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Atherosclerosis (AS) is a common cardiovascular disease with complex

pathogenesis, in which multiple pathways and their interweaving regulatory

mechanism remain unclear. The primary transcription factor NF-κB plays a

critical role in AS via modulating the expression of a series of inflammatory

mediators under various stimuli such as cytokines, microbial antigens, and

intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the

disrupted synthesis and secretion of protein, links inflammation, metabolic

signals, and other cellular processes via the unfolded protein response (UPR).

Both NF-κB and ER stress share the intersection regarding their molecular

regulation and function and are regarded as critical individual contributors

to AS. In this review, we summarize the multiple interactions between NF-

κB and ER stress activation, including the UPR, NLRP3 inflammasome, and

reactive oxygen species (ROS) generation, which have been ignored in the

pathogenesis of AS. Given the multiple links between NF-κB and ER stress,

we speculate that the integrated network contributes to the understanding

of molecular mechanisms of AS. This review aims to provide an insight

into these interactions and their underlying roles in the progression of AS,

highlighting potential pharmacological targets against the atherosclerotic

inflammatory process.
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Introduction

The transcription factor NF-κB regulates immunity
by controlling the expression of genes associated with
inflammation. In mammals, five proteins belonging to the
NF-κB family have been identified, NF-κB1 (p50), NF-κB2
(p52), RelA (p65), RelB, and cRel (Table 1). NF-κB exists
in the cytoplasm in the form of homodimer (e.g., p50) or
heterodimer (e.g., p50/p65) as a family of structurally related
proteins (1, 2). It moves into the nucleus to transcribe target
genes upon activation. Highly conservative NF-κB plays
critical and stable roles in the immune response or embryonic
development of many species (3). Recently, some studies have
found that the NF-κB signaling pathway is associated with
therapy resistance in breast and ovarian cancer (4, 5). On
the other hand, accumulating evidence has proved that the
NF-κB signaling pathway plays a key role in the development of
many inflammatory metabolic diseases such as obesity, insulin
resistance, and atherosclerosis (AS) (6).

The endoplasmic reticulum (ER) is an organelle responsible
for protein folding. In the ER, unfolded or misfolded proteins
are detected and retained until they are properly folded or
degraded. Disturbance in ER protein homeostasis leads to
ER stress, activating a specific signaling pathway termed the
unfolded protein response (UPR). The UPR is initiated by
activation of three ER membrane-bound transducers including
inositol requiring enzyme 1 (IRE1), activating transcription
factor 6 (ATF6), and protein kinase-RNA like ER kinase
(PERK), which alleviates ER stress and helps cells adapt to
and survive from ER stress caused by various stimuli (7).
However, if the ER stress cannot be resolved, the UPR initiates
programmed cell death.

Atherosclerosis is a chronic inflammatory disease
contributing to the main pathological basis of ischemic
heart disease, myocardial infarct and stroke (8, 9). Increasing
evidence has documented that both NF-κB and ER stress
closely affect the course of AS, and targeting those pathways
may provide new approaches for the treatments against it
(10). Herein, some interesting crosstalk in the molecular
signaling pathways between NF-κB and ER stress in AS has been
reviewed. In this regard, it is reasonable that these links may
also be related to AS, which may offer promising opportunities
for new strategies against AS.

Composition and regulation of
NF-κB

The NF-κB signaling

NF-κB activation is initiated from extracellular stimulation
signals and is precisely regulated. NF-κB1 (p50) and NF-κB2
(p52) are produced by cleavage of precursors p105 and p100,

respectively. In resting cells, NF-κB is kept in the cytosol
in its inactive form by binding to IκB (inhibitor of NF-κB)
molecule (11). This binding prevents its nuclear localization
and transcriptional function by masking the nuclear localization
sequence (NLS) at the C-terminus of Rel Homology Region
(RHR) (12). RelA (p65), RelB, and cRel contain a transactivation
domain (TAD) at the C-terminal end which is responsible for
transcribing target genes (Table 1) (13). Thereby, NF-κB dimer
consisting of at least one of these three subunits is an active
transcription factor, whereas NF-κB containing only p50 and
p52 suppresses transcription due to lack of TAD, despite being
able to bind to DNA (14).

IκB proteins consist of three groups: the classical IκB
proteins, the precursor proteins, and the atypical (nuclear) IκB
proteins (14) (Table 1). All of them have an ankyrin repeat
sequence (AnkR) for interaction with Rel proteins (2, 15).
IκBα, IκBβ, and IκBε belong to the typical group and share
the conserved two serine residues at the N-terminal whose
phosphorylation regulates the ubiquitination of itself (11). IκBα

is associated with dimers of p50-RelA or p50-cRel. It keeps
NF-κB in the cytoplasm through an exclusive nuclear export
sequence that is exposed when bound to NF-κB. In contrast, NF-
κB with IκBβ can locate in the nucleus stably. IκBε and IκBα are
found to be the negative feedback regulators of NF-κB back to
the cytoplasm (16, 17). NF-κB precursors, p100 (IκBδ) and p105
(IκBγ), also inhibit NF-κB by assembling into high-molecular-
weight complexes (18). Phosphorylation of p105 targets it for
complete degradation, but it may also promote p105 to be
processed into p50 in some cell types (19–21), forming p50-
RelA, p50-cRel, or p50 homodimers. Atypical IκB proteins
include IκBζ, BCL-3, and IκBNS (Table 1). The most distinct
feature of classical IκBs is their extra functions to positively
regulate NF-κB (22).

When cells are stimulated by cytokines or pathogen-
associated molecular patterns (PAMPs) binding to membrane
receptors, signaling cascades initiate and finally converge on
the activation of the IκB kinase (IKK) complex (23). The
IKK complex consists of three subunits, the catalytic subunits
IKKα (IKK1) and IKKβ (IKK2), and the regulatory subunit
NF-κB essential modulator (NEMO or IKKγ) (Table 1). IκBs
are phosphorylated by the IKK complex, then selectively
ubiquitinated by E3 ubiquitin ligase (24), and finally degraded
by the proteasome, thus allowing NF-κB translocation to
the nucleus. In the nucleus, it is bound to the coactivator
molecule to have optimal transcriptional activity (25), leading
to gene transcription of growth factors, cytokines, chemokines,
adhesion molecules, and other immunoregulatory molecules
(Figure 1).

The activation of NF-κB signaling

Under various stimuli like cytokines, lipopolysaccharide
(LPS), UV irradiation, intracellular stresses, and autoantibodies,
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TABLE 1 Components and characteristics of the NF-κB signaling pathway.

Components Subunits/Precursors Functions Structure

NF-κB NF-κB1 (p50)/p105 Nuclear localization and DNA
binding activity; inhibition of
transcription

NF-κB2 (p52)/p100

RelA (p65) Transcription activity for NF-κB
target genes

RelB

cRel

IκB IκBα Releasing NF-κB dimer by
poly-ubiquitination and
degradation

IκBβ

IκBε

p100 (IκBδ) Inhibition of NF-κB by
assembling into
high-molecular-weight
complexes; or being processed
into NF-κB subunits

p105 (IκBγ)

IκBζ Modulating NF-κB transcription
either positively or negatively

BCL-3

IκBNS

IKK complex IKKα (IKK1) Kinase activity

IKKβ (IKK2) Kinase activity

NEMO (IKKγ) Regulatory and non-enzymatic

RHR, Rel homology region; NLS, nuclear localization sequence; AnkR, ankyrin repeats; DD, death domain; TAD, transactivation domain; PEST, region rich in proline, glutamate, serine,
and threonine; LZ, leucine zipper; Kinase, kinase domain; HLH, helix-loop-helix region; NBD, NEMO-binding domain; CC, coiled-coil domain; Zn, zinc-finger.

NF-κB is activated and triggers modification signals. The
activation involves two signaling pathways: the canonical and
the non-canonical (alternative) pathway (26).

The canonical pathway is initiated by tumor necrosis factor
receptor (TNFR), T cell receptor (TCR), Toll-like receptor
(TLR), and interleukin 1 receptor (IL-1R), leading to rapid
but transient NF-κB activation (23, 27). Upon TNF-α binding,
TNFR1 drives the assembly of the E3 ubiquitin ligases cellular
inhibitor of apoptosis (cIAP) as well as TNFR-associated
factor (TRAF) 2 with the protein kinase receptor-interacting
protein 1 (RIP1) (28). RIP1 is then ubiquitinated and bound
to NEMO (29), forming TGF-β activated kinase 1 (TAK1)-
IKK complex. TAK1 phosphorylates and activates IKKβ as
well as modification signals. TCR activates NF-κB through the
recruitment of CARD11/Bcl10/MALT1 (CBM) complex (30,
31), which is then ubiquitinated by recruiting TRAF6, resulting
in the activation of TAK1 as well as IKK (32). TLR and IL-1R

initiate signaling through recruiting myeloid differentiation
primary response gene 88 (MyD88) directly (33) or indirectly
(34) which induces the recruitment of IL-1 receptor-associated
kinase (IRAK) 1/4, followed by TRAF6 to activate TAK
complex and intracellular signaling cascades (35, 36) (Figure 1).
Sequentially, variant modification signals are converged on
the activation of TAK1, which activates the IKK complex via
phosphorylation of IKKβ. IκB family members phosphorylated
by IKK undergo ubiquitin-dependent degradation, releasing
the canonical NF-κB dimers, predominantly the p50-RelA and
p50-cRel (Figure 1). The regulation of the canonical NF-κB
pathway occurs at different levels to maintain homeostasis.
Firstly, NF-κB transcribes IκBα and IκBε genes to form
negative feedback (37). NF-κB activity is also controlled at the
transcriptional factor level. For example, IKKα and ubiquitin
ligase complex mediate the turnover of RelA (38) and impede
its binding to DNA (39). In addition, deubiquitylation of
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FIGURE 1

Canonical and non-canonical NF-κB pathway. The canonical pathway is induced via activation of receptors like TNFR, TCR, TLR, and IL-1R.
When TNFR is activated by ligands, it recruits TRADD and drives the assembly of cIAP, TRAF, and RIP1 which is then recruited to NEMO and
subsequent formation of IKK complex. TCR recruits CBM complex which is then ubiquitinated by TRAF6, resulting in the activation of TAK1. TLR
and IL-1R recruits MyD88 and IRAK1/4, followed by TRAF6 to activate TAK and then IKK complex. TAK1 phosphorylates and activates IKK
complex via phosphorylation of IKKβ. Then IκB family members phosphorylated by IKK undergo ubiquitin-dependent degradation, resulting in
the release of NF-κB dimers. The canonical NF-κB pathway is regulated precisely. IKKα impedes RelA binding to DNA in nucleus. A20 and CYLD
destabilize IKK complex via their deubiquitination activities. The activity of NF-κB is increased by TRAF- and LUBAC-mediated ubiquitination of
NEMO. The non-canonical NF-κB pathway is initiated from the stimulation of specific TNFRs, which triggers the recruitment of
TRAF3-TRAF2-cIAP and eventually results in stabilization and accumulation of NIK, which is impeded by deubiquitinase OTUD7B. Degradation
of NIK is promoted by NLRP12, CHIP, Peli1, and CRL4. NIK phosphorylates and activates IKKα, triggering phosphorylation and ubiquitylation of
p100. RelB and p52 generated from p100 constitute NF-κB heterodimer that conducts nuclear translocation and gene transcription. TRIM9 and
OTUB1 inhibit p100 processing and FBW7 mediates p100 destruction.

signal molecules upstream of IKK is important in the negative
regulation. A20 modifies signaling molecules, especially NEMO
to destabilize the IKK complex and down-regulate inflammatory
response (40). Tumor suppressor protein cylindromatosis
(CYLD) also inhibits the activation of IKK by a similar
mechanism (41). IKK inhibitors suppress thrombosis by
blocking soluble N-ethylmaleimide-sensitive factor attached
protein receptor (SNARE) complex formation and platelet
secretion, thus mitigating late-stage plaque development (42).
Lastly, canonical NF-κB is positively regulated by ubiquitination
of NEMO through TRAF and linear ubiquitin chain assembly

complex (LUBAC), which is crucial for IKK activation (43)
(Figure 1).

The non-canonical pathway is activated slowly and
persistently compared to the canonical one. It has a central
signaling component, NF-κB-inducing kinase (NIK), equivalent
to TAK1 in the canonical pathway. The signaling cascade is
based on the stimulation of specific TNFRs by CD40 ligand,
B cell-activating factor (BAFF), and lymphotoxin-β (14). The
process initiates from TRAF3-TRAF2-cIAP recruitment and
ends up with NIK activation (44). NIK phosphorylates and
activates IKKα (23, 45, 46), which mediates phosphorylation
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of p100, triggering its ubiquitylation via recruitment of the
E3 ubiquitin ligase βTrCP (47–49). The processing of p100
generates p52, resulting in the nuclear translocation of p52-RelB
heterodimer. Since the non-canonical activation relies on the
generation of p52 from p100, the processing of p100 lies in
the key position of regulation. This process is dependent on
ubiquitination and phosphorylation, which are regulated by
specific ubiquitin E3 ligase and NIK-IKKα axis, respectively.
The former includes tripartite motif family 9 (TRIM9) which
inhibits NIK-induced and β-TrCP-dependent p100 processing
(50). FBW7, also an E3 ligase, exclusively interacts with
glycogen synthase kinase 3β (GSK3β) phosphorylated p100
and mediates its destruction (51). OTUB1 is a deubiquitinase
that stabilizes p100. As a pivotal node in the non-canonical
pathway, NIK has a significant role in NF-κB regulation.
Its degradation is promoted by NOD-like receptors family
pyrin domain-containing (NLRP) 12 and E3 ligases, CHIP,
Peli1, and CRL4 (14). Additionally, OTUD7B, an A20-like
protein, deubiquitinates TRAF3 and thus negatively regulates
signal-induced non-canonical NF-κB (52) (Figure 1).

Notably, apart from those pathways mentioned above, ER
stress has emerged as an important trigger upstream of NF-κB.
NF-κB activation mediated by ER stress is dependent on Ca2+

efflux and subsequent production of reactive oxygen species
(ROS) (13). More mechanisms and interactions will be discussed
in detail later in this review.

The NF-κB and ER stress in
atherosclerosis

Three stages of atherosclerosis
progression

Atherosclerosis is a common chronic inflammatory disease
characterized by the accumulation of fibrin and lipids in
subendothelial space, being a leading cause of cardiovascular
diseases, including heart failure, stroke, and claudication (53,
54). AS dominantly occurs in the intima of middle and large-
sized arteries, where endothelial cells are exposed to excessive
shear stress. Vessel stenosis resulting from atherosclerotic
plaque could induce CVD by abolishing blood flow. However,
the dominant mechanism linking AS and CVD appears to be the
vulnerability of plaque (55). Vulnerable plaque rupture exposes
prothrombotic components, triggers the clotting cascade, and
leads to atherothrombosis (56). Notably, inflammation is the
pivotal cause of plaque progression and vulnerability.

Loss of intact endothelial functions occurs at the earliest in
atherogenesis, followed by lipid accumulation and fatty streak
formation under the endothelial cells. Fatty streak is a reversible
lesion that can appear as early as childhood. In this process,
multiple molecules mediate leukocyte adhesion, extravasation,

migration, chemotaxis, activation, and the formation of foam
cells from macrophages by uptake of lipids. Then the nascent
plaque generally develops and forms a complex lesion with
migration and proliferation of vascular smooth muscle cells
(VSMCs), which secrete extracellular matrix such as collagen
accumulated in the plaque (57) (Figure 2A). As plaque
progresses, a necrotic core containing necrotic material,
foam cells, cholesterol crystals, and lipids is formed and
developed. Necrotic cores are considered to further promote
inflammation, plaque rupture, and thrombosis by storing
inflammatory mediators, matrix proteases, and thrombotic
molecules (Figure 2B). A fissure of the fibrous cap eliminates
the barrier between the tissue factor rich in the lipid core and the
coagulation factors in the bloodstream, which triggers a clotting
reaction and leads to thrombosis in advanced atherosclerotic
lesions (58–61). Finally, the rupture of advanced plaque from the
instability of the fibrous cap is primarily determined by the level
of interstitial collagen (62). In addition, the disruption of fragile
neovasculature in atherosclerotic plaques provides a possibility
of sudden plaque progression (63) (Figure 2C).

NF-κB has been regarded as a critical player in atherogenesis
over the past decades partly because the genes it transcribed
mediate all three phases of AS (64–66). Studies have revealed
that IKK/NF-κB signaling promotes atherogenesis and that
targeting NF-κB is a treatment strategy against AS and
CVDs (67). Nevertheless, sufficient evidence proves that NF-
κB activation leads to both protective and destructive outcomes
(68). Research suggests that ER stress is associated with various
lesions during AS and affects the disease course, which occurs
in endothelial cells, VSMCs, and macrophages by integrating
protein and lipid metabolism, cell death, and inflammatory
responses (69).

Taken together, it is important to figure out how the NF-
κB, ER stress-related molecules, and their functional crosstalk
intervene in three stages of AS, including atherogenesis (plaque
formation), plaque progression, and plaque instability.

NF-κB and ER stress in early
atherosclerotic lesion formation

Endothelial dysfunction, an initial factor in early
atherosclerotic lesion formation, is induced by NF-κB and
downstream production of inflammatory cytokines, such as IL-
6 and TNF-α (70). Regenerated endothelial cells produce a large
amount of NO and aggravate inflammatory response, leading
to the formation of plaque (71). A recent study found that
RIP1 primarily drives inflammatory cells toward activation in
early atherosclerotic lesion formation in an NF-κB-dependent
manner (10). Moreover, inhibiting cyclooxygenase-2 (COX-
2) expression, a downstream gene of NF-κB, dramatically
impedes the early evolution of AS (72). CCL20, a chemokine
exerting selective attraction to lymphocytes, is upregulated
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FIGURE 2

NF-κB and ER stress in three phases of AS. (A) Atherogenesis. Endothelial dysfunction as an initial event in atherogenesis is induced by NF-κB
and downstream inflammatory mediators. The SREBP pathway is induced by ER stress and aggravates endothelial dysfunction. SREBP- and
NF-κB-induced NLRP3 inflammasome contributes to atherogenesis. Chemokines induced by NF-κB attract lymphocytes and trigger endothelial
inflammation. NF-κB also promotes the recruitment and differentiation of monocytes by increasing the levels of adhesion molecules and
M-CSF of endothelial cells. After differentiated into macrophages, UPR markers are activated, which protects macrophages from ER
stress-induced apoptosis. (B) Plaque progression. This phase is characterized by foam cell formation, VSMC migration and proliferation, ECM
accumulation, and NC formation. ROS/NF-κB regulates the migration and phenotypic switch of VSMCs. Circ-Sirt1 inhibits NF-κB and thus
alleviates the progression of AS. Macrophages uptake oxLDL via CD36 and this triggers the NF-κB signaling pathways, which promotes the
transformation into foam cells. XBP-1 also regulates foam cell formation, endothelial apoptosis and VSMC calcification. Inhibition of ER stress
promotes the formation of M1 subtype and subsequent foam cell formation. In macrophages, activated NLRP3 inflammasome causes
pyroptosis and apoptosis via caspase. (C) Plaque rupture. This phase is characterized by less SMCs and collagen, and more lipids and
macrophages, which could involve NF-κB-FasL pathway. Macrophages induce plaque rupture by secreting MMPs, which is regulated by
TLR4/NF-κB and RAGE/NF-κB signaling. Apoptosis of macrophages and VSMCs is induced by the prolonged ER stress, including PERK and
IRE-XBP1. CHOP is also a mediator of apoptosis, vascular remodeling and plaque necrosis, whose expression is promoted by UPR signaling.
Nrf2, as a synergistic mediator between NF-κB and ER stress, has an athero-protective role by upregulating some antioxidant enzymes.
Additionally, NLRP3 inflammasome-mediated up-regulation of MMPs predisposes plaque to rupture.

by NF-κB and is strongly associated with vascular endothelial
inflammation (73). At this early stage, NF-κB also participates
in the production of adhesion molecules in the endothelium,
including E-selectin, VCAM-1, and intercellular adhesion

molecule-1 (ICAM-1), promoting the recruitment of monocytes
(Figure 2A). The effects of NF-κB activation in the early stage of
AS are not limited to endothelial cells but also occur in various
cell types within the plaque (57). CCL20 is overexpressed
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in VSMCs of atherosclerotic lesions from coronary artery
patients, triggers the inflammatory response, and significantly
induces human lymphocyte migration (74). Besides, IL-33
upregulates the macrophage-colony stimulating factor (M-CSF)
of endothelial cells through the NF-κB pathway, promoting the
differentiation of monocytes (75).

Unfolded protein response activation in endothelial cells can
be observed at the very beginning of AS. In athero-susceptible
regions, activation of IRE1α and ATF6 is consistent with a high
expression of molecular chaperones in ER. Additionally, ATF4
and CCAAT/enhancer-binding protein (CEBP) homologous
protein (CHOP) mRNA are highly expressed, along with
activated PERK pathway in VSMCs and macrophages at this
stage (76) (Figure 2A). UPR activation aims to be a protective
response to harmful stress and promotes cell survival in
early atherosclerotic lesion formation. For example, UPR is
a vital modulator of the sterol regulatory element binding
protein (SREBP) pathway to maintain lipid homeostasis and
inflammatory response, which are important contributors to
atherogenesis (77–79).

NF-κB and ER stress in plaque
progression

NF-κB plays a considerable part in cell survival in addition
to well-known pro-inflammatory functions, and the two
directions may counteract each other in AS progression (80).
Research has suggested that IKKβ deletion increases AS in LDLR
deficient mice instead of preventing atherogenesis (68). Given
the death of foam cells facilitates the necrotic core due to a
defect in clearing accumulated lipids, more attention should
be paid to NF-κB’s roles in limiting plaque size other than in
pro-inflammation.

NF-κB activation regulates the migration and proliferation
of VSMCs, whereas the detailed mechanism is still controversial
(81, 82). A study by Mehrhof et al. shows that in a knock-
in mouse model expressing the NF-κB super repressor, the
proliferation rates of VSMCs did not differ from those in
wild-type when stimulated by platelet-derived growth-factor-
BB (PDGF-BB) or serum. Further study indicated that VSMC
proliferation is regulated by classical mitogenic signaling
pathways (MAPK and PI3K pathways) rather than NF-κB
(81). These results implicate that NF-κB may essentially play
a role in apoptosis and inflammatory responses in VSMCs
instead of pro-survival or growth signal in the progression
of AS. NF-κB-mediated phenotypic switch of VSMCs involves
increased synthesis capacity and decreased contraction capacity,
which is closely linked with the accumulation of extracellular
matrix and plaque promotion in the progression of AS (83–85).
Additionally, blocking ROS/NF-κB/mTOR/P70S6K signaling
pathway prevents PDGF-BB-induced VSMC phenotypic switch,
multiplication, and migration (83). Circ-Sirt1, as a non-coding

RNA (ncRNA) regulator of VSMC phenotype, inhibits NF-κB
translocation and binding to target DNA by directly interacting
with the p65 subunit in the cytoplasm and facilitating the
level of SIRT1 mRNA, respectively, which alleviates neointimal
hyperplasia and the progression of AS (85) (Figure 2B). NF-
κB activated by autoantibodies is also an important mediator
in atherosclerotic lesion growth. 27-kDa heat shock protein
(HSP27) in the blood combines with IgG anti-HSP27 auto-
antibodies to form an immune complex, which has a role
in anti-inflammation and anti-atherosclerosis. HSP27 immune
complex activates TLR4/NF-κB signaling and increases the
level of anti-inflammatory cytokine IL-10 in macrophages.
Moreover, HSP27 immune complex reduces form cell formation
by inhibiting oxidized low-density lipoprotein (oxLDL) binding
to scavenger receptors (86). In addition, under ER stress,
chaperone protein 78 kDa glucose-regulated protein (GRP78)
dissociates from ER and moves to the cell surface, resulting in
the generation of anti-GRP78 autoantibodies which activate NF-
κB and induce the expression of adhesion molecules in human
endothelial cells (87).

Generally, macrophages are divided into M1 and M2
subtypes, which have pro-inflammatory and anti-inflammatory
effects, respectively. In atherosclerotic plaques, both subtypes
are identified and play important roles in plaque progression
(Table 2). The disruption of balance is speculated to accelerate
foam cell formation and be related to plaque vulnerability (88).
M2 subtype is prone to apoptosis as a result of oxLDL toxicity,
leading to the accumulation of necrotic material within the
plaque (89). NF-κB signaling pathway affects the transition
from macrophages to foam cells and its further accumulation
in the subendothelial space underlying atherosclerotic disease.
In macrophages, oxLDL is taken via CD36 and other scavenger
receptors and is resistant to the lysosomal enzymes (90). It
signals via CD36-TLR4-TLR6 and triggers the NF-κB signaling
pathway to produce proinflammatory cytokines (91). MiR-216a
was found to promote telomerase activation in macrophages
via the Smad3/NF-κB pathway, contributing to the transition
from M2 to M1 (92). Applying fullerene derivatives inhibits
the oxLDL-induced differentiation of macrophages into lipid-
laden foam cells and plaque progression of apolipoprotein (Apo)
E knock-out mice arteries. Mechanically, fullerene derivatives
alleviate oxidative stress, inhibit CD36 receptor expression, and
reduce TRAF2/NF-κB pathway activation (93).

Endoplasmic reticulum stress is also a pivotal mechanism
regulating plaque progression. Spliced X-box binding protein-1
(XBP-1), a molecule downstream of IRE1 and ATF6, modulates
many aspects involved in AS progression, such as macrophage
apoptosis, foam cell formation, and IL-8 and TNF-α production.
Uncontrolled activation and excessive expression of splicing
XBP-1 contribute to endothelial apoptosis and eventually AS
evolution, as discovered in the branches and plaques of arteries
in ApoE knock-out mice, which may also be related to induction
of VSMC calcification (94, 95) (Figure 2B). ER stress is
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also considered to have an important role in macrophage
differentiation. Inhibition of ER stress affects lipid metabolism
characterized by an increase in cholesterol efflux, which shifts
the M2 subtype to M1 and reduces foam cell formation (96).
These studies imply that inhibition of ER stress, which promotes
transition toward M1, may decrease foam cell formation, inhibit
macrophage apoptosis, and block plaque development.

NF-κB and ER stress in advanced
atherosclerosis

During the last decades, people have been trying to
understand the pathophysiology of atherosclerosis, though
the precise mechanisms underlying plaque destabilization
still remain unclear. In this phase, studies have suggested
that macrophages secrete proteases, especially matrix
metalloproteinase-9 (MMP-9), to destroy elastin, fibrin,
and other matrix proteins that the tension of the fibrous
cap comes from, making macrophages an important player
in plaque destabilization (97). Several studies support that
downregulation of MMP-9 expression in macrophages is
mediated by suppressing TLR4/NF-κB signaling, which is

TABLE 2 Differences between M1 and M2 macrophages in
atherosclerosis.

M1 M2

Polarization
stimuli

Cholesterol crystals;
LPS;
Pro-inflammatory
cytokines;
OxLDLs

TGF-β;
IL-10;
IL-4;
IL-13

Activation
pathway

TLR-4 or NF-κB pathway LXR-α (liver X
receptor-α)

Secretion of
cytokines

TNF-α;
IL-1β;
IL-6;
IL-12;
IL-23

IL-10;
TGF-β

Predominant
metabolism

Aerobic glycolysis;
Fatty acid synthesis;
Production of
mitochondrial ROS

Oxidative
phosphorylation;
Fatty acid oxidation
(β-oxidation)

Localization Plaque shoulder and lipid
core

Adventitia and areas of
neovascularization

Association with
plaque stability

Abundant in
symptomatic and
unstable plaques

Abundant in stable zones
of the plaque and
asymptomatic lesions

Roles Occurrence of
postapoptotic necrosis
after dead cell
accumulation;
Formation of a necrotic
core;
Contribution to plaque
instability and rupture

Phagocytosis of apoptotic
cells and debris;
Increase of lipid
degradation and
prevention of foam cell
formation;
Resolution of
inflammation

associated with attenuation of plaque vulnerability (98, 99).
Receptor for advanced glycation end products (RAGE) is
a key factor for plaque destabilization in diabetes mellitus,
where its downregulation may suppress atherosclerotic
plaque development, an effect mediated by NF-κB inhibition
(100, 101). Statistical analysis of atherosclerotic lesions from
carotid arteries revealed colocalized NF-κB activation and
FasL overexpression, and a similar result was also found in
peripheral blood mononuclear cells (PBMCs), indicating the
NF-κB/FasL pathway may contribute to plaque vulnerability
(102) (Figure 2C).

Advanced atheroma provides environmental and molecular
bases that trigger ER stress and the UPR. ER-resident molecular
chaperone, GRP78/94, and HSP47 are predominantly localized
to the VSMC-rich fibrous cap of advanced plaques, suggesting
activation of the UPR in VSMCs (103). On the other hand,
under prolonged and enhanced ER stress, the activated PERK
pathway promotes the level of death effector, and IRE1α/XBP-1
may activate the apoptosis signaling pathway in macrophages
and VSMCs at this stage (104, 105). Thin-cap atheroma and
ruptured plaques display abundant dead macrophages and
VSMCs featuring strongly activated PERK/CHOP which is a
mediator of apoptosis on chronic ER stress and a contributor to
vascular remodeling and plaque necrosis (106–108) (Figure 2C).
The effects of ER stress on the advanced plaque in macrophages
are further demonstrated in AS-prone mice lacking CHOP,
which shows blockage of macrophage apoptosis and inhibition
of necrotic core formation (107, 109, 110).

The molecular interrelated roles of
ER stress and NF-κB in
atherosclerosis

Various pathological factors which activate NF-κB, such as
ROS, lipids, TLR ligands, and some cytokines (e.g., TNF-α and
IL-1), disrupt ER homeostasis and activate the UPR, leading to
the situation called ER stress (111). Of note, this relationship
is not likely one-sided. There are several potential avenues
through which ER function also affects inflammatory signaling.
And their interplay constitutes the pathological basis of many
inflammatory and metabolic diseases, including AS (112–114).
The ER stress is initiated with the dissociation of chaperone
proteins such as GRP78/Bip and GRP94 with the ER stress
sensor proteins (IRE1α, PERK, and ATF6), which leads to UPR
activation. Chaperones also directly participate in subsequential
UPR and NF-κB signaling. ATF6 and IRE1α pathways promote
the transcription of the ER chaperones, which is necessary for
the alleviation of the misfolded proteins to restore homeostasis
(115). GRP78 is a member of the chaperone HSP70 family
which is closely relevant to the endothelial dysfunction in the
development of AS, with a fundamental role in protecting
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protein stabilization and also in anti-inflammation (116). Note
that HSP70s suppress the expression of inflammatory cytokines
via inhibiting the NF-κB. HSP70s stabilize the IκB complex
through its binding and block IKK kinase activity and further
NF-κB mediated transcription (117, 118).

Three branches of UPR (IRE1α, PERK, and ATF6)
of ER stress have been reported to have crosstalk with
many inflammation-related signaling, including the NF-κB
pathway. For example, activated IRE1α and recruited TRAF2
activate JNK, inducing the production of IL-6 and TNF-
α by phosphorylation of AP-1 and consequent NF-κB
activation. ER stress induces TRAIL receptor activation which
leads to apoptosis through the FADD/caspase-8 pathway, or
alternative production of inflammatory cytokines through NF-
κB activation (119–121). However, ER stress can also lead to
inhibition of inflammation. The ER E3 ubiquitin ligase TRIM13
ubiquitylates the IKK regulatory subunit NEMO, blocking
the degradation of IκBα, which consequently inhibits NF-κB
translocation into the nucleus (122). Hence, it makes sense to
unravel the exact molecular mechanisms of ER-stress-induced
inflammation. Here we focus on how ER stress intersects with
NF-κB through various inflammatory signaling pathways to
form this integrated network (Figure 3).

Crosstalk through IRE1α

Several signal cascades have been discovered in the NF-κB
activation via IRE1α kinase activity. Activated IRE1α kinase
recruits TRAF2, which associates with IKK and degrades
IκBα to activate NF-κB (123). It is confirmed in endothelial
cells that LPS induces ER stress and overproduction of
IL-6 and MCP-1 through IRE1α/NF-κB pathway, resulting
in endothelial dysfunction (124). Moreover, Keestra et al.
found that Brucella abortus infection triggered ER stress and
induced inflammation and IL-6 production in a TRAF2,
nucleotide-binding oligomerization domain-containing protein
(NOD) 1/2, and RIP2-dependent manner, providing a novel
connection between ER stress and NF-κB activation (125).
IRE1α is also linked with the RIDD/RIG-I pathway upon
encountering viral RNAs, which induces an inflammatory
response through MAVS and downstream NF-κB (126).
In addition, IRE1α oligomerization generates spliced XBP-
1 mRNAs that are translated into potent transcription
factors (127). Increased XBP-1 expression contributes to the
secretion of myeloperoxidases, TNF-α, IL-6, and IL-1β, and
is negatively correlated with NF-κB expression in the colon
(128). Also, ER stress-induced IRE1α activation mediates
GSK3β activation and subsequent IL-1β gene expression (129).
XBP1s K60/77R mutation, preventing the ubiquitination and
proteasome-degradation of XBP1s, mimics the constitutive
activation of IRE1α elevated, and results in the elevated
GSK3β phosphorylation (130). In vivo and in vitro studies

have confirmed that GSK-3β activation is involved in NF-κB
activation, suggesting crosstalk between ER stress and NF-κB
through IRE1α/GSK3β pathway (131, 132).

Interestingly, GSK3β activation inhibits IRE1α-dependent
XBP-1 splicing, and they differentially regulate proinflammatory
cytokine gene expression, indicating complex signaling crosstalk
in inflammatory pathways (Figure 3).

Crosstalk through PERK

Protein kinase-RNA like ER kinase branch can induce NF-
κB activation essentially by translation attenuation, including
the free IκBα, mediated by phosphorylated eIF2α. Zhang et al.
observed that anti-dsDNA antibodies activate NF-κB and
upregulate various inflammatory cytokines through PERK-
eIF2α-ATF4 (133). Besides, a recent study has shown that
thapsigargin-induced PERK activation along with the inositol
triphosphate receptor (IP3R)-mediated calcium flux makes
cells more responsive to Salmonella typhimurium through
the NOD1-stimulated NF-κB activation and subsequent
inflammatory response (134). Nuclear erythroid-related factor
2 (Nrf2), a transcription factor mainly activated by PERK
and IRE1, also plays a pivotal role in the crosstalk between
UPR and NF-κB. Studies on the linkage between Nrf2 and
autophagy have shown that Nrf2 activates IKK and subsequent
NF-κB by enhancing the expression of p62, which explains
NF-κB-dependent autophagy activation (135–137). Complex
interrelation indicates that Nrf2 influences NF-κB both
positively and negatively due to various circumstances. For
instance, studies on Nrf2 knock-out mouse embryo fibroblasts
have shown increased activity of IKKβ and degradation of
IκBα (138). Moreover, the increase of Nrf2 activity in patients
with lupus nephritis prevents p65 activation by accumulating
glutathione. Increased heme oxygenase-1 (HO-1), a product
of the Nrf2 target gene, inhibits adhesion molecules such as
E-selectin and vascular cell adhesion molecule-1 (VCAM-1)
expressed in endothelial cells via NF-κB downregulation (139).
Additional experiments have implicated the PERK-eIF2α

signaling as a contributor to inflammation via the JNK and
PI3K-Akt pathway, but the detailed interaction with NF-κB has
not been well defined (140) (Figure 3).

Since Nrf2 serves as a platform of interrelation between NF-
κB and ER stress (Figure 3), special attention has been paid to
this transcription factor to better define its possible contribution
to oxidative stress of the vulnerable plaque (141) (Figure 2C).
The expansion of the necrotic core and the disruption of the
plaque are largely determined by the accelerated number of
apoptotic cells and phagocytic clearance defect. Nrf2 not only
upregulates the expression of different antioxidant enzymes but
also regulates mitochondrial ROS production through NADPH
oxidase (Nox) activity. Though most studies have demonstrated
the protective roles of Nrf2 against AS, several studies have

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2022.988266
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-988266 September 13, 2022 Time: 16:2 # 10

Li et al. 10.3389/fcvm.2022.988266

FIGURE 3

Crosstalk of NF-κB and ER stress. Three branches of UPR (IRE1α, PERK, and ATF6) of ER stress are able to intersect with NF-κB. Activated IRE1α
recruits TRAF2, which activates JNK and then AP-1 or associates with IKK probably via NOD1/2 and RIP2. IRE1α is also linked with the
RIDD/RIG-I/MAVS pathway and GSK3β to activate NF-κB. IRE1α oligomerization increases XBP-1 expression which might be associated with
decreased NF-κB expression, but GSK3β activation inhibits IRE1α-dependent XBP-1 splicing. PERK branch can induce NF-κB activation
essentially by translation attenuation of the free IκBα mediated by phosphorylated eIF2α. Additionally, PERK-eIF2α could also contributes to
inflammation via ATF4 or PI3K-Akt pathway. Both of NOD1 and Nrf2 could be activated by PERK and IRE1, but Nrf2 has both positive and
negative effects on NF-κB, dependent on cellular circumstances. Through the ATF6 branch transient phosphorylation of Akt activates NF-κB,
whereas ATF6 activation could inhibit Akt-GSK3β and enhance NF-κB signaling. Additionally, ER E3 ubiquitin ligase, TRIM13 ubiquitylates NEMO
and prevents nuclear translocation of NF-κB. CHOP could be activated by all three branches of UPR, causing ROS-mediated ER stress and
NF-κB inhibition or activation. ER stress-induced NLRP3 inflammasome is dependent on NF-κB and UPR activation. Signal 1 of NLRP3
inflammasome activation is transcriptional upregulation of NLRP3 along with pro-IL-1β provided by NF-κB. Signal 2 is a posttranscriptional
modification which can be provided by ROS. NF-κB controls the levels of ROS by regulating anti-oxidant and pro-oxidant genes, and ROS in
turn inhibits or enhances the DNA binding activity of NF-κB itself, depending on modifications of NF-κB. ROS also regulates the IKK complex
and phosphorylates IκBα. ROS produced by Nox4 transduces ER stress signals to the UPR to maintain homeostasis, whereas ROS produced by
ERO1 or mitochondrial damage leads to cell death. ROS, NF-κB, NLRP3 inflammasome and the production of IL-1β and IL-18, in turn, trigger
chronic ER stress.

revealed that it might play antagonistic roles, both preventing
and enhancing AS. Studies found that laminar blood flow
stimulates the anti-atherogenic activation of Nrf2, whereas
oscillatory blood flow promotes the opposite effect (142). Nrf2
in bone marrow-derived cells promotes plaque progression in
ApoE knock-out mice (143), while early AS is aggravated in
LDLR knock-out mice with Nrf2-deficient macrophages (144).
The positive atherogenic role of Nrf2 appears to be implemented
by IL-1 release and by promoting foam cell formation through
the expression of the CD36 scavenger receptor (145, 146).

Crosstalk through ATF6

As one of the UPR branches, ATF6 also plays a nonnegligible
role during ER stress and in its crosstalk with NF-κB.

However, Yamazaki et al. have confirmed that subtilase
cytotoxin-triggered rapid cleavage of molecular chaperone
GRP78/BiP (78-kD glucose-regulated protein/immunoglobulin
heavy chain binding protein in pre-B cells) leads to
Akt phosphorylation mediated by ATF6, contributing to
downstream NF-κB activation (147). Recently, another study
reported that the decrease of ATF6 expression induced by
miR-149 might attenuate inflammation and apoptosis through
NF-κB and Akt signaling cascades (148). In addition, in vitro
study showed that ATF6 activation induced by chemical
agents inhibits Akt/GSK3β and increases NF-κB activity, thus
improving the pro-inflammatory effect of TLR4 in ER-stressed
macrophages (149). Despite representing unique signaling
cascades, ample evidence has indicated that the UPR and
NF-κB may converge on nuclear transcription factors, such as
ATF3/4/6α, CHOP, and XBP-1 (150) (Figure 3). Taken together,
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the UPR has crosstalk with NF-κB at various levels, which offers
perspectives on the adjustment of cellular stress responses and
therapeutic application in the future.

Crosstalk through NLRP3

The NLRP3 inflammasome is a multi-protein complex
that recognizes PAMPs or damage-related molecular patterns
(DAMPs) and activates the protease caspase-1, leading to
pyroptosis and the formation of mature IL-1β and IL-
18 to mediate the inflammatory response (151). NLRP3
inflammasome connects lipid metabolism and inflammation
because it is activated by crystalline cholesterol and oxLDL in
plaques of AS, making it a possible player in the development
of AS. In general, transcription and modification signals of the
NLRP3 are necessary for its function. The former is provided by
the binding of LPS to TLR4, resulting in NF-κB activation and
consequent transcription of NLRP3 and IL-1β precursor (152).
The modification signals occur after transcription, one of which
is BRCA1/BRCA2-containing complex subunit 3 (BRCC3)-
mediated deubiquitination (153–155). Though the exact process
remains unanswered, it is considered that the activation of
the NLRP3 inflammasome is possibly associated with factors
such as K+ outflow, ROS, Ca2+ flux, and lysosomal rupture,
all of which can provide modification signal (156). Notably,
these mechanisms contribute to signal one by activating NF-
κB through ROS production. Hu et al. demonstrated that
in LPS-induced endometritis in mice, NLRP3 inflammasome
is activated via ER stress-associated pathway, along with
increased NF-κB and ROS (157). In LPS-induced liver injury,
NF-κB and the NLRP3 inflammasome activation along with
cytokine production such as TNF-α, IL-1β, and IL-18, in turn,
contribute to chronic ER stress to form negative feedback
(158). A recent study has observed that the ER stress-induced
NLRP3 inflammasome is dependent on NF-κB activation and
pro-inflammatory cytokine secretion, which is linked to the
pathogenesis of atrial fibrillation and can be potentially targeted
in cardiac tissue (159). Nevertheless, evidence has revealed that
UPR is not indispensable for inflammasome activation (160).
Since UPR is involved in NF-κB activation and ROS production,
which are related to the activation of the NLRP3 inflammasome,
these controversial results call for further insight into UPR
pathways as inflammasome mediators (Figure 3).

Atherosclerosis has been considered an inflammatory and
lipid metabolic condition, and since the NLRP3 inflammasome
is activated by lipids such as crystalline cholesterol and oxLDL,
it presumably combines different pathological bases of AS.
The NLRP3 inflammasome and subsequent caspase-1 activation
cause pyroptosis in macrophages after uptake of oxLDL and
might contribute to the progression of atheroma (161, 162). On
the other hand, the NLRP3 inflammasome induces macrophage
apoptosis via caspase-8 activation (163), though to what extent

this pro-apoptotic function protects against AS development
is still unanswered (Figure 2B). IL-1β and IL-18 produced by
the NLRP3 inflammasome increase the expression of many
endothelial molecules such as MCP-1, VCAM-1, and IL-8,
involving inflammatory cell adhesion, chemotaxis, recruitment,
and activation (164). Moreover, the NLRP3 inflammasome
promotes plaque instability and subsequent thrombogenesis
(165). Blocking NLRP3 signaling reduces the production of
pro-inflammatory cytokines in ApoE knock-out mice and
contributes to plaque stabilization by reducing macrophages and
lipids as well as increasing SMCs and collagen (166).

Although numerous studies have reported the impact of
NLRP3 inflammasome on the progression of AS, evidence
has suggested it is not as important as we have thought.
In vivo NLRP3 inflammasome is not critically implicated in
AS progression, infiltration by macrophages, and stability of
plaques (167). Research also supported that NLRP1 is more
likely to be a critical factor for the initiation of endothelium
inflammation (168). In addition, JNK1 and apoptosis signal-
regulating kinase 1 (ASK1) contribute to inflammasome
activation and caspase-8-mediated macrophage apoptosis,
though whether this JNK1/ASK1/caspase-8-dependent
apoptosis is directly mediated by NLRP3 inflammasome is
uncertain (155). The identified pro-apoptotic activity of NLRP3
inflammasome might produce an anti-atherogenic effect, which
could partly explain its controversial functions in AS.

Crosstalk through reactive oxygen
species

The relationship between NF-κB and ROS is not one-sided.
ROS is a key route linking the two events. Firstly, ROS activates
or inactivates the IKK complex in different cell types (169).
Often ROS alternatively phosphorylate IκBα, which may result
in the release and activation of NF-κB (169, 170). Also, ROS
may inhibit or enhance the DNA binding affinity of NF-κB
itself, depending on different forms of modification in NF-
κB heterodimers (171, 172). Another manner in which ROS
interacts with NF-κB is the crosstalk between JNK and NF-
κB, preventing persistent JNK activation and promoting cell
survival (173).

As to the interactions between ER stress and ROS, it is
proved that ROS plays both positive and negative roles during
ER stress and in determining cell fate (174). Upon being
produced by Nox4, an ER-resident oxygen-sensing enzyme,
ROS acts as a signaling intermediate to transduce ER stress-
related signals to the UPR, resulting in the correction of
the unsteady state. However, ROS as a pro-inflammatory
stimulus can further exacerbate inflammation after the UPR
activation (111). On the other hand, if ER stress persists,
delayed expression of the transcription factor CHOP leads to
induction of ER oxidase 1 (ERO1) to produce ROS. Meanwhile,
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mitochondria exaggerate ROS production stimulated by the
Ca2+ released from ER. Both contribute to a secondary increase
in ROS, generally leading to cell death. Therefore, ROS lies both
upstream and downstream of the UPR, making the network
composed of ER stress, ROS, and NF-κB more complex than
we have imagined.

Substantial evidence indicates that ROS is a central factor
through which ER stress functions cooperatively with NF-κB
in inflammation and other cellular processes. Li et al. observed
that recombinant Treponema pallidum protein regulates the
ROS/NF-κB pathway through ER stress. PERK induces the
activation of the NF-κB and JNK pathways, leading to the
production of IL-1β, IL-6, and IL-8 by macrophages (175). In
another study, NF-κB signaling is activated by phosphoinositol
3-kinase δ (PI3Kδ) through ER-associated ROS and RIDD-RIG-
I activation, which may induce severe airway inflammation and
hyperresponsiveness (176). In human lung cancer cells, it is
observed that a CHOP activator induces necrotic cell death
via ROS-mediated ER stress induction and unusual NF-κB
inhibition (177) (Figure 3).

The contribution of ROS to AS has been well investigated.
ROS causes endothelial dysfunction (178), atherogenesis (179),
and LDL oxidation (180). OxLDL has pro-inflammatory effects
and participates in the phenotype switching and apoptosis
of macrophages and VSMC in the AS progression (181,
182). ROS is positively related to atherosclerotic risk factors,
such as diabetes and hypertension, etc. In vivo studies of the
animal model have also shown that anti-oxidant treatments
delay or prevent AS (183), suggesting the aggravating role of
ROS in AS. A recent study has demonstrated that nicotine-
induced autophagy and subsequent phenotypic transition
of VSMCs accelerate AS, which is partly mediated by the
nAChRs/ROS/NF-κB signaling pathway (184). In addition, in
cultured VSMCs, chicoric acid impeded PDGF-BB-induced
VSMC phenotypic alteration, proliferation, and migration
mechanistically by blocking ROS/NF-κB/mTOR/P70S6K
pathway (83) (Figure 2B). However, the diverse effects of ROS
have been reported in AS. Nox4 is a major ROS-producing
NADPH oxidase and is widely expressed in VSMCs. Its
endothelial-specific overexpression increases ROS level,
promotes aging, and makes cells susceptible to apoptosis,
resulting in aggravated AS lesions in animals (185–187). Of
note, it is also found in several mice models that Nox4 knock-out
promotes initial plaque formation (188). Unlike Nox4, another
NADPH oxidase Nox2 overexpressing leads to atherogenic
rather than protective consequences (189), highlighting the
controversial roles of Nox-dependent ROS in AS. The crosstalk
between ER stress and ROS may be pivotal to understanding
the controversial effect of ROS. Nox4 but not Nox2 selectively
phosphorylates eIF2α, the downstream PERK arm of UPR, thus
providing a direct route for integrating ROS and ER stress. In
addition, Nox4 is central to a signaling feedback loop of Rho/Ras
GTPase and ER stress. RhoA activation occurs on ER surface

in response to UPR and further promotes Nox4-dependent
ROS production (190). Nox4-generated oxygen inactivates ER
calcium transporter SERCA (Sarcoplasmic Reticulum Ca2+

ATPases) and causes calcium-calmodulin-dependent activation
of RasGRF1/2, which further mediates the UPR activation
(191). Thus, ROS is more than a marker of oxidative stress, but
plays two opposite roles in ER stress (restoration of homeostasis
or apoptosis) and involves inflammation and cell growth. These
data emphasize the controversial effects of ROS and careful
considerations in Nox inhibitor development aiming to reduce
ROS levels. It is challenging for Nox4 inhibitor development to
retain the ER stress inhibition activity and the athero-protective
function of Nox4. Given the diverse signaling roles served
by Nox4, more specific Nox inhibitors targeting Nox1 and
Nox2 while excluding Nox4 could be an optimal treatment
strategy (174).

Pharmacological targeting of
NF-κB and ER stress in
atherosclerosis

Innovation of prevention and treatment strategies against
AS is still a pressing mission given being the leading cause of
mortality and morbidity in developed and developing countries.
Despite various interactions between ER stress and NF-κB,
whether and to what extent these mediator molecules play a
role in AS remains unanswered. Conceptually, several existing
pharmacological targeting on UPR, ROS, NLRP3 inflammasome
or other crossroads between ER stress and NF-κB could
potentially influence both of them and impede the progression
of AS. Herein, we focus on NF-κB inhibitors, UPR inhibitors,
ROS-interfering molecules, natural compounds, and some
ncRNAs with anti-atherogenic protective effects, targeting ER
stress and/or NF-κB, which are attractive potential therapeutic
strategies for AS (Table 3).

NF-κB inhibitors

BAY 11-7082 (BAY) inhibits IKK-mediated phosphorylation
of IκBα, resulting in decreased NF-κB and decreased expression
of adhesion molecules. In addition, BAY also suppresses the
translocation and activation of AP-1, interferon regulatory
factor-3 (IRF-3), and signal transducer and activator of
transcription-1 (STAT-1) by inhibiting the phosphorylation or
activation of ERK, p38, and JAK-2 (192). BAY is also an inhibitor
of NLRP3 inflammasome and a modulator of apoptosis
pathways shown in the management of psoriasis-like dermatitis
and oral cancer (193, 194). These suggest that BAY could serve as
a lead compound in developing potent anti-inflammatory drugs
with multiple targets in inflammatory responses.
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TABLE 3 NF-κB and/or ER stress modulators in experimental atherosclerosis and associated disease models.

Category Modulator Disease Model Pharmacological effect References

NF-κB
inhibitors

BAY 11-7082 Cancer;
inflammatory
diseases;
neurological diseases

LPS-stimulated
RAW264.7
macrophages

Inhibition on the translocation of p65, AP-1, IRF3,
and STAT-1; inhibition of the phosphorylation of
ERK, p38, and JAK-2

(192)

Imiquimod
cream-induced rat
model of psoriasis-like
dermatitis

Reduction of pNF-κB, NLRP3, TNF-α, IL-6, IL-1β,
IL-23, and phosphorylated STAT3

(193)

In vitro and in vivo
xenograft model of oral
cancer

Reduction of OSCC cell viability and of NLRP3
inflammasome, caspase-1, IL-1β, and IL-18
expression; increase of Bax, Bad, and p53
expression; reduction of Bcl-2 expression

(194)

Pyrrolidine
dithiocarbamate
(PDTC)

Inflammatory
disease especially AS

Rat aortic SMCs Activation of p38 MAPK and JNK; VSMC growth
inhibition

(195)

ApoE knock-out mice Blockade of NF-κB; down-regulation of IL-18,
IL-18Rα, CD36, and MMP-9; promotion of plaque
instability

(196)

IMD-0354 Cancer;
inflammatory
diseases;
cardiovascular
diseases

Organ culture of rat
mesenteric arteries with
removed endothelium

Inhibition on the up-regulated ET (B2) receptor
expression and NF-κB activation

(197)

Melanoma A375 cells
and skin epidermoid
carcinoma A431 cells

Inhibition of glutamine uptake; attenuation of
mTOR signaling; modulator of cell cycle, DNA
damage response and UPR/ATF4/CHOP

(198)

UPR
inhibitors

Sirtuin 1
(SIRT1)

Cardiovascular
diseases

Cardiomyocytes and
adult-inducible Sirtuin
1 knock-out mice

Protection against ER stress-induced apoptosis;
NAD+-dependent deacetylase, alleviating
activation of the PERK/eIF2α branch of the UPR

(199)

Irisin Metabolic disorders
and AS

OxLDL-induced
RAW264.7
macrophages

Alleviation of the apoptosis by inhibiting the
PERK/eIF2α/CHOP and ATF6/CHOP ER stress
signaling pathways

(200)

STF-083010 and
4µ8C

Metabolic disorders;
AS; cancer

Tunicamycin-treated
or high-fat diet fed BI-1
knock-out mice

Reduction of atherosclerotic plaque size; inhibition
of IRE1α RNase activity, lipid-induced mtROS
production, NLRP3 inflammasome activation, and
consequent secretion of IL-1 and IL-18

(205)

ROS-
interfering
molecules

(E/Z)-BCI
hydrochloride

Cancer;
inflammatory
diseases

LPS-activated
macrophages

Inhibition on LPS-triggered inflammatory
cytokine production; affecting macrophage
polarization to an M1 phenotype; decrease of ROS
production; inhibition on phosphorylation and
nuclear expression of p65; elevation of Nrf2 levels

(206)

Dihydrolipoic
Acid

Inflammatory and
neurological diseases

LPS-induced sickness
behavior rat model

Increase of the expression of ERK, Nrf2, and
HO-1; decrease of the ROS generation levels and
the expression of NLRP3, caspase-1, and IL-1β

(207)

LGH00168 Cancer A549 human NSCLC
xenograft mice

CHOP activator; induction of necroptosis via
ROS-mediated ER stress and NF-κB inhibition

(177)

Natural
compounds

Baicalin Cardiovascular
diseases; cancer

Neonatal rat
cardiomyocytes

Protection from ER stress-induced apoptosis;
targeting the CHOP/eNOS/NO pathway

(210)

Quercetin Cancer Glucosamine- induced
RAW264.7
macrophages

Prevention of apoptosis and lipid accumulation by
inhibiting ER stress; decrease of CHOP and GRP78
expression; increase of ATF6 expression, activated
JNK and caspase-12

(211)

Resveratrol Cancer;
cardiovascular
diseases; infection

Isoproterenol-induced
rat cardiomyocytes

Inhibition of cardiomyocyte hypertrophy and
apoptosis by suppressing ER stress; decrease of
GRP78, GRP94, and CHOP expression; reversion
of the expression of Bcl-2 and Bax

(215)

(Continued)
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TABLE 3 (Continued)

Category Modulator Disease Model Pharmacological effect References

Doxorubicin-induced
H9c2 cells

Protection against ER stress; downregulation of the
expression of ER stress marker proteins; ER
stabilization through the activation of the SIRT1
pathway

(216)

Parthenolide Migraine; arthritis;
AS; ischemic injury
in brain; cancer

Jurkat cell Promotion of plaque stability; decrease of NF-κB
activation and FasL expression

(102)

Permanent MCAO rat
model

Downregulation of NF-κB, phosho-p38 MAPK, and
caspase-1 expression

(220)

Reticuline Cardiovascular
diseases and
inflammatory
diseases

Xylene-induced ear
edema and
carrageenan-induced
paw edema in mice and
rats

Inhibition on the expression of pro-inflammatory
cytokines, such as TNF-α and IL-6; targeting
JAK2/STAT3 and NF-κB pathway

(221)

Sappanone A Inflammatory
diseases

LPS-stimulated
RAW264.7
macrophages

Induction of HO-1 expression by activating Nrf2
through the p38 MAPK pathway

(222)

Isoliquiritigenin Cancer; infection;
inflammatory and
neurological diseases

Collagenase
IV-induced
intracerebral
hemorrhage rat model

Suppression of ROS- and/or NF-κB-mediated NLRP3
inflammasome activation by promoting Nrf2
antioxidant pathway

(223)

NcRNAs Mir-181a-5p/3p Vascular
inflammation and
AS

ApoE knock-out mice Alleviation of atherosclerotic plaque formation;
decrease of proinflammatory gene expression; decrease
of infiltration of macrophage, leukocyte and T cell into
the lesions; targeting TAB2 and NEMO

(224)

LncRNA VINAS AS LDLR knock-out mice VINAS knockdown reduces atherosclerotic lesion
formation and expression of key inflammatory markers
and leukocyte adhesion molecules; targeting MAPK
and NF-κB signaling pathway

(225)

LncRNA
NORAD

Cancer; AS OxLDL-treated
HUVECs and
high-fat-diet ApoE
knock-out mice

Increase of endothelial viability; targeting NF-κB,
p53-p21 signaling pathways and IL-8

(226)

Circ-Sirt1 Cardiovascular
diseases

HUVECs, human and
rat VSMCs

Inhibition on inflammatory phenotypic switching of
VSMC and neointimal hyperplasia; impeding NF-κB
translocation and its binding to DNA

(85)

ERK, extracellular signal-regulated kinase; JAK, Janus kinase; OSCC, oral squamous cell carcinoma; Bax, Bcl2-Associated X; Bad, Bcl-2 associated death promoter; Bcl-2, B-cell lymphoma
2; ET, endothelin; mTOR, mammalian target of rapamycin; BI-1, Bax inhibitor-1; NSCLC, non-small-cell lung cancer; HUVEC, human umbilical vein endothelial cell; eNOS, endothelial
nitric oxide synthase; MCAO, middle cerebral artery occlusion.

Pyrrolidine dithiocarbamate (PDTC), another NF-κB
inhibitor, leads to PDTC-dependent VSMC growth inhibition
by inducing marked activation of p38 MAPK and JNK (195). In
addition, PDTC blocks IL-18 signaling in ApoE knock-out mice,
thus reducing inflammation and restoring plaque instability
(196). A better understanding of the molecular mechanisms of
PDTC provides a theoretical basis for clinical applications of
antioxidants in AS.

IMD-0354 is an IKKβ inhibitor known to exert anti-
inflammatory, antitumor, and radioprotective effects. The NF-
κB activation induced by TNF-α and associated up-regulation
of endothelin B2 receptor could be effectively suppressed
by IMD-0354 in VSMCs (197). Additionally, IMD-0354 is
confirmed as a potent inhibitor of glutamine uptake that
concomitantly attenuates mTOR signaling, but not IKK-NF-κB

signaling, suppresses the growth of melanoma cells, and induces
autophagy and apoptosis. Affected genes and molecules are
implicated in ROS/UPR signaling, including ATF4 and CHOP
(198). IMD-0354 has been applied in phase I clinical trials
for atopic dermatitis and choroidal neovascularization, though
its cardiovascular protective effect has not been verified in
clinical trials.

Blockage of NF-κB alone might be insufficient for AS
mitigation. Combination with NF-κB inhibitors and lipid-
regulating drugs such as statins could be a feasible scheme.
Considering that persistent NF-κB inhibition could cause
immune deficiency, future NF-κB inhibitors for AS treatment
should only be used as adjuvant and intermittent medicine. In a
word, the diversity of NF-κB modification signals makes it a long
way to apply NF-κB inhibitors in anti-atherosclerotic therapy.
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Unfolded protein response inhibitors

Given the associations mentioned above between the UPR
and NF-κB, the new functions of UPR inhibitors deserve
to be reconsidered. Three representative molecules are listed
in Table 3, with a special focus on their influences on
PERK/eIF2α, ROS production, and NLRP3 inflammasome
activation. Sirtuin-1 (SIRT1), an NAD+-dependent deacetylase,
protects cardiomyocytes from ER stress-induced apoptosis by
attenuating PERK/eIF2α pathway activation (199). A myokine,
irisin, inhibits the PERK/eIF2α/CHOP and ATF6/CHOP
pathways and alleviates the apoptosis of macrophages induced
by oxLDL (200). Mouse models have shown that irisin promotes
endothelial cell proliferation and significantly reduces AS in
mice by upregulating the expression of miRNA126-5p (201).
In the last decade, abundant clinical studies on the protective
functions of irisin in the cardiovascular system have made
breakthroughs. A recent cohort study has indicated low serum
irisin levels as biomarkers of subclinical AS (202). However,
existing studies mainly focus on serum irisin level increase
after beneficial interventions such as simvastatin or Omega-3
fatty acids, and direct clinical evidence is necessary before irisin
application (203, 204). Still, irisin has a promising preventive
and therapeutic prospect for AS. In mouse models, small
molecules STF-083010 and 4µ8C have shown a role in reducing
atherosclerotic plaque size by inhibiting IRE1α RNase activity,
lipid-induced mtROS production, and NLRP3 inflammasome
activation (205).

Although people already have much knowledge of UPR and
its roles in the development of AS, clinical trials evaluating UPR
inhibitors are still scanty. Considering that adaptive UPR is
important for the recovery of ER homeostasis, UPR inhibition
is possibly only an incidental anti-atherogenic mechanism
for potential UPR inhibitor drugs. For clinical use, specific
inhibition of critical interaction between NF-κB and ER stress in
one checkpoint of UPR branches could be an optimal strategy.

Reactive oxygen species-interfering
molecules

Many molecules present with anti-oxidant activities are
promising anti-atherogenic drugs. (E/Z)-BCI hydrochloride
(BCI), a small molecule inhibitor of dual-specificity phosphatase
6 (DUSP6), activates the Nrf2 signaling pathway and inhibits
NF-κB activity, alleviating inflammatory response and
decreasing ROS production in LPS-activated macrophages
(206). Dihydrolipoic acid exhibits strong antioxidant activities
in many conditions, especially neuroinflammation and provides
protection via Nrf2/HO-1/ROS/NLRP3 signaling cascade in
LPS-induced behavioral deficits in rats (207). Novel CHOP
activator LGH00168 inhibits the NF-κB pathway and induces

ROS-mediated ER stress, leading to necroptosis in A549 human
lung cancer cells (177).

Reactive oxygen species is an identified risk factor for
cardiovascular diseases. The activation of UPR branches,
especially IRE1α and PERK, leads to the abrogation of ER
stress-generated ROS, thus alleviating endothelial dysfunction.
As discussed later, many natural compounds work by mediating
ROS generation. Physical exercise is regarded as a supplement
to pharmacotherapy for cardiovascular diseases by reducing ER
stress and ROS (208, 209). In conclusion, numerous pathways
upstream of ROS make interventions on ROS one of the most
prospective strategies in extensive clinical settings more than
AS. One limitation of the clinical application of ROS-interfering
small molecules is toxicity.

Natural compounds

Baicalin is a primary active substance from the Scutellaria
root and attenuates ER stress-related apoptosis in vivo mediated
by CHOP/eNOS signaling pathway (210). Baicalin is a
marketed drug in China for the treatment of hepatitis, but
more convincing clinical outcomes are required to evaluate
its efficacy in treating AS. Quercetin existing in the pericarp,
flower, leaf, and seed of various plants has an effect on
maintaining ER protein homeostasis probably by increasing
ATF6 and reducing CHOP and GRP78 in glucosamine-
induced macrophages (211). Quercetin has been applied in
Phase 2/3 clinical trials on coronary artery disease, venous
thromboembolism, hypertension, and heart failure, and
assessed as disease improvement effects (212–214). Resveratrol
found in red wine attenuates cardiomyocyte hypertrophy
and apoptosis in isoproterenol-induced rat cardiomyocytes,
characterized by a low level of GRP78, GRP94, and CHOP,
and by a reversed level of Bcl-2 and Bax (215). Resveratrol
also alleviates doxorubicin-induced cardiocyte apoptosis of
rats by relieving ER stress-related inflammatory response and
activating SIRT1 signaling (216). A series of clinical studies have
shown that dietary resveratrol improves endothelial function
and exerts a beneficial effect on AS (217–219). Parthenolide is
demonstrated to be an anti-inflammatory mediator and an NF-
κB inhibitor, which has a potential application in cardiovascular
and cerebrovascular diseases. Studies have demonstrated that
the NF-κB/FasL signaling contributing to plaque rupture
could be inhibited by parthenolide (102). Furthermore, the
neuroprotective effect of parthenolide is characterized by the
downregulation of NF-κB, phospho-p38 MAPK, and caspase-1
(220). Reticuline has anti-inflammation roles in CVDs by
targeting the JAK2/STAT3 and NF-κB pathway, though the
specific mechanisms are still unknown and further verification
in atherosclerotic models is required (221). Sappanone A
increases the level of HO-1 mediated by p38/Nrf2 signaling
and suppresses LPS-induced NF-κB activation by modulating
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the p65 subunit, indicating its anti-inflammatory effect
(222). Isoliquiritigenin from Glycyrrhiza glabra could reduce
early neuronal degeneration after intracerebral hemorrhage,
involving the NLRP3 inflammasome regulated by ROS
and/or NF-κB through inducing Nrf2-mediated antioxidant
activity (223).

The health effects of natural compounds in humans are
limited by their purity and poor bioavailability, as they are
extracted from plants and rapidly metabolized and excreted.
Nevertheless, due to their easy availability from daily meals, diet
change could be a simple and beneficial intervention. We can
assume that natural compounds have a very high application
value in AS prevention and treatment as well as improvement
of general health conditions.

NcRNAs

NcRNAs have received most and more attention over
the last decades for their involvement in the progression
of AS. Research has identified two microRNAs, miR-181a-
5p and miR-181a-3p, cooperatively recede endothelium
inflammation through blockade of the NF-κB signaling
pathway by post-transcriptional regulation of TAB2 and
NEMO expression, respectively (224). Long ncRNA (lncRNA)
VINAS is highly expressed in intimal AS lesions and promotes
vascular inflammation by a possible mechanism involving
MAPK and NF-κB signaling pathways. Knockdown of
lncRNA VINAS decreases the expression of adhesion
molecules such as E-selectin, VCAM-1, and ICAM-1 and
inflammatory molecules such as MCP-1, TNF-α, IL-1β, and
COX-2 (225). LncRNA NORAD (non-coding RNA activated
by DNA damage) knockdown aggravates oxidative stress,
increases phosphorylated IκBα level and NF-κB nuclear
translocation, and directly promotes IL-8 transcription in AS
model. Therefore, lncRNA NORAD has a role in attenuating
endothelial cell injury and alleviating AS (226). In contrast,
ncRNA circ-Sirt1 directly binds to NF-κB and inhibits its
translocation (85).

A number of RNA therapeutics have been in clinical
phase II or III for various diseases, but lncRNAs are not
among them. Moreover, up to now, few RNA therapies have
been explored for cardiovascular diseases. The application
of ncRNA therapeutics in AS requires overcoming many
challenges, including immunogenicity, lack of specificity, and
delivery difficulty.

Conclusion

As NF-κB and ER stress are involved in many human
physiological processes, such as immunity and cancer, there
are certain limitations to be overcome before therapeutically

targeting them in AS. Also, new drug development is limited
by the complexity of intrinsic pathways and crosstalk with
other pathways. Therefore, the unexpected effects should be
considered with caution when evaluating the safety of NF-
κB and ER stress as targets for treatment. In this regard, it
is significant to further explore more specific and effective
crosstalk inhibitors and/or enhancers for atherogenesis, while
leaving the normal physiological functions unaffected. On the
other hand, these crossover effects also mean that a single
successful drug may have utility in multiple diseases.

Indeed, currently available studies provide only a theoretical
prospect of targeting interactions between NF-κB and ER stress
against AS, and more convincing experiments are required
to come closer to the production of an effective NF-κB
targeting anti-atherogenic drug. Nevertheless, a broader and
deeper understanding of NF-κB signaling and recognition of
the potential direct or indirect links between these divergent
pathogenic processes may eventually define the value of
targeting their crosstalk as a clinical application to AS.
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