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Abstract

Whole genome sequencing of viral specimens following molecular diagnosis is a power-

ful analytical tool of molecular epidemiology that can critically assist in resolving chains

of transmission, identifying of new variants or assessing pathogen evolution and allows a

real-time view into the dynamics of a pandemic. In Cyprus, the first two cases of COVID-

19 were identified on March 9, 2020 and since then 33,567 confirmed cases and 230

deaths were documented. In this study, viral whole genome sequencing was performed

on 133 SARS-CoV-2 positive samples collected between March 2020 and January

2021. Phylogenetic analysis was conducted to evaluate the genomic diversity of circulat-

ing SARS-CoV-2 lineages in Cyprus. 15 different lineages were identified that clustered

into three groups associated with the spring, summer and autumn/winter wave of SARS-

CoV-2 incidence in Cyprus, respectively. The majority of the Cypriot samples belonged

to the B.1.258 lineage first detected in September that spread rapidly and largely domi-

nated the autumn/winter wave with a peak prevalence of 86% during the months of

November and December. The B.1.1.7 UK variant (VOC-202012/01) was identified for

the first time at the end of December and spread rapidly reaching 37% prevalence within

one month. Overall, we describe the changing pattern of circulating SARS-CoV-2 line-

ages in Cyprus since the beginning of the pandemic until the end of January 2021. These

findings highlight the role of importation of new variants through travel towards the emer-

gence of successive waves of incidence in Cyprus and demonstrate the importance of

genomic surveillance in determining viral genetic diversity and the timely identification of

new variants for guiding public health intervention measures.
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Introduction

Corona Virus Disease-2019 (COVID-19) is a pulmonary disease caused by the Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) coronavirus [1]. SARS-CoV-2 was first

detected in December 2019 in Wuhan city in the Hubei province of China in a patient with

acute pneumonia [2, 3]. Following global spread of the virus, on March 11, 2020 the World

Health Organization (WHO) characterized COVID-19 as a pandemic, which is still ongoing

and as of February 24, 2021 over 110 million confirmed cases and 2.47 million deaths were

reported worldwide (https://covid19.who.int/).

The complete genome of SARS-CoV-2 isolated from a patient in Wuhan, China was initial

published on Jan 5, 2020 [2] and since then analysis of viral sequences worldwide is continuous

with more than 614,000 complete genomes currently available in public databases such as the

GISAID (https://www.gisaid.org/). The global real-time tracing of the viral spread through

whole genome sequencing is important in the race to timely identify the emergence of novel

SARS-CoV-2 variants that change the transmission, antigenic properties and/or pathogenicity

of the virus [4]. The recent identification of three major Variants of Concern (VOC), with

increased transmissibility and the potential to reduce vaccine effectiveness has led to increased

surveillance efforts worldwide [5, 6].

The SARS-CoV-2 genome consists of a single-stranded positive-sense RNA of around 30

kb in size with a 5’ cap and 3’-polyA tail. It contains of six major open reading frames (ORFs)

that encodes 27 different proteins, in which four are structural proteins: Envelope (E), Mem-

brane (M), Nucleocapsid (N) and Spike (S). The E protein function includes virion assembly

and morphogenesis and regulates cell stress response and apoptosis by promoting inflamma-

tion [7]. The M protein plays a key role in the virion assembly within the host cells [8], while

the N protein, can bind to the RNA genome, interact with the viral membrane protein, and

play a critical role in enhancing the efficiency of virus replication, transcription and assembly

throughout viral infection [9]. The most important factor that mediates virus entry and a pri-

mary determinant of cell tropism and pathogenesis of SARS-CoV-2 is the S protein [10]. S pro-

tein has two functional subunits, S1 and S2. S1 subunit contains the receptor-binding domain

(RBD) which binds directly to the host receptor angiotensin-converting enzyme 2 (ACE2),

enabling virus entry into host cells [11]. The S2 subunit is responsible for virus cell fusion [12].

Therefore, the S protein defines the infectivity of the virus and its transmissibility in the host

cell [13]. As this protein is the major antigen inducing protective immune responses [14, 15],

all vaccines developed or there are under development are directed against it.

The Republic of Cyprus is one of the countries in Europe least affected by the COVID-19

pandemic, presumably due to its rapid and effective response strategy that included high num-

ber of COVID-19 tests, effective tracing and isolation of cases and their contacts together with

preventive measures (e.g. social distancing, wearing face masks and hand washing) [16]. In

addition, being an island guaranteed high effectiveness of airport closure with regard to

importing of new cases. The first two cases of COVID-19 in Cyprus were identified on March

9, 2020 and since then 33,567 confirmed cases and 230 deaths were documented (https://

covid19.ucy.ac.cy/).

The aim of our study was to analyse and evaluate the genomic diversity of circulating

SARS-CoV-2 lineages in Cyprus. We report 133 full genome sequences obtained from individ-

uals tested positive by RT-PCR between March 2020 and January 2021 and evaluate their char-

acteristics and relationship with the progression of the pandemic in Cyprus. Public sharing

and use of genomic analyses are important tools for disease surveillance systems to track and

trace acquired COVID-19 cases for more accurate decision making and appropriate public

health action.
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Materials and methods

Sample collection

The Department of Molecular Virology of Cyprus Institute of Neurology and Genetics was

assigned as the reference laboratory for SARS-CoV-2 by the Cyprus Ministry of Health of the

Republic of Cyprus. More than 180,000 samples from public as well as private hospitals were

received and analysed since March 2020. For this retrospective observational study 133 SARS--

CoV-2 positive nasopharyngeal swabs obtained from patients referred for diagnostic purposes

between March 2020 and January 2021 were selected for full genome sequencing. A random,

unselected approach for sample selection was taken without pre-screening for variants of inter-

est to avoid sampling bias. The viral RNA had been previously detected using a qRT-PCR

assay and all samples selected had a cycle threshold value (Ct) lower than 30. The study was

approved by the Cyprus National Bioethics committee (EEBK 21.1.01.03). According to the

approval, as samples were fully anonymized, the Bioethics committee waived the requirement

for informed consent.

Next generation sequencing

Total RNA was extracted from 200 μl of nasopharyngeal swab fluid in a final volume of

50 μl, using the MagMAX Viral/Pathogen Nucleic Acid Isolation Kit (Applied Biosystems)

on a KingFisher™ Flex Purification System (Thermo Fisher Scientific). Libraries were pre-

pared using the QIAseq SARS-CoV-2 Primer Panel in conjunction with the QIAseq FX

DNA Library Kit (Qiagen) according to manufacturer’s instructions. In brief, viral RNA

was reverse transcribed to synthesize cDNA using random hexamers. cDNAs were ampli-

fied in two high-fidelity multiplex PCR reactions using two different primer pools that

together cover the entire SARS-CoV-2 genome. The two enriched pools per sample were

combined, purified using AMPure XP beads (Beckman Coulter) and quantified using the

Qubit dsDNA HS Assay kit (Invitrogen). Fragmentation, end-repair and A-tailing was per-

formed in a combined reaction per sample using 200 ng DNA. Next, Illumina platform-

specific adapters were ligated to both ends of the DNA fragments. Library size selection

and purification were carried out using AMPure XP beads (Beckman Coulter) in two

rounds (0.8x and 1x respectively). The libraries were quality analyzed using the Agilent

High Sensitivity D1000 ScreenTape on a 2200 TapeStation system (Agilent) and quantified

using the Qubit dsDNA HS Assay kit (Invitrogen). Equimolar quantities of libraries were

pooled (24 samples/pool) and sequenced on a Illumina MiSeq sequencer. All sequences

obtained were deposited at the GISAID EpiCov database accession numbers

EPI_ISL_1164626 –EPI_ISL_1164751 (www.gisaid.org).

Mapping, alignment and lineage assignment

The Burrows-Wheeler Aligner (BWA), version: 0.7.15 was used to map the raw reads to the

coronavirus reference genome Wuhan-Hu-1 (NCBI ID:NC_045512.2) [17]. Duplicate reads,

which are likely to be the results of PCR bias, were marked using Picard version: 2.6.0 (http://

broadinstitute.github.io/picard/). Samtools, version: 0.1.19, was used for additional BAM/

SAM file manipulations [18]. SNPs, amino acid replacements and indels were verified using

the CoV-Glue web interface [19]. Aligned reads were validated using the Integrative Genomics

Viewers v.2.9.2 and consensus sequences were extracted [20]. SARS-CoV-2 lineages of the 133

sequences were assigned using the dynamic nomenclature tool PANGOLIN (https://pangolin.

cog-uk.io) [21].
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Phylogenetic analysis

All phylogenetic analyses were conducted in MEGA7 [22]. The alignment of consensus

sequences was performed using MUSCLE. Bayesian information criterion (BIC) scores were

calculated for different models to determine the best fitting nucleotide substitution model. In

addition, jModelTest [23] was used for evaluating the best fitting nucleotide substitution

model under BIC yielding the same result (TN93model + gamma distributed rates). This

model was subsequently used to construct a Maximum Likelihood phylogenetic tree with 1000

bootstrap replicates. All positions containing alignment gaps and missing data were eliminated

only in pairwise sequence comparisons.

Results and discussion

Since the beginning of the pandemic and until the 24/2/2021, the Republic of Cyprus reported

33,567 SARS-CoV-2 confirmed cases (3.63% of the population) along with 230 associated

casualties (24.2/100,000) (https://covid19.ucy.ac.cy/). Based on the number of positives identi-

fied (see Fig 1) the course of the pandemic in Cyprus so far can be distinguished into three

main phases: a first phase during Spring 2020, starting with the first two cases identified on the

9th of March that peaked in the first week of April that was contained with a nationwide lock-

down and lasted approximately until June; a second phase during the summer that started

after the re-opening of the airports; and a third phase (which is still continuing) during

autumn/winter that peaked at the beginning of January and accounted for the majority of all

cases registered so far.

Overall, between March 11th 2020 and January 29th 2021, 15 different lineages were identi-

fied among the 133 samples sequenced (Table 1). As shown in Fig 3 the phylogenetic analysis

is in support of the PANGOLIN lineages assignment and reveals a picture of independent dis-

tinct, importations that are followed by local transmission (Fig 3). In the bubble chart in Fig 2

Fig 1. Daily number of positive SARS-CoV-2 cases in Cyprus identified between March 2020 and January 2021 (https://covid19.

ucy.ac.cy/). The start of the implementation as well as the lifting of important governmental pandemic control measures are

indicated.

https://doi.org/10.1371/journal.pone.0248792.g001
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three groups of lineages are clearly distinguishable and associate with the three phases of the

SARS-CoV-2 pandemic. Overall, 345 SNPs were identified within the 133 genomes when com-

pared to the Wuhan-Hu-1 reference genome. S1 Table lists all SNPs identified along with the

frequency of each SNP observed in each lineage.

During the spring wave four variants (B.1.1.74, B.1.1.277, B.1.235 and B.1.1.251) were iden-

tified reflecting several independent importation events followed by local transmission. How-

ever, concomitant with the decline in reported positive cases following the country-wide

lockdown, by the end of June these SARS-CoV-2 variants were no longer detected and none of

these re-emerged during the second or the third wave.

Following the re-opening of the airports, the summer months of July and August were char-

acterized by multiple distinct introductions of a variety of new lineages (B.1.36, B.1.236, B.1.2,

B.1.1.67, B.1.1.288, B.1.1.192), which marked the beginning of a small second wave (Fig 3).

The majority of the samples belonged to lineage B.1.2 and B1.236 accounting for 86% of the

samples in that wave, however, all these lineages again subsequently vanished. The B.1.2 line-

age has been otherwise observed only infrequently in Europe, but has been very common in

the United States and in Canada [24].

In September, two new lineages were identified for the first time, which were set to domi-

nate the autumn/winter wave until December, namely the B.1.177 and the B.1.258 variants.

The B.1.177 lineage, which is characterized by the A222V spike mutation, was previously

been shown to have emerged in Spain in early summer and subsequently became widespread

across Europe as well as Canada, accounting for the majority of sequences by autumn 2020

[25, 26]. However, no evidence of increased transmissibility of this variant was reported [27].

In Cyprus, this lineage was first identified on September 19th and continued to circulate until

the end of January at a relatively low but constant frequency fluctuating between 4% and 15%.

In September, the B.1.258 lineage was introduced, which spread rapidly and largely domi-

nated the autumn/winter wave with a peak prevalence of 86% during the months of November

Table 1. Time course of SARS-CoV-2 lineages identified in Cyprus between March 2020 and January 2021.

Lineage First detected Last detected

M
ar
-2
0

A
pr
-2
0

M
ay
-2
0

Ju
n-
20

Ju
l-2
0

A
ug
-2
0

Se
p-
20

O
ct
-2
0

N
ov
-2
0

D
ec
-2
0

Ja
n-
21

Total

Sp
rin
g
W
av
e B.1.1.74 11/03/20 10/06/20 1 2 1 1 5

B.1.1.277 22/03/20 25/03/20 3 3

B.1.235 17/04/20 17/04/20 1 1

B.1.1.251 27/04/20 05/05/20 1 1 2

Su
m
m
er
w
av
e

B.1.36 11/07/20 11/07/20 1 1

B.1.236 17/07/20 18/08/20 5 2 7

B.1.2 05/08/20 23/09/20 10 7 17

B.1.1.67 13/08/20 13/08/20 1 1

B.1.1.288 19/08/20 19/08/20 1 1

B.1.1.192 27/08/20 27/08/20 1 1

A
ut
um

n/
W
in
te
r

w
av
e

B.1.177 16/09/20 26/01/21 1 3 2 1 2 9

B.1.258 23/09/20 27/01/21 7 16 12 25 13 73

B.1.1.103 28/12/20 29/12/20 2 2

B.1.1.7 28/12/20 27/01/21 1 9 10

4 4 2 1 6 15 15 19 14 29 24 133

https://doi.org/10.1371/journal.pone.0248792.t001
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and December. All samples belonging to the B.1.258 variant identified in Cyprus contain the

six-nucleotide ΔH69/V70 deletion in the S gene, which was recently proposed to be labelled

B.1.258Δ [28].

This deletion, which has been shown to enhance viral infectivity [29] has arisen at least six

times independently and frequently followed receptor binding AA replacements (i.e. N501Y,

N439K, Y453F) [28]. In addition, the B.1.258 variant is characterised by the N439K mutation

that confers an increased binding affinity to the hACE2 receptor and leads simultaneously to

immune escape from a panel of neutralizing monoclonal antibodies as well as from sera of per-

sons recovered from infection [30].

By the end of December, the B.1.1.7 UK variant, also known as 20I/501Y.V1 and Variant of

Concern 202012/01 (VOC-202012/01), was identified for the first time in the Cypriot sample

set. This lineage was first reported on December 20th in the United Kingdom and drew imme-

diate attention due to its rapid spread and increased transmissibility [31]. The earliest sampled

genome of the B.1.1.7 variant dates back to September 20th. Since then it has grown rapidly in

frequency in the UK becoming the most prevalent lineage there with a similar development

also observed in a variety of other European countries, including Ireland, Spain and Greece

[32]. It is characterised by an unusual large number of mutations including N501Y in the

receptor-binding domain that increases ACE2 receptor affinity and P681H that creates a furin

cleavage site between S1 and S2, which was previously to promote transmission. It is

Fig 2. Bubble chart illustrating the pattern of SARS-CoV-2 lineages identified per month. The size of the circle is

proportional to the number of samples.

https://doi.org/10.1371/journal.pone.0248792.g002
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speculated that it may have originated in a chronically infected immunocompromised person.

In our sample set the frequency of this variant increased in a similar rapid manner from 3.4%

in December to 38% by the end of January despite declining case numbers highlighting its

superior fitness.

Similar studies have been reported from a plethora of countries around the world including

the UK, Ireland, Russia, India, Qatar etc. [26, 33–36]. These studies provide valuable informa-

tion on the routes of importation of new strains and the emergence of critical mutations that

change key parameters such as transmissibility or virulence, as was recently highlighted by the

discovery of the B.1.617 variant and its B.1.617.2 sub-lineage in India [37], which led to a surge

of SARS-CoV-2 infections in Delhi. It could be shown that B.1.617.2 exhibits a very high trans-

missibility, as much as 50% greater than B.1.1.7, while no increase in the case-fatality ratio

(CFR) was observed.

In Cyprus, the CFR after an initial peak exhibited a falling trend that stabilised over time

(see S1 Fig). However, it is difficult to draw conclusions about the virus pathogeny from the

CFR alone, as reason for the initially high CFR may lie in the lower testing capacity at the

beginning of the pandemic leading to an underestimation of the total number positive cases.

Other critical factors that were shown to impact on CFR and likely contributed to the observed

reduction are hospital capacity and COVID-19 treatment protocols [38].

Conclusions

Whole genome sequencing of viral specimens following molecular diagnosis is a powerful ana-

lytical tool of molecular epidemiology that can critically assist in resolving chains of transmis-

sion, identifying of new variants or assessing pathogen evolution and allows a real-time view

into the dynamics of a pandemic [39]. In this study we describe for the first time the changing

pattern of circulating SARS-CoV-2 lineages in Cyprus since its appearance between March

2020 and the end of January 2021. Distinct lineages of SARS-CoV-2 contributing to three sepa-

rate waves of infections reflective of the epidemiological pattern were observed.

The global real-time tracing of the viral spread through whole genome sequencing has led

recently to the identification of three major Variants of Concern (VOC). Lineage B.1.1.7 (20I/

501Y.V1, VOC-202012/01) better known as the UK variant possesses an unusual high number

of mutations is believed to be more transmissible than the wild-type virus. Lineage B.1.351

(501.V2, 20H/501Y.V2, VOC-202012/02) first detected and reported in South Africa in early

October 2020, shares several mutations with B.1.1.7 and is feared to reduce to some extend

vaccine effectiveness [40]. In Brazil, the P.1 (20J/501Y.V3, VOC-202101/02) lineage emerged

in December 2020 [41]. The P.1 lineage contains ten mutations in the spike protein that may

affect its ability to be recognized by antibodies [42, 43].

Of these three VOC only the B1.1.7 variant has so far been identified in Cyprus, which after

being encountered for the first time at the end of December was able to reach 37% prevalence

within one month. The majority of the Cypriot samples analysed belonged to the B.1.258Δ
lineage, which has been first detected at the beginning of August in Switzerland and has since

then spread to numerous European countries where it became one of the most prevalent line-

ages by December including the Czech Republic, Slovakia and Sweden [28, 44]. The N439K

receptor binding motif characteristic of this lineage has previously been reported to confer an

Fig 3. Phylogenetic analysis of full genome sequences of 133 Cypriot strains aligned against the reference genome

hCoV-19/Wuhan/Hu-1/2019 (NC_045512.2). Sample names consist of internal laboratory code followed by the date

of sampling. The percentages of replicate trees in which the associated taxa clustered together in the standard bootstrap

test (1000 replicates) are shown next to the branches. Only bootstrap values>70% are shown.

https://doi.org/10.1371/journal.pone.0248792.g003
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increased binding affinity to the hACE2 receptor and simultaneously leading to immune

escape from a panel of neutralizing monoclonal antibodies as well as from sera of persons

recovered from infection [30]. The association of mutations found in the B.1.258Δ lineage

with increased fitness and immune evasion along with the high prevalence in several European

countries stipulates further characterisation of this variant. A continuous surveillance of

SARS-CoV-2 by whole genome sequencing continues to be critical for timely detection of

emerging variants, identifying transmission modes and guiding public health intervention.

Supporting information

S1 Fig. Case-fatality rate (CFR) in Cyprus from March 2020 until January 2021. The CFR

was calculated as the ratio between cumulative number of confirmed deaths and cumulative

confirmed cases. The daily number of cases are shown for comparison.

(PDF)

S1 Table. Frequency of SNPs in lineages observed. Single nucleotide polymorphisms (SNPs)

were identified in the genomes with respect to the reference sequence (NC_045512). The fre-

quency of SNPs is calculated by the number of sequences with the SNP/total number of

sequences per lineage. SNPs are ordered by their position on the genome. Number of

sequences of each lineage are indicated in brackets in the header. SNPs with frequency >75%

are marked in green, SNPs with frequency between 50% and 75% are marked in yellow.

(PDF)
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44. Brandt1 C, Spott1 R, Hölzer2 M, Kühnert3 D, Fuchs2 S, Lohde1 M, et al. Molecular epidemiology of

SARS-CoV-2—a regional to global perspective. medRxiv. 2021; 2021.01.25.21250447. https://doi.org/

10.1101/2021.01.25.21250447

PLOS ONE Epidemiology of SARS-CoV-2 in Cyprus

PLOS ONE | https://doi.org/10.1371/journal.pone.0248792 July 21, 2021 12 / 12

https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
https://doi.org/10.1101/2021.01.26.21250543
https://doi.org/10.1101/2021.01.26.21250543
http://www.ncbi.nlm.nih.gov/pubmed/33532796
https://doi.org/10.1101/2020.11.06.372037
http://www.ncbi.nlm.nih.gov/pubmed/33442690
https://doi.org/10.1101/2021.01.25.21250447
https://doi.org/10.1101/2021.01.25.21250447
https://doi.org/10.1371/journal.pone.0248792

