated into the AAVS1 locus, known as a safe harbor. The donor DNA

template comprised a 5’ truncated eGFP copy and was delivered via AAV particles. HR

mediated repair restored full-length eGFP coding sequence, resulting in eGFP+ cells. The

utility of our assay in quantifying HR events was validated by exploring the impact of the

overexpression of HR promoters and the siRNA-mediated silencing of genes known to play

a role in DNA repair on the frequency of HR. We conclude that this novel assay represents a

useful tool to further investigate the mechanisms that control HR and test continually emerg-

ing tools for HR-mediated genome editing.

Introduction

DNA double-strand breaks (DSBs) are among the most serious types of DNA damage in cells

and can lead to genetic instability and tumorigenesis [1]. DSB may be induced by exogenous

genotoxic insults, such as ionizing radiation, but also occur spontaneously in various cellular

processes including DNA replication and V(D)J recombination. There are two major path-

ways for DSB repair: non-homologous end joining (NHEJ) and homologous recombination

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0237413 April 30, 2021 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bernardi A, Gobelli D, Serna J, Nawrocka
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(HR). NHEJ directly ligates the two broken ends of a DSB and is accessible throughout the cell

cycle. In contrast, HR is an error-free repair mechanism that primarily uses the intact sister

chromatid as a template for repair and predominates in S-phase cells [2].

The physiological importance of HR is underscored by the association of cancer predisposi-

tion and developmental defects with mutations in HR genes. The tumor suppressors BRCA1

and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and

ovarian cancers [3, 4]. Other HR proteins, including PALB2 and RAD51 paralogs, have also

been identified as tumor suppressors [3, 4]. On the other hand, tumor cells with defective HR

repair show increased sensitivity to chemotherapeutic reagents that act via the induction of

DNA damage, including platinum-containing agents and PARP inhibitors [3, 4]. These obser-

vations suggest that HR-proficient tumor cells might be sensitized to chemotherapeutics if HR

repair could be therapeutically inactivated.

In genetic engineering, HR represents a powerful tool to precisely manipulate the

genome for experimental uses. Its use revolutionized the genetic approach to study biologi-

cal processes in mice by the late 1980s with the generation of the first gene targeted knock-

out mice [5]. Since then, thousands of genes have been modified in mouse embryonic stem

cells by HR with gene-targeting vectors. However, the low efficiency of HR in vertebrate

somatic cells limits the utility of this approach [6]. Following the discovery that induction

of a DSB increases the frequency of homology directed repair (HDR) by several orders of

magnitude, targeted nucleases have emerged as the method of choice for improving the

efficiency of HDR-mediated genetic alterations [7]. ZFNs (zinc finger nucleases), TALENs

(transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly

interspaced short palindromic repeats/CRISPR-associated system 9) are all engineered

endonucleases that can introduce DSBs at desired locations in the genome. Once a targeted

DSB has been made, HDR may reconstruct the cleaved DNA using an exogenous DNA

template [7].

Various cell-based assays have been developed for the accurate measurement of HR events.

The use of fluorescence has proved to be an effective approach for detecting HR and the most

commonly used assay is the direct repeat green fluorescent protein (DR-GFP) assay [8, 9]. The

DR-GFP reporter consists of two tandem, inactive copies of the GFP gene, which can be inte-

grated into the cellular genome or expressed transiently. The first GFP copy (SceGFP) has a

promoter and contains the I-SceI restriction site with an in-frame stop codon and the second

copy (iGFP) harbours truncations at both ends [8, 9]. After cleavage within SceGFP by I-SceI

or a Cas9 nuclease, HR uses iGFP as a template to restore the GFP gene to its functional form.

Then, GFP fluorescence can be measured using flow cytometry [8, 9].

Here, we report the development of a novel fluorescence-based assay for evaluating cel-

lular HR activity. As opposed to the DR-GFP assay, in our system HR reconstitutes the full-

length coding sequence of the enhanced green fluorescent protein (eGFP), which fluoresces

much more intensely than GFP, thus facilitating the detection of HR events. Our assay also

differs from the DR-GFP assay in that our two non-functional copies of eGFP are not in

tandem. Rather, a single copy of the HR substrate is integrated as a single copy into the

AAVS1 safe harbor locus and the template donor is delivered exogenously via AAV parti-

cles, mimicking the scenario of the HR-mediated correction of a monogenic disorder. Fol-

lowing this procedure, we have detected changes in HR rates resulting from the altered

expression of DNA repair genes, similar to those previously reported. We provide a well-

characterized tool that will help to further investigate the mechanisms that control HR and

analyze the effects of exogenous manipulations, with i.e., drugs, miRNAs, and genes on HR

mediated correction.
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Materials and methods

Cells

Human colon cancer cell line HCT116 was obtained from the American Type Culture Collec-

tion (Manassas, VA). Human embryonic kidney cell line HEK-293 optimized for the packag-

ing of AAV virions (AAV-293) was obtained from Agilent Technologies (Santa Clara, CA).

Both cell lines were handled according to each manufacturer’s recommendations.

Plasmids construction

The sequences of the primers used in this study are shown in S1 Table. The pAAV-MCS-

eGFPΔ3’ plasmid (also named as peGFPΔ3’) used to generate the HR reporter cell line was

obtained through the following steps. Firstly, a fragment containing the 5’AAVS1 region

homology arm (832 bp) followed by a puromycin cassette (1014 bp) was amplified from

pAAV-CAGGS-eGFP plasmid with primers 1F and 1R. pAAV-CAGGS-eGFP plasmid was a

gift from Rudolf Jaenisch (Addgene plasmid # 22212; http://n2t.net/addgene:22212; RRID:

Addgene_22212) [10]. The puromycin cassette (SA-T2A-Puro-pA) is promoterless and con-

tains a splice acceptor site followed by the coding sequence of the T2A peptide, the puromycin

resistance gene and a polyadenylation signal. Secondly, a 1290 bp fragment containing human

cytomegalovirus (CMV) immediate early (IE) promoter and eGFP lacking the last 73 bp was

amplified from peGFP-C1 plasmid (Clontech) with primers 2F and 2R. Thirdly, the 3’AAVS1

region homology arm (1300 bp) was amplified from HCT116 genomic DNA using 3F and 3R.

The three fragments were digested and cloned into the NotI site of pAAV-MCS (Stratagene).

With respect to the designation of the primers used in this work, F stands for forward, and R

for reverse.

The HR donor plasmid, pAAV-MCS-eGFPΔ5’ (also named as peGFPΔ5’), was obtained

through the following steps. Firstly, a 929 bp fragment containing eGFP lacking the first 38 bp

at 5’ end was amplified from peGFP-N1 plasmid (Clontech) with primers 4F and 4R. Secondly,

an EcoRI-SalI fragment (1582 bp) containing a blasticidin resistance cassette flanked by loxP

sequences was obtained from a pBluescript II based plasmid previously generated in our lab.

Thirdly, the 3’AAVS1 region homology arm (1300 bp) was obtained as described for

pAAV-MCS-eGFPΔ3’ plasmid. The three fragments were digested and cloned into the NotI

site of pAAV-MCS (Stratagene). AAV2 particles were produced by co-transfecting 293 c18

cells (ATCC CRL-10852) with the pAAV-MCS- eGFPΔ5’ donor plasmid, pHelper and

pAAV-RC (at a 1:1:1 ratio). Three days later cells were harvested and AAV were released by 4

freeze-thaw cycles. Viral titers were determined by SybrGreen based real time qPCR using

ITR_F and ITR_R primers as previously described [11]. pHelper and pAAV-RC plasmids

were obtained from Stratagene.

The RAD52 gene of Saccharomyces cerevisiae (ScRAD52) was cloned into the expression

vector pET15b (Novagen) for His-tagged production of TAT-NLS-RAD52 where TAT peptide

(GRKKRRQRRR) promotes cell permeability and NLS peptide (KKKRKV) is a nuclear locali-

zation signal. Wild-type RAD52 sequence was amplified by PCR from the genomic DNA of

Saccharomyces cerevisiae with primers ScRAD52_F1 and ScRAD52_R1 and cloned into Hin-

dIII/XhoI digested pTriEx-HTNC vector immediately downstream the His-TAT-NLS

sequence. pTriEx-HTNC was a gift from Klaus Rajewsky (Addgene plasmid # 13763) [12]. The

resultant construct was digested with NcoI and XhoI and the His-TAT-NLS-ScRAD52 frag-

ment was cloned into NcoI/XhoI digested pET15b, thus obtaining pET15b-TAT-NLS-

ScRAD52. pET15b-TAT-NLS-ScRAD52 was transformed into BL21 (DE3) and the selected

bacteria were grown. His-TAT-NLS-ScRAD52 expression was induced with 1 mM IPTG for 3
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h and the recombinant protein was purified using Nickel-Sepharose beads from the soluble

fraction of the bacterial extracts. Recombinant protein was stored in a solution containing 50%

(v/v) glycerol, 20 mM HEPES (pH = 7.4) and 500 mM NaCl. Several concentrations of

TAT-NLS-ScRAD52 ranging from 0.02 to 2 μM were tested for their capacity to increase the

HR frequency. The maximum frequencies were obtained with concentrations equal to or

greater than 0.2 μM, and a significant level of cytotoxicity was observed only at concentrations

higher than 1.8 μM. The TAT-NLS-ScRAD52 experiments shown in this work were performed

using the fusion protein at a concentration of 0.2 μM.

DNA fragments encoding ScRAD52, RAD51, and RAD52 Flag-tagged at the N-termini

were generated by PCR and cloned into mammalian expression vector pcDNA3 (Invitrogen).

The Flag sequence was added to the forward primers. The restriction sites used in the cloning

step are shown in S1 Table. ScRAD52 was amplified with the primer pair ScRAD52_F2/

ScRAD52_R2 using pET15b-TAT-NLS-ScRAD52 plasmid as template. Human RAD51 was

amplified from the plasmid CMV-hRad51 using primers hRAD51_F/hRAD51_R. CMV-

hRad51 was a gift from David Liu (Addgene plasmid # 125570; http://n2t.net/addgene:125570;

RRID:Addgene_125570) [13]. Human RAD52 was amplified from the plasmid pMM1413-SU-

MO-RAD52 using primers hRAD52_F/hRAD52_R. pMM1413-SUMO-RAD52 was a gift

from Mauro Modesti (Cancer Research Center of Marseille). The resultant constructs were

named pScRAD52, phRAD51, and phRAD52. The plasmid encoding for Flag-PALB2 was

identified as phPALB2 in this work and corresponds to the expression plasmid pDEST-FRT/

T0-Flag-PALB2. pDEST-FRT/T0-Flag-PALB2 was a gift from Daniel Durocher (Addgene

plasmid # 71114; http://n2t.net/addgene:71114; RRID:Addgene_71114) [14]. The constructs

were transfected into the reporter cell line when indicated, and the expression of the Flag-

tagged HR promoters was analyzed by Western Blot using mouse monoclonal antibodies

against Flag peptide (clone M2, Sigma-Aldrich) and β-actin (AC-40; Sigma-Aldrich) as the

loading control.

Generation of the HCT116-eGFPΔ3’ reporter cell line and HR-mediated

rescue of eGFP expression

HCT116 cells were nucleofected with pAAV-MCS-eGFPΔ3’ plasmid and AAVS1 ZFN mRNA

(Sigma-Aldrich). AAVS1 ZFN mRNA encodes a pair of ZFNs that target the genomic integra-

tion site of AAVS1. Targeted integration of pAAV-MCS-eGFPΔ3’ in puromycin-resistant

individual clones was verified by PCR using the following primers: P1F and P1R for analysis of

5’-arm recombination; P2F and P2R for analysis of 3’-arm recombination. Homo- and hetero-

zygosity of the eGFPΔ3’ transgene at the AVVS1 locus was explored by PCR using primers

P1F and P2R located outside the homology arms. The single copy integration of eGFPΔ3’ into

the AAVS1 locus was verified by Multiplex Ligation-Dependent Probe Amplification (MLPA)

and droplet digital PCR (ddPCR) (see below). The resultant cell line was named

HCT116-eGFPΔ3’. HCT116-eGFPΔ3’ cells were transduced with AAV particles containing

pAAV-MCS-eGFPΔ5’ donor plasmid (MOI of 103). HR leads to reconstitution of full-length

eGFP coding sequence and the appearance of green fluorescent cells 48 hours post-transduc-

tion. Individual clones were obtained by limiting dilution in the presence of blasticidin (5 μg/

ml) and were analyzed by PCR with primers P3F and P3R. The following primers against

human SDHA were used for the genomic DNA loading control PCR: SDHA_F and SDHA_R.

The restored full length eGFP cassette was also sequenced and its expression analyzed by West-

ern Blot using mouse monoclonal antibodies against GFP (clone B34, Biolegend) and β-actin

(AC-40; Sigma-Aldrich) as the loading control.
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Multiplex ligation-dependent probe amplification (MLPA)

MLPA reactions were performed according to the manufacturer’s general recommendations

(MRC-Holland) with the use of the probes designed and generated according to the strategy

developed [15] and described in detail before [16]. Briefly, 100 ng DNA in 5 μl from parental

HCT116 and reporter cell line were denaturated for 5 min at 98˚C, cooled to room tempera-

ture and mixed with 1.5 μl of probes mix (containing 1.5 fmol of each probe), and 1.5 μl of

SALSA hybridization buffer. The reaction was then denatured at 95˚C for 1 min and probes

were hybridized to their respective targets at 60˚C for 16–20 h. After the addition of 32 μl of

ligation mixture, the hybridized probes were ligated together at 54˚C for 15 min. After heat

inactivation, ligation reaction was cooled to room temperature, mixed with 10 μl of PCR mix-

ture (polymerase, dNTPs, and universal primers, one of which was labeled with fluorescein)

and subjected to PCR amplification for 35 cycles. The MLPA products were subsequently

diluted 20x in HiDi formamide containing GS Liz600, which was used as a DNA size standard

and separated by capillary electrophoresis (POP7 polymer) using an ABI Prism 3130XL appa-

ratus (Applied Biosystems). The electropherograms were visualized and analyzed using Gene-

Marker software v1.91 (2.4.0). The eGFP-specific MLPA probes and 7 control MLPA probes

are listed in S2 Table. For each probe, the sequences of the 5’ and 3’ half-probes, universal

sequences to which PCR primers are targeted, the “stuffer” sequence, and the target specific

sequence are provided. Details on gene loci and chromosome locations for control probes are

also provided.

Droplet digital PCR (ddPCR)

The ddPCR was performed using the QX200 system and EvaGreen Supermix (BIO-RAD),

according to the manufacturer’s general recommendations, as generally described [17] and

used before [18]. To determine the exact copy number of the eGFP transgene in the reporter

cell line, we designed two test-amplicons entirely located in the transgene (eGFP1 and eGFP2)

and two control-amplicons [C1 (up) and C2 (down)], located upstream (2 Kb) and down-

stream (overlapping exon 2 of PPP1R12C) of the transgene site (AAVS1), respectively. The fol-

lowing sets of primers were used: (i) T1F and T1R for test amplicon eGFP1 (187 bp in length);

(ii) T2F and T2R for test-amplicon eFGP2 (163 bp in length); (iii) C1F and C1R for control-

amplicon C1 (up) (170 bp in length); and (iv) C2F and C2R for control-amplicon C2 (down)

(238 bp in length). Of note, genomic DNA from the reporter cell line was digested with the

CviQI restriction enzyme (New England Biolabs) prior to ddPCR. CviQI was chosen because it

cuts the transgene between the sequences corresponding to amplicons eGFP1 and eGFP2,

which prevents tandemly repeated transgenes from being incorrectly identified as a single

copy. Briefly, ddPCR procedure was as follow: the PCR mixture containing 10 μl of EvaGreen

Supermix (Bio-Rad), 1 μl of 4 μM forward primer, 1 μl of 4 μM reverse primer, 4 μl (80 ng) of

DNA from the tested cell line and 6 μl of water was partitioned into 20,000 droplets with the

use of a QX200 ddPCR droplet generator (Bio-Rad). The generated droplets were transferred

to a 96-well plate and amplified in a T100 Thermal Cycler (BioRad) under the following condi-

tions: 5 min at 95˚C, followed by 40 cycles of 30 s at 95˚C, 30 s at 60˚C, and 45 s at 72˚C, fol-

lowed by 2 min at 72˚C, 5 min at 4˚C, 5 min at 90˚C for enzyme inactivation and holding at

12˚C. The amplified products were analyzed using a QX200 droplet reader (Bio-Rad), and the

number of positive and negative droplets were counted using the QuantaSoft version 1.7.4.019

software (Bio-Rad). The copy number of eGFP was calculated based on the number of positive

droplets in eGFP-specific PCR reactions (either eGFP1 and eGFP2) normalized against the

average number of positive droplets in control reactions [C1 (up) and C2 (down)]. Control

amplicons were selected in diploid regions and their copy numbers set to 2.
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HR assay and screening protocol

In all the assays, HCT116-eGFPΔ3’ cells were sequentially treated with: (i) the selected siRNA

oligoes, or expression plasmids encoding HR promoters, (ii) a TALEN pair designed to facili-

tate HR, and (iii) AAV particles containing the donor plasmid (S1 Fig). In brief,

HCT116-eGFPΔ3’ were plated on 12 well plates at 125,000 cells/well. Forty-eight hours later,

cells were transfected with siRNAs using TransIT-X2 (Mirus Bio). The siRNAs used in this

work are listed in S3 Table. Silencer Select highly potent and chemically modified siRNAs

were used at a final concentration of 5 nM, whereas classical siRNAs were used at a final con-

centration of 40 nM. Alternatively, cells were transfected with 400 ng of the expression plas-

mids encoding HR promoters using TransIT-X2. Twenty-four hours after the first treatment,

cells were transfected with a TALEN pair designed to facilitate HR. The TALEN pair (named

eGFP) targeted a region within the AAVS1 locus adjacent to the 3’end of eGFPΔ3’ in the

HCT116-eGFPΔ3’ cell line. We used the fuzznuc software provided by the EMBOSS package

to identify the targeting sequences: 5’-TGCCAGAACCTCTAAGGTTT-3’ (sense component)

and 5’-TCCCTCCCAGGATCCTCTCT-3’ (antisense component). TALEN expression vec-

tors were constructed using the LIC (ligation-independent cloning) TAL Effector Assembly

Kit (Addgene #1000000023). The kit provides a TALE repeat unit library of 2-mer fragments

that were assembled into an expression ready TALEN construct in 2 hierarchical assembly

steps. Six hours after the transfection of HCT116-eGFPΔ3’ cells with 1 μg of each of the

TALEN expression plasmids, cells were transduced with AAV particles containing

pAAV-MCS-eGFPΔ5’ donor plasmid (MOI of 103). When indicated, reporter cells were

treated with TAT-NLS-ScRAD52 (at a final concentration of 0.2 μM) 5 hours after the trans-

fection of the TALEN plasmids and 1 hour before the infection with the AAV particles. After

24 hours, medium was replaced with fresh medium, and after the next 24 hours (48 hours

post-transduction), the recombination frequency was determined as the percentage of cells

expressing eGFP protein following flow cytometry analysis using a Beckman Coulter Gallios

(Beckman Coulter). Data were analyzed using Kaluza software (Beckman Coulter) and were

subsequently corrected for transfection and transduction efficiencies (S2 Fig). Dead cells and

debris were excluded based on scatter signals and propidium iodide fluorescence. When indi-

cated, cells were fixed, stained with Hoechst 33342 (5 μg/ml) and imaged using a Nikon Eclipse

90i fluorescent microscope coupled to a Nikon DS-Ri1 CCD camera.

The transfection efficiency of the eGFP-TALEN plasmids and siRNAs using TransIT- was

>85% in all the HR experiments shown in this work. Transfection efficiency was measured in

parallel to HR experiments by cotransfecting HCT116-eGFPΔ3’ with either eGFP-TALEN

plasmids, expression plasmids or siRNAs under the same conditions as in the HR experiments

but in combination with 1 μg of peGFP-C1. Twenty-four hours later, cells were analyzed for

eGFP by flow cytometry analysis and the percentage of eGFP positive (eGFP+) cells was deter-

mined to estimate the transfection efficiency. The efficacy of the siRNAs in gene silencing was

validated by a SYBR Green based real-time PCR assay using the primers listed in S1 Table.

HPRT1 and β-actin were used as housekeeping genes. All siRNAs tested showed over 70% tar-

get knockdown at 48 hours post-transfection (S3 Fig).

Transduction efficiency of AAV2 was tested using particles carrying the entire eGFP gene.

AAV2 particles were prepared in 293 c18 cells using the plasmids pAAV-MCS-eGFP, pHelper

and pAAV-RC (at a 1:1:1 ratio), as described above. HCT116 were transduced with different

doses (from MOI 10 to 104). The highest transduction efficiency (measured as frequency of

eGFP+ cells) achieved with AAV2 in HCT116 was 10±1.5% (mean ± SEM) at MOI 103, and

corroborate previous findings [19].
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Statistics

All analyses were performed using Prism software (GraphPad). Data are expressed as

mean ± SD and were analyzed by using the unpaired Student’s t-test. In all graphs, � p< 0.05,
�� p< 0.01, ��� p< 0.001.

Results

Development of a novel eGFP-based HR reporter system

In our assay, HR leads to the restoration of the full-length eGFP coding sequence from two dif-

ferent truncated eGFP copies. eGFP is a variant of the wild-type GFP with higher-intensity

emission than GFP [20], thus facilitating the detection of HR events. In order to generate the

two truncated eGFP copies, DNA sequences for amino acid residues shown to be essential for

eGFP fluorescence [21] were deleted, such that the coding sequence lacked 72 bp at the 3’ end

in the eGFPΔ3’ copy, and 42 bp at the 5’ end in eGFPΔ5’ (including the start codon). The assay

was designed for the fragment eGFPΔ3’ (the recombination substrate) to be integrated in the

genome, while eGFPΔ5’ (the donor template) is delivered exogenously via AAV particles.

We optimized the assay system in the human colon cancer cell line HCT116, which is

highly proficient in gene targeting [22, 23] and has been widely used to study the molecular

mechanisms of HR [24–26]. To avoid position effects, we aimed to integrate eGFPΔ3’ into the

adeno-associated virus integration site 1 (AAVS1) within the intron 1 of PPP1R12C on human

chromosome 19. We chose the AAVS1 locus as the target because it is considered a safe harbor

locus for integrating transgenes, since it is constitutively expressed across a variety of cell

types, including HCT116 cells, and biallelic disruption of PPP1R12C results in no discernible

phenotype [27].

The targeting construct (peGFPΔ3’) contained a left and right homology arm to the AAVS1

genomic integration site flanking the eGFPΔ3’ transgene and a puromycin cassette. The target-

ing construct design strategy is shown in Fig 1A. The eGFPΔ3’ transgene was under the con-

trol of the CMV promoter. The puromycin selection cassette was preceded by a splice acceptor

site. Therefore, its expression relied on splicing and was driven by the endogenous PPP1R12C

promoter. Finally, HCT116 were nucleofected with the targeting construct peGFPΔ3’ and a

well-validated pair of ZFNs engineered to target the AAVS1 locus and increase the targeting

rate.

Puromycin-resistant clones were screened for successful integration of the transgene by

PCR analysis of genomic DNA using different combinations of primers located in the trans-

gene and outside the 5’ and 3’ homology arms as illustrated in Fig 1A and 1B shows represen-

tative results of PCR analysis of 4 correctly targeted clones which were named

HCT116-eGFPΔ3’ followed by a serial number. PCR using primers outside the arms showed

all clones were heterozygotes for the eGFPΔ3’ transgene. We randomly selected the cell clone

HCT116-eGFPΔ3’ #1 for further experiments.

The presence of the transgene eGFPΔ3’ in the reporter cell line was confirmed by MLPA

using two pairs of probes specific for eGFP (eGFP1 and eGFP2) and seven probes specific for

diploid control regions (C1 to C7). Fig 2 shows electropherograms of MLPA reactions per-

formed on genomic DNA extracted from parental HCT116 and HCT116-eGFPΔ3’ #1 cell

lines. eGFP-specific signals were present in the HCT116-eGFPΔ3’ #1 electropherogram (red

arrowheads), but not in the parental HCT116 electropherogram, which confirmed the pres-

ence of the transgene in the HCT116-eGFPΔ3’ #1 cells. The peak heights for eGFP were

approximately half those of the control probes suggesting that HCT116-eGFPΔ3’ #1 cells were

heterozygous for the transgene. Next, ddPCR was performed to precisely determine the

PLOS ONE In vivo homologous recombination assay

PLOS ONE | https://doi.org/10.1371/journal.pone.0237413 April 30, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0237413


eGFPΔ3’ gene copy number and rule out integration at other off-target sites. Pairs of primers

were designed to amplify two test-amplicons (eGFP1 and eGFP2) located entirely within the

eGFPΔ3’ transgene and two control-amplicons (C1 and C2) specific for the diploid flanking

regions. Of note, genomic DNA from the reporter cell line HCT116-eGFPΔ3’ #1 was digested

with the CviQI restriction enzyme prior to ddPCR. CviQI was chosen because it cuts the trans-

gene between the sequences corresponding to amplicons eGFP1 and eGFP2, thus preventing

tandemly repeated transgenes from being misidentified as a single copy. As shown in Fig 3,

the fluorescence intensity of the HCT116-eGFPΔ3’ #1 DNA droplets when eGFP1 and eGFP2

assays were used was half of that obtained with the control assays, indicating the

HCT116-eGFPΔ3’ #1 reporter cell line contains a single copy of the eGFPΔ3’ transgene.

Next, we produced AAV particles harboring the HR donor template that contained a trun-

cated eGFP lacking the first 42 bp, a blasticidin cassette and the 3’AAVS1 homology arm

(pAAV-MCS-eGFPΔ5’, Fig 4A). AAV particles were added onto HCT116-eGFPΔ3’ #1 cells at

a MOI of 103 viral particles/cell. Two days after transduction, eGFP+ cells (also named

HCT116-rec-eGFP) were detected (Fig 4B). The frequency of recombination was 4.3x10-3 ±
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1.6x10-3. To formally determine whether or not fluorescence cells had undergone HR, we iso-

lated fluorescent cells to assess if they harbored full-length eGFP coding sequences. Single

HCT116-rec-eGFP cell clones were obtained by limiting dilution and then expanded to clonal

cell lines in the presence of blasticidin. HR-induced restoration of an intact eGFP gene in fluo-

rescent cells was assessed by PCR (Fig 4C) and sequencing. Western blot analysis confirmed

the rescue of eGFP expression in HCT116-rec-eGFP cells (Fig 4D). The absence of a truncated

form in HCT116-eGFPΔ3’ #1 cells is commented in the discussion section.

Validation of the HR system

Next, we evaluated the ability of our assay to identify factors affecting HR. To measure HR

activity, eGFP+ cells were counted by flow cytometry and the raw data was subsequently cor-

rected for transfection and transduction efficiencies as described in Materials and Methods

and in S2 Fig.

In all the experiments that will be described below, HCT116-eGFPΔ3’ #1 cells were pre-

treated with a pair of TALENs designed to induce DSB in the region adjacent to the 3’end of

eGFPΔ3’ (the eGFP TALEN pair). The design and generation of the TALEN expression vectors

are described in Materials and Methods. The eGFP TALEN pair was added 6 hours prior the

transduction with AAV particles containing the donor template. As expected, adding the

eGFP TALEN pair led to a significant increase of the basal frequency of specific HR events

(from 3.6x10-3 ± 1.6x10-3 to 28x10-3 ± 6.5x10-3).

First, we tested how adding TAT-NLS-ScRAD52 impacted the frequency of HR. RAD52 is

an important HR protein that has the strongest effect on Saccharomyces cerevisiae. In this
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regard, the yeast protein, ScRAD52, has been demonstrated to be more effective than its

human homologue in promoting HR [28]. The TAT-NLS-ScRAD52 fusion protein was gener-

ated as described in the Materials and Methods section. The TAT peptide made ScRAD52 cell

permeable and the NLS targeted the protein to the nucleus. TAT-NLS-ScRAD52 was added to

the HCT116-eGFPΔ3’ #1 reporter cell line 5 hours after the transfection of the eGFP TALEN

vectors and 1 hour before the infection with the AAV particles containing the donor plasmid.

As expected, the addition of TAT-NLS-ScRAD52 resulted in an approximate 3-fold increase in

HR frequency (Fig 5A). We also explored the effect of the overexpression of the following

human genes known to promote HR: RAD51, RAD52, and PALB2 [28–30]. The

HCT116-eGFPΔ3’ #1 reporter cells were transfected with expression plasmids encoding the

different Flag-tagged HR promoters and 24 hours later they were transfected with the eGFP

TALEN vectors. Six hours after the transfection of the TALEN vectors, the reporter cells were

transduced with AAV particles containing the donor plasmid. As expected, the overexpression

of PALB2 and ScRAD52 led to an increase in HR frequency ranging from approximately

2.5-fold increase in the case of ScRAD52 to 2.8-fold increase when PALB2 was overexpressed

(Fig 5B). It is of note that the plasmid encoded ScRAD52 increased HR frequency approxi-

mately as much as TAT-NLS-ScRAD52. In contrast, the overexpression of RAD51 and RAD52

had no significant effect on HR frequency. We comment on this result in the discussion sec-

tion. The expression of the Flag-tagged proteins was confirmed by Western Blot (S3 Fig).
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Second, we explored the effect of various siRNAs targeting well-characterized DNA repair-

related genes on the frequency of HR. In these assays, the HCT116-eGFPΔ3’ #1 reporter cells

were transfected with different siRNAs and then treated with the eGFP TALEN and donor
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plasmid at the same times as those of the overexpression experiments described above. We

used two siRNAs for each of the following genes: RAD51, RAD52, PALB2, CTDP1, XRCC6,

LIG4, CBP and SMCHD1. As indicated above, RAD51, RAD52, and PALB2 play a major role

in HR-mediated DNA repair [28–30], as does CTDP1 [31]. The efficacy of the siRNAs in gene

silencing was validated by real-time PCR assay (S3 Fig). As expected, the silencing of RAD51,

PALB2 and CTDP1 led to a significant decrease in the HR rate (Fig 5C). The silencing of

RAD52 had no effect, which we comment on in the discussion section. The XRCC6 and LIG4

genes encode protein Ku70 and human ATP-dependent DNA ligase respectively, which are

the components of the NHEJ repair pathway [32]. It has been reported that a decrease in

NHEJ leads to a compensatory increase in HR. Accordingly, XRCC6- and LIG4-silenced

reporter cells exhibited increased frequency of HR (Fig 5C). Similarly, reporter cells silenced

for CBP and SMCHD1 expression exhibited increased frequency of HR. It is important to note

that both CBP and SMCHD1 facilitate the recruitment of NHEJ factors at DSB sites, so their

depletion was also expected to lead to an increase in HR rates [33, 34]. Of note, the silencing of
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Fig 5. Validation of our eGFP-based assay for measuring the frequency of HR. (A) Effect of the addition of

TAT-NLS-ScRAD52 on HR rates in our assay. Control cells (C) were treated with an equal volume of vehicle (see

Materials and Methods). (B) Effect of the overexpression of plasmid-encoded HR promoters on HR rates. Empty

pcDNA3 vector (vector) served as control. (C) Impact of various siRNAs targeting DNA repair-related genes on the

frequency of HR. Two independent siRNAs were tested for each of the silenced genes. Two negative control siRNAs

were used: NC#1 served as a negative control for all Silencer Select siRNAs and NC#2 served as a negative control for

classical siRNAs (this information is available in S3 Table). Results are depicted as percentage of eGFP+ cells. Mean

values with SD are shown (n = 3 independent experiments). �p< 0.05, ��p< 0.01, ���p< 0.001. Raw data underlying

these results and representative flow cytometry dot plots graphs showing the number of eGFP+ cells are available in S2

Fig.
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XRCC6 and CBP led to the greatest increase in HR. Similar results were obtained between dif-

ferent siRNAs against the same gene in all cases.

Discussion

In this study, we present the development and validation of a novel assay in which HR recon-

stitutes the full length eGFP from a 5’ and a 3’ truncated copies of eGFP.

The eGFPΔ3’ fragment, the HR substrate, consisted of a eGFP copy lacking the nucleotides

encoding the last 24 amino acids, which are required for the protein’s fluorescence [21]. This

transgene was integrated into the AAVS1 locus of HCT116 cells, which are commonly used

for studying HR mechanisms [24–26]. Although AAVS1 is considered a well validated safe

harbor in the human genome, it is important to recall that transgene integration at this locus

disrupts the gene phosphatase 1 regulatory subunit 12C (PPP1R12C). As described above, the

transgene contained a puromycin cassette preceded by a splice acceptor sequence in addition

to the CMV promoter-driven eGFPΔ3’. As reported for other transgenes containing splice

acceptor sites [35], the insertion of the puromycin cassette into the AAVS1 locus led to a

downregulation of PPP1R12C mRNA levels (S4 Fig). In this regard, it is important to mention

that although the haploinsufficiency or complete inactivation of PPP1R12C does not lead to a

discernible phenotype, the consequences of this disruption should be further investigated [27].

Another point we want to highlight is that the eGFPΔ3’ transgene was integrated as a single

copy, and this is relevant when calculating the frequency of recombination because the appear-

ance of a fluorescent signal in a cell is the result of a single HR event. Finally, it should be

noted that the expression of the truncated eGFPΔ3’ copy could not be detected by western blot

using an antibody against full length protein, suggesting the degradation of aberrant transcript

and protein. Interestingly, the transgene has persisted over several passages (over 40) in our

reporter cell line, which is likely due to the chromosomal stability of HCT116 [36].

The donor template consisted of a copy of eGFP lacking 42 bp at the 5’ end (including the

start codon) and was delivered into the reporter cells via AAV particles. AAVs are on the rise

as a powerful tool in gene therapy thanks to their lack of pathogenicity, wide range of cell tro-

pism and long-term gene expression among other properties [37]. It is also well known that

recombinant AAV vectors facilitate homologous recombination in mammalian cells at high

efficiencies (even up to 10x10-3) and this is thought to be due, at least in part, to its single

stranded nature [38]. The recombination frequency in our system was 3.6x10-3 ± 1.6x10-3,

which falls within the range of values obtained by others using recombinant AAVs [39].

Finally, our study also validates the ability of our assay to identify factors affecting HR. Of

note, all validation experiments were performed in the presence of a pair of TALENs designed

to induce DSB in the region adjacent to the 3’ end of eGFPΔ3’. As expected, the addition of the

eGFP TALEN pair led to a significant increase of the basal frequency of specific HR events (by

approximately 8-fold), which helped improve the system.

ScRAD52 is more effective than its human homologue in promoting HR both in vitro and

in vivo [28, 40, 41]. We observed that overexpression of ScRAD52 resulted in an approximate

3-fold increase in HR frequency when either the recombinant protein or the plasmid encoded

protein were used. Similarly, the overexpression of PALB2 led to an increase in the HR fre-

quency as previously reported by others using the DR-GFP reporter system [30]. In our assay

neither RAD51 nor RAD52 had any significant effect on HR frequency. In this regard, it is

important to mention that it has been previously reported that the overexpression of RAD51

does not have a significant effect on HR rates using DR-GFP system, while the overexpression

of its dominant negative forms which are ATPase mutants results in a 8-fold decrease in HR

frequency [42]. On the other hand, Kim et al. have shown that the overexpression of RAD51
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and/or RAD52 reduces DSB-induced HR while enhances spontaneous HR [43]. The distinct

results obtained by us and others may reflect differences in recombination substrate structures

or different levels of overexpression.

The impact of siRNA-mediated silencing of RAD51, RAD52, PALB2, CTDP1, XRCC6,

LIG4, CBP and SMCHD1 on the HR frequency that we report here is similar to that observed

in previous genome wide HR screens and single gene approaches by others [31, 44–46]. Thus,

as expected, RAD51, PALB2, and CTDP1 depletion resulted in a marked reduction of eGFP

+ cells whereas depletion of NHEJ-related genes led to an increase in their number. This last

result highlights the tight regulation of the balance between NHEJ and HR. In the case of

RAD52, its silencing had a negligible effect on HR frequency. This apparently unexpected

result has been reported by others, indicating that RAD52 is not essential to HR [44, 45, 47].

In conclusion, we have established a sensitive assay for measuring the efficiency of HR in

the context of the DNA repair of an integrated transgene using an exogenous DNA template.

This novel tool will be useful to accurately test the impact of continually emerging tools for

HR-mediated genome editing, drugs, miRNAs and genes on HR and DNA repair. We antici-

pate that refining the precision of repair during in vitro culture will contribute to developing

innovative gene therapy products.
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31. Hu WF, Krieger KL, Lagundžin D, Li X, Cheung RS, Taniguchi T, et al. CTDP1 regulates breast cancer

survival and DNA repair through BRCT-specific interactions with FANCI. Cell Death Discov. 2019; 5(1).

https://doi.org/10.1038/s41420-019-0203-5 PMID: 33824291

32. Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative

pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017; 176(3):139–48. https://doi.org/10.

1038/nrm.2017.48 PMID: 28512351

33. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, et al. Histone acetylation by CBP and p300

at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-

homologous end joining factors. Oncogene. 2011 May 5; 30(18):2135–46. https://doi.org/10.1038/onc.

2010.592 PMID: 21217779

34. Tang M, Li Y, Zhang X, Deng T, Zhou Z, Ma W, et al. Structural maintenance of chromosomes flexible

hinge domain containing 1 (SMCHD1) promotes non-homologous end joining and inhibits homologous

recombination repair upon DNA damage. J Biol Chem. 2014 Dec 5; 289(49):34024–32. https://doi.org/

10.1074/jbc.M114.601179 PMID: 25294876

35. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, et al. Site-specific integra-

tion and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011; 8(10):861–9.

https://doi.org/10.1038/nmeth.1674 PMID: 21857672

36. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997 Apr 10;

386(6625):623–7. https://doi.org/10.1038/386623a0 PMID: 9121588

37. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. Current Clinical

Applications of In Vivo Gene Therapy with AAVs. Vol. 29, Molecular Therapy. Cell Press; 2021. p. 464–

88. https://doi.org/10.1016/j.ymthe.2020.12.007 PMID: 33309881

38. Russell DW, Hirata RK. Human gene targeting by viral vectors. Nat Genet. 1998; 18(4):325–30. https://

doi.org/10.1038/ng0498-325 PMID: 9537413

39. Vasileva A, Jessberger R. Precise hit: Adeno-associated virus in gene targeting. Nat Rev Microbiol.

2005; 3(11):837–47. https://doi.org/10.1038/nrmicro1266 PMID: 16261169

40. Di Primio C, Galli A, Cervelli T, ZoppèM, Rainaldi G. Potentiation of Gene Targeting in Human Cells by

Expression of Saccharomyces Cerevisiae Rad52. Nucleic Acids Res. 2005; 33(14):4639–48. https://

doi.org/10.1093/nar/gki778 PMID: 16106043
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