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Abstract

As a key for studying the protein structures, protein fold recognition is playing an important role in predicting the protein
structures associated with COVID-19 and other important structures. However, the existing computational predictors only
focus on the protein pairwise similarity or the similarity between two groups of proteins from 2-folds. However, the
homology relationship among proteins is in a hierarchical structure. The global protein similarity network will contribute to
the performance improvement. In this study, we proposed a predictor called FoldRec-C2C to globally incorporate the
interactions among proteins into the prediction. For the FoldRec-C2C predictor, protein fold recognition problem is treated
as an information retrieval task in nature language processing. The initial ranking results were generated by a surprised
ranking algorithm Learning to Rank, and then three re-ranking algorithms were performed on the ranking lists to adjust the
results globally based on the protein similarity network, including seq-to-seq model, seq-to-cluster model and
cluster-to-cluster model (C2C). When tested on a widely used and rigorous benchmark dataset LINDAHL dataset,
FoldRec-C2C outperforms other 34 state-of-the-art methods in this field. The source code and data of FoldRec-C2C can be
downloaded from http://bliulab.net/FoldRec-C2C/download.
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Introduction

With the rapid development of the protein sequencing tech-
niques, the number of protein sequences is growing rapidly. In
contrast, the number of protein structures is growing slowly,
for examples, by March 2020, there are 561 911 proteins in
the UniProtKB/Swiss-Prot database [1], although there are only
162 043 determined structures deposited in Protein Data Bank
(PDB) [2]. The computational techniques are keys to reduce the
gap between the protein sequences and their structures and
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functions [3]. Protein fold recognition is one of the key tech-
niques for studying the protein structures and functions and
designing the drugs [4]. Particularly, the protein fold recognition
is playing a key role in predicting protein structures associated
with COVID-19 [5].

In this regard, several computational methods have been
introduced to recognize protein fold information only based on
the sequence information [6, 7]. These methods can be divided
into three groups: the ranking methods, the classification-based
methods and the meta-methods.

https://academic.oup.com/
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Inspired by the information retrieval task in natural language
processing, the ranking methods are based on the techniques
derived from the information retrieval field. The test proteins
(query proteins) search against the training proteins (template
proteins), and the template proteins are sorted according to
their similarities with the query proteins. The query proteins
are considered to be in the same fold as their corresponding top
hits of the template proteins. The ranking methods are different
in the measurements of the protein pairwise similarities [8].
The profile-based alignment methods [9, 10] and HMM-based
alignment methods [11, 12] are widely used approaches for cal-
culating the pairwise similarities. However, these methods failed
to detect the meaningful hits of the template proteins when the
sequence similarity is low.

The classification-based methods consider the protein fold
recognition task as a multiple class classification problem. These
methods are different in feature extraction methods [13] and
machine learning classifiers [14]. The protein pairwise similari-
ties calculated by the alignment approaches are widely used fea-
tures as well [15]. Because the profile-based features generated
by the PSI-BLAST contain the evolutionary information, they are
used as discriminative features for protein fold recognition [16,
17]. Ding and Dubchak propose a computational predictor based
on Support Vector Machines (SVMs) and Neural Networks for
protein fold recognition [18]. Polat and Dokur introduce a method
based on a new neural network called Grow-and-Learn network
[19]. In order to merge the different features, the multiview
modeling is employed for protein fold recognition [20], where
different features are treated as different views of proteins.
Recently, the deep learning techniques have been applied to
this field. For these methods, the deep learning models are
trained with a more comprehensive database to learn the fold-
specific features, and these features are then incorporated into
traditional classifiers, such as SVMs and Random Forest (RF), to
evaluate the performance on smaller independent datasets [14,
21–23].

The meta-methods combine the ranking methods and the
classification-based methods, for examples, TA-fold [24] ensem-
bles a classification-based method SVM-fold and the ranking
method HHsearch. Its assumption is that if the HHsearch cannot
detect the hits of template proteins with high confidence, the
prediction results of SVM-fold are used as the final results. This
framework is also employed by some later methods for protein
fold recognition [17] or related tasks [25]. They are different in
the ranking methods, classification-based methods and their
combinations [17].

All these aforementioned methods contribute to the compu-
tational investigation of protein fold recognition task. However,
these methods are only based on the pairwise similarity between
two proteins or the similarities between proteins in two different
protein folds. In fact, as shown in the SCOPe database [26], the
homology relationship of proteins is in a hierarchical structure,
and therefore, in order to recognize the fold of a test protein, its
global interactions with other proteins should be considered as
well. In this regard, several methods attempt to incorporate the
multiple protein interrelations into the prediction by considering
the relationship between the test proteins and training proteins,
for examples, Fold-LTR-TCP [27] employs the triadic closure prin-
ciple (TCP) to re-rank the ranking lists based on the protein simi-
larity network, and generates more accurate rank lists. CMsearch
[28] is based on cross-modal learning, which constructs two
networks to represent the sequence space and structure space.
ENTS [29] is an algorithmic framework to improve the large scale
similarity search performance. All these three predictors achieve

the state-of-the-art performance based on the protein similarity
networks. However, there are still some errors in their predictive
results. For examples, for Fold-LTR-TCP predictor, some test
proteins in different folds are predicted to be the same fold,
and some test proteins in the same fold are predicted as from
different folds. CMsearch and ENTS also incorrectly recognize
the folds of some proteins. These approaches only consider the
relationship between the training proteins and test proteins to
construct the protein similarity network, and ignore the relation-
ship among the test proteins, and the relationship among the
training proteins.

In order to overcome the disadvantages of the exiting
methods, we are to propose a novel predictor called FoldRec-
C2C for protein fold recognition by using three re-ranking
models to incorporate the interactions among proteins into
the perdition framework based on protein similarity network.
Proteins in the same clusters share similar characteristics, and
tend to be in the same protein fold. In this regard, FoldRec-
C2C employs the seq-to-seq model, seq-to-cluster model and
cluster-to-cluster model to measure the relationship between
the test proteins and the training proteins, the relationship
among the training proteins and the relationship among the
test proteins, respectively. FoldRec-C2C is the first predictor to
incorporate these three kinds of relationships into one frame-
work for protein fold recognition so as to reduce the prediction
errors.

Materials and methods
Benchmark dataset

The LINDAHL dataset constructed by Lindahl and Elohoosn [30]
is a widely used and rigorous benchmark dataset to evaluate
different computational predictors [20, 21, 30]. Therefore,
this dataset is employed in this study to facilitate the fair
performance comparison among various methods. There are
976 proteins in this dataset, and 38 folds with multiple proteins
are used as the targets. The proteins in this dataset are split
into two subsets with roughly equal number of proteins.
In order to rigorously simulate the protein fold recognition,
proteins from different subsets are in different superfamilies
and families. The 2-fold cross-validation is employed to
evaluate the performance of the predictor based on these two
subsets.

Overview of FoldRec-C2C predictor

Most of the existing methods treat the protein fold recognition
as a classification task or a ranking task. These methods detect
the fold of a query protein mainly based on the protein pairwise
similarities. In contrast, the CMSearch [28], ENTS [29] and Fold-
LTR-TCP [27] are based on protein similarity network. As a result,
these methods can consider the relationships among proteins in
the dataset, and accurately recognize the protein folds. Inspired
by this method, in this study, we propose the FoldRec-C2C pre-
dictor to recognize the fold of the query protein by considering
three kinds of relationships among proteins of the benchmark
dataset based on the protein similarity network, including the
relationship between the test proteins and the training proteins,
the relationship among the test proteins and the relationship
among the training proteins.

The flowchart of FoldRec-C2C is shown in Figure 1. In order
to measure these three kinds of relationships, we use three
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Figure 1. The flowchart of the FoldRec-C2C predictor based on three re-ranking models, including seq-to-seq, seq-to-cluster, and cluster-to-cluster models.

re-ranking models, including seq-to-seq model (S2S), seq-to-
cluster model (S2C) and cluster-to-cluster model (C2C). FoldRec-
C2C only requires the protein sequences in FASTA format as
inputs. The Learning to Rank (LTR) model is a supervised ranking
algorithm, including a training phase and a prediction phase.
The LTR is trained with the training set to rank the test pro-
teins against the training proteins. For more information of
the LTR for protein search, please refer to [31]. The ranking
results of the LTR are then fed into the S2C model to generate
the seq-to-cluster ranking list for the following processes. The
relationship between the test proteins and the training pro-
teins is measured by the seq-to-seq model based on a similar
approach introduced in [27], and then the relationship among
the training proteins is considered by the seq-to-cluster model.
Finally, the relationship among the test proteins is incorpo-
rated into the predictor by the cluster-to-cluster model. The
relationship among these three re-ranking models is shown in
Figure 2.

Seq-to-seq model

The seq-to-seq model is one of the most widely used ranking
methods for measuring the pairwise similarity between a query
protein in the test set and a template protein in the training
set. In this study we employed a recent proposed seq-to-seq

model based on the supervised LTR [27]. As discussed in previous
study, discriminative features are important for constructing the
computational predictors [32]. Following [27], the LTR was con-
structed based on various features (HHSearch [11, 12], DeepFR
[21], Top-n-gram [33] and 84 features [15]) to measure the protein
pairwise similarity. The software tools and its parameters are
given in Supplementary Tables S1 and S2. For more detailed
information of this method, please refer to [27].

Seq-to-cluster model

Although the seq-to-seq model can achieve good performance,
it is suffering from two errors: (i) some test proteins in different
folds are predicted as in the same fold; (ii) some test proteins in
the same fold are predicted as from different folds. The reason
is that the seq-to-seq model ignores the relationship among test
proteins, and the relationship among the training proteins. In
this regard, the seq-to-cluster model and the cluster-to-cluster
model are proposed. In this section we will first introduce the
seq-to-cluster model.

Can we correct these two kinds of errors with the help of the
correct predictions in their corresponding clusters by consider-
ing the relationship among the test proteins and the relation-
ship among the training proteins? To answer this question, the
seq-to-cluster model is proposed, which will be introduced in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa144#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa144#supplementary-data
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Figure 2. The relationship among the three re-ranking algorithms, including seq-to-seq, seq-to-cluster and cluster-to-cluster models.

followings.

SS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1,1 . . . s1,j . . . s1,n

...
...

...
si,1

...
sm,1

. . . si,j . . .

...
. . . sm,j . . .

si,n

...
sm,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where m represents the number of test proteins, n represents
the number of training proteins, si,j is the similarity between test
protein i and training protein j. SS can also be represented as:

SS = [
ST

1 , . . . , ST
i , . . . , ST

m

]
(2)

where, ST
i is the row vector of the matrixS.

SSN is the normalized matrix of SS, which can be calculated
by:

SSN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sn1,1 . . . sn1,j . . . sn1,n

...
...

...
sni,1

...
snm,1

. . . sni,j . . .

...
. . . snm,j . . .

sni,n

...
snm,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where, sni,j can be calculated by:

sni,j =
(
si,j + 1

)
3

(
1∥∥ST

i

∥∥
1 + 1

+ 1∥∥ST
i

∥∥
2 + 1

+ 1∥∥ST
i

∥∥
∞ + 1

)
(4)

where,
∥∥∥ST

i

∥∥∥
1
,

∥∥∥ST
i

∥∥∥
2
and

∥∥∥ST
i

∥∥∥
∞

represent 1-norm, 2-norm and

infinite norm of ST
i , respectively. Normalization of the ranking

results is critical for recalculating the scores of clusters in the
training samples [34]. This normalization method (cf. Eq. 4) is
better than other methods for protein fold recognition, such as
Min–Max [35]. The training proteins belong to the same fold
are clustered into one group. The similarity ci,f between the test
protein i and the training cluster f can be calculated by:

ci,f = 1
k

k∑
jεcluster f

1

0.01 + ln
(

2
sni,j+1

) (5)

where k is the total number of training proteins in the training

cluster f , the ln
(

2
sni,j+1

)
is the KL divergence derived from [36]. The

sequence and cluster similarity matrix SC can be represented as:

SC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 . . . c1,f . . . c1,38

...
ci,1

...

...
. . . ci,f . . .

...

...
c1,38

...
cm,1 . . . cm,f . . . cm,38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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Figure 3. The pseudo codes of seq-to-seq model, seq-to-cluster model and cluster-to-cluster model.

Cluster-to-cluster model

As discussed above, the seq-to-cluster model is able to solve
the first error. Here, we propose the cluster-to-cluster model
to overcome the second error by considering the relationship
among the test proteins. Its assumption is that the test
proteins in the same cluster tend to be in the same fold. If
some test proteins in the cluster are correctly predicted, the
other proteins in this cluster will be assigned as the same
fold.

In order to consider the relationship among the test proteins,
the similarity network of all the test proteins is constructed
based on the HHblits [12] with default parameters. This net-
work can be treated as a weighted digraph, where the test
proteins can be viewed as the vertices, and weighted edges
reflect the similarity between two test proteins, whose val-
ues are the Prob values in the range of (1, 100) generated by
HHblits. Because the similarities of some protein pairwise are
too low to be detected by HHblits, the test protein similar-
ity network is a disconnected digraph. In order to apply the
clustering methods, it should be converted into a complete
graph. The disconnected digraph of the test proteins can be
represented as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,1

...
hi,1

...
hm,1

. . . h1,j . . .

...
. . . hi,j . . .

...
. . . hm,j . . .

h1,m

...
hi,m

...
hm,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where hi,j represents the similarity of protein i and protein
j calculated by HHblits. H is then converted into a complete

graph G:

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1,1

...
gi,1

...
gm,1

. . . g1,j . . .

...
. . . gi,j . . .

...
. . . gm,j . . .

g1,m

...
gi,m

...
gm,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where gi,j is the similarity of protein i and protein j,
calculated by:

⎧⎪⎨
⎪⎩

gi,j = 0, if i = j
gi,j = 0.01, if i �= j, hi,j < 15
gi,j = max

(
hi.j, hj,i

) + 0.01, otherwise
(9)

In this study, we employ the spectral clustering [37] as the
clustering method to divide the test proteins into different
groups. The matrix G is an adjacency matrix, based on which
the eigenvectorx and the eigenvalue λ can be calculated by [37]:

(
D−1/2LD−1/2) x = λx (10)

where L is a Laplacians matrix [38], which can be calculated
by [37]:

L = D − G (11)
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Table 1. Performance of the FoldRec-C2C predictors based on three
re-ranking algorithms on the LINDAHL dataset evaluated by using
2-fold cross-validation

Methods Accuracy

FoldRec-C2Ca 70.09%
FoldRec-C2Cb 75.07%
FoldRec-C2Cc 77.88%

aFoldRec-C2C based on S2S.
bFoldRec-C2C based on S2C.
cFoldRec-C2C based on C2C.

where D is a diagonal matrix representing the degree of each
vertex in G, which can be calculated by [37]:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑m
j=1 g1,j

. . . ∑m
j=1 gi,j

. . . ∑m
j=1 gm,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Based on the eigenvectorx and the eigenvalueλ, the eigen
matrix is constructed to cluster the test proteins [39].

The similarity matrix SC between test proteins and training
clusters is normalized by Eq. 4. As a result, the normalized matrix
SCN is represented as:

SCN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cn1,1 . . . cn1,f . . . cn1,38

...
...

...
cni,1

...
cnm,1

. . . cni,f . . .

...
. . . cnm,f . . .

cni,38

...
cnm,38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where cni,f represents the similarity between the test protein i
and the training cluster f . SCN can also be represented as:

SCN =
[
SCNT

1 , . . . , SCNT
i , . . . , SCNT

m

]
(14)

where SCNT
i is the row vector of the matrixSCN.

The spectral clustering is then performed on the SCN to group
the test proteins into d clusters. Given a test cluster l with p test
proteins, the candidate set Q of cluster l can be generated by:

Q = {
q1, . . . , qi, . . . , qp

}
(15)

where qi represents the highest similarity of ith test protein in
the test cluster l, which can be calculated as follows:

qi = max
(
SCNT

j

)
(16)

The similarity between the test cluster l and the training
cluster f can be calculated by:

el,f = cnargmax(Q),f (17)

Table 2. Performance of the FoldRec-C2C predictors based on the
spectral clustering method and affinity propagation method on the
LINDAHL dataset evaluated by using 2-fold cross-validation

Methods Accuracy

FoldRec-C2Ca 77.88%
FoldRec-C2Cb 76.63%

aFoldRec-C2C based on C2C, and spectral clustering method. The parameters of
spectral clustering methods are given in Supplementary Table S3.
bFoldRec-C2C based on C2C, and affinity propagation method. The parameters
of affinity propagation methods are shown in Supplementary Table S3.

Finally, the similarity matrix CC generated by the cluster-to-
cluster model is represented as:

CC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,1

...
el,1

...
ed,1

. . . e1,f . . .

...
. . . el,f . . .

...
. . . ed,f . . .

e1,38

...
el,38

...
ed,38

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

The fold type of the test proteins in the test cluster l is
predicted as the fold type of the training cluster sharing the
highest similarity with cluster l.

The pseudo codes of seq-to-seq model, seq-to-cluster model
and cluster-to-cluster model are shown in Figure 3. The source
code and data of FoldRec-C2C can be downloaded from http://
bliulab.net/FoldRec-C2C/download.

Evaluation methodology

The test proteins in a test cluster are considered to be in the
same fold as the training cluster with the highest similarity score
calculated by Eq. 17. The accuracy is the ratio of the number of
correctly predicted proteins (CN) to the number of all predicted
proteins (N) [16]:

Accuracy = CN
N

× 100% (19)

Furthermore, the specificity–sensitivity curves [21, 30] of var-
ious methods are plotted to more comprehensively evaluate the
performance of different predictors.

Results and Discussion
The Performance of three re-ranking algorithms
for protein fold recognition

In this study, three re-ranking algorithms are incorporated into
the in the proposed FoldRec-C2C predictor, including seq-to-
seq model, seq-to-cluster model and cluster-to-cluster model.
Among these three methods, the seq-to-cluster model improves
the seq-to-seq model by considering the relationship among
the training proteins, and the cluster-to-cluster model further
improves the seq-to-cluster model by considering the relation-
ship among the test proteins. Table 1 lists the performance
of three FoldRec-C2C predictors based on the three re-ranking
algorithms. From this table we can see the following: (i) among
the three methods, the FoldRec-C2C predictor based on the seq-
to-cluster model outperforms the FoldRec-C2C predictor based
on the seq-to-seq model, indicating that the first error (some

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa144#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa144#supplementary-data
http://bliulab.net/FoldRec-C2C/download
http://bliulab.net/FoldRec-C2C/download
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Figure 4. The specificity–sensitivity curves of different methods on LINDAHL dataset. The results of the three FoldRec-C2C predictors can be accessed at http://bliulab.

net/FoldRec-C2C/download/, and the results of the other 9 competing methods are downloaded from http://protein.ict.ac.cn/deepfr/evaluation_data/lindahl_results/.

test proteins in different folds are predicted as in the same fold)
can be fixed by considering the relationship among the training
proteins; (ii) The FoldRec-C2C predictor based on the cluster-to-
cluster model achieves the best performance among the three
predictors, indicating that considering the relationship between
the test proteins and training proteins, the relationship among
training proteins, and the relationship among test proteins is
able to overcome not only the first error, but also the second error
(some test proteins in the same fold are predicted as from dif-
ferent folds). Therefore, we conclude that the cluster-to-cluster
model is suitable for protein fold recognition.

The impact of clustering methods on the performance
of FoldRec-C2C

The clustering method is one of the core steps in FoldRec-
C2C, which clusters the test proteins into different groups, and
proteins in the same cluster tend to have similar protein fold.
For the test proteins, their protein similarity network was con-
structed based on the pairwise similarities between two test
proteins detected by HHblits. The protein similarity network is
a weighted undirect graph representing the relationship among
test proteins, where the vertices represent proteins and the
weighted edges represent the similarity between two vertices.
Based on the undirect graph, the clustering methods divide the
test proteins into different clusters. Spectral clustering method

[37] and affinity propagation method [40] are two state-of-the-
art graph-based clustering methods. The aim of both spectral
clustering and affinity propagation is to find the best cuts to
divide the graph into multiple subgraphs. The affinity propa-
gation finds the high weighted edges in an iteration manner.
If two vertices are connected by an edge with positive weight,
they are considered to be in the same cluster, otherwise, they
are in different clusters. The spectral clustering constructs a
Laplacians matrix, based on which the eigen matrix can be
obtained by calculating the eigenvalues and eigenvectors, and
then the clusters are generated based on the eigen matrix.
The results of the two FoldRec-C2C predictors based on these
two clustering methods are shown in Table 2, from which we
can see that both the two clustering methods achieve high
performance, and the spectral clustering method is better than
the affinity propagation method for clustering the test proteins.
These results indicate that the graph-based clustering methods
are accurate strategies for clustering the test proteins for protein
fold recognition.

Performance comparison with 34 other competing
methods

In the protein fold recognition field, 34 state-of-the-art com-
putational methods are compared with the proposed FoldRec-
C2C, including PSI-BLAST [9], HMMER [41], SAM-T98[42],

http://bliulab.net/FoldRec-C2C/download/
http://bliulab.net/FoldRec-C2C/download/
http://protein.ict.ac.cn/deepfr/evaluation_data/lindahl_results/
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Figure 5. Visualization of the predictive results of FoldRec-C2C. (a) Shows the overall predictive results of all the test proteins in LINDAHL dataset. (b–d) Visualize the

predictive results of test proteins in fold 2_1 (SCOP ID) detected by S2S (b), S2C (c), and C2C (d), respectively. (e–g) Visualize the predictive results of test proteins in fold

4_50 (SCOP ID) detected by S2S (e), S2C (f), and C2C (g), respectively. These results were visualized with the help of Gephi [58] software tool.

BLASTLINK[30], SSEARCH[43], SSHMM[43], THREADER[44],
FUGUE[45], RAPTOR[46], SPARKS[47], SP3[48], FOLDpro[49],
HHpred[50], SP4[51], SP5[52], BoostThreader[53], SPARKS-X[54],
FFAS-3D[55], RF-Fold [15], DN-Fold[56], RFDN-Fold[56], DN-
FoldS[56], DN-FoldR[56], HH-fold[24], TA-fold[24], dRHP-PseRA[10],
MT-fold[20], DeepFR (strategy1) [21], DeepFR (strategy2) [21],
DeepFRpro (strategy1) [21], DeepFRpro (strategy2) [21], DeepSVM-
fold[22], MotifCNN-fold[57] and Fold-LTR-TCP[27]. Among these
35 methods, the Fold-LTR-TCP and FoldRec-C2C are based on the
protein similarity network, especially the FoldRec-C2C predictor
is able to measure the relationship between the test proteins
and the training proteins, the relationship among the training
proteins, and the relationship among the test proteins. Table 3
shows the accuracies of the 35 different methods. We can see
the followings: (i) the methods based on the features derived
from deep learning techniques (DeepFRpro, MotifCNN-fold and
DeepSVM-fold) are better than the those based on the rule-based
features; (ii) Fold-LTR-TCP improves the predictive performance
by considering the protein similarity network describing the
relationship between the test proteins and the training proteins,

and re-ranks the results by TCP; (iii) similar as Fold-LTR-TCP, the
proposed FoldRec-C2C is also based on the protein similarity
network, but this network is more comprehensive, which not
only describes the relationship between the test proteins and
the training proteins, but also contains the relationship among
the test proteins, and the relationship among the training
proteins. Furthermore, FoldRec-C2C is able to correct the errors
of Fold-LTR-TCP by using the proposed cluster-to-cluster model.

The specificity–sensitivity curves [21, 30] of various methods
are also plotted to more comprehensively evaluate their perfor-
mance, and the results are shown in Figure 4, from which we can
see that the three FoldRec-C2C predictors obviously outperform
the other competing methods.

Feature analysis

In order to further explore the reasons why the proposed
FoldRec-C2C predictor can correct the two errors discussed in
section ‘Seq-to-cluster model’, the final predictive results of the
test proteins in the LINDAHL dataset are visualized in Figure 5(a),
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Table 3. Performance of 35 computational methods for protein fold
recognition on LINDAHL dataset via 2-fold cross-validation

Methods Accuracy Source

PSI-BLAST 4% [9]
HMMER 4.4% [41]
SAM-T98 3.4% [42]
BLASTLINK 6.9% [30]
SSEARCH 5.6% [43]
SSHMM 6.9% [43]
THREADER 14.6% [44]
FUGUE 12.5% [45]
RAPTOR 25.4% [46]
SPARKS 24.3% [47]
SP3 28.7% [48]
FOLDpro 26.5% [49]
HHpred 25.2% [50]
SP4 30.8% [51]
SP5 37.9% [52]
BoostThreader 42.6% [53]
SPARKS-X 45.2% [54]
FFAS-3D 35.8% [55]
RF-Fold 40.8% [15]
DN-Fold 33.6% [56]
RFDN-Fold 37.7% [56]
DN-FoldS 33.3% [56]
DN-FoldR 27.4% [56]
HH-fold 42.1% [24]
TA-fold 53.9% [24]
dRHP-PseRA 34.9% [10]
MT-fold 59.1% [20]
DeepFR (strategy1) 44.5% [21]
DeepFR (strategy2) 56.1% [21]
DeepFRpro (strategy1) 57.6% [21]
DeepFRpro (strategy2) 66.0% [21]
DeepSVM-fold 67.3% [22]
MotifCNN-fold 72.6% [57]
Fold-LTR-TCP 73.2% [27]
FoldRec-C2Ca 77.88% This study

aFoldRec-C2C based on C2C, and spectral clustering method.

where the test proteins and training proteins are shown as blue
points and green points, respectively. The test proteins in the
same cluster are connected by blue lines, and the test proteins
in different clusters are connected by black lines, meaning that
although their similarities can be detected by HHblits, they are
not in the same cluster based on the results of spectral clustering
method. If two clusters are connected by the red line, all the
proteins in these two clusters are in the same protein fold.

Two examples were selected to show how the proposed
cluster-to-cluster model solves the aforementioned two errors.
One example is the prediction of the test proteins in fold 2_1
(SCOP ID). This protein fold contains 19 proteins and 10 proteins
in the test and training set, respectively. Figure 5(b) shows the
predictive results of the FoldRec-C2C based on S2S, where the
gray lines indicate the similarity scores between any test protein
and training protein calculated by the S2S, and the predictive
results are shown in red lines. Figure 5(c) shows the results of
FoldRec-C2C based on S2C, where the similarity scores between
any test protein and cluster in training set calculated by the S2C
are shown in gray lines, and the predictive results are shown
in red lines. Figure 5(d) shows the results of FoldRec-C2C based
on C2C, where the read lines represent the similairty scores
between the cluster in the test set and the cluster in the training

set, which can be considered as the final predictive results of
FoldRec-C2C. From Figure 5(b–d) we can see the followings: (i)
S2C is more accurate than S2S, and C2C is the most accurate
model which can correctly identify all the test proteins in the
fold 2_1; (ii) although the test proteins in the fold 2_1 were
clustered into two clusters by spectral clustering method, both
the two clusters are correctly connected to the cluster of fold 2_1
in the training set, indicating that even the spectral clustering
method fails to correctly cluster all the test proteins, the C2C
model is able to correct this error.

Another example is the prediction of the test proteins in fold
4_50 (see Figure 5(e–g)). This protein fold contains six proteins
and one protein in the test and training set, respectively. From it
we can see the followings: (i) the S2S model incorrectly detects
the test proteins in fold 4_50; ii) the S2C model correctly predicts
some of these proteins by considering the relationship among
training proteins, but it still fails to predict some proteins; (iii)
The C2C model correctly predicts all these proteins in the fold
4_50 by considering both the relationship among test proteins,
and the relationship among training proteins.

These two examples show that the proposed FoldRec-C2C
predictor based on C2C can correct the errors caused by the
S2S model. The reason is that the false positives and negatives
predicted by S2S are corrected by the correctly predicted proteins
in the same cluster detected by the S2C and C2C. Therefore,
FoldRec-C2C outperforms the other existing methods.

Conclusion
As a key technique to predict the protein structures, protein
fold recognition is attracting more and more attentions. There-
fore, we proposed the FoldRec-C2C predictor based on the pro-
tein similarity network for protein fold recognition. To con-
sider a global interactions among the proteins in this network,
three re-ranking algorithms are used to model three kinds of
relationships in the protein similarity network. The seq-to-seq
model measures the relationship between the test proteins and
the training proteins, based on which the seq-to-cluster model
improves the seq-to-seq model by considering the relationship
among training proteins as well. The cluster-to-cluster model is
proposed to further incorporate the relationship among the test
proteins. Future study will focus on constructing more accurate
protein similarity network to reflect the fold level relationship
among proteins, and exploring more accurate re-ranking algo-
rithms to take the advantages of the global interactions among
proteins. Because the cluster-to-cluster model is a general algo-
rithm, it would have other potential applications in bioinformat-
ics, such as noncoding RNA and disease association prediction,
protein complex prediction, etc.

Key points
• Protein fold recognition is critical for protein struc-

ture and function prediction, and the computational
methods are playing important roles in this field.

• In this study, the FoldRec-C2C predictor is proposed
for protein fold recognition, which is based on the
cluster-to-cluster model. FoldRec-C2C considers the
relationship among the test proteins, the relationship
among training proteins, and the interactions between
test proteins and training proteins.
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• Experimental results on a widely used and rigorous
benchmark dataset show that FoldRec-C2C outper-
forms other 34 state-of-the-art predictors.

• The source code and data of FoldRec-C2C can be
downloaded from http://bliulab.net/FoldRec-C2C/do
wnload.

Supplementary Data

Supplementary data are available online at https://academic.ou
p.com/bib.
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