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Abstract
Aim: The	Theory	of	Island	Biogeography	posits	that	ecological	and	evolutionary	pro-
cesses	regulate	species	richness	of	isolated	areas.	We	assessed	the	influences	of	an	
island	area	and	distance	from	the	mainland	on	species	richness,	phylogenetic	diver-
sity,	and	phylogenetic	composition	of	snakes	on	coastal	islands.
Location: Coastal	islands	of	the	megadiverse	Atlantic	Forest	in	southeastern	Brazil.
Methods: We	compiled	the	species	composition	of	17	coastal	islands	in	southeastern	
Brazil.	Species	richness	and	phylogenetic	diversity	were	calculated	for	each	island.	
Phylogenetic	composition	was	measured	using	principal	coordinates	of	phylogenetic	
structure.	We	then	employed	generalized	linear	models	to	test	the	influence	of	area	
and	distance	from	the	mainland	on	the	diversity	metrics.
Results: We	found	a	prominent	influence	of	area	on	species	richness,	whereas	phylo-
genetic	 diversity	was	more	 affected	 by	 distance	 from	 the	mainland.	 Snake	 clades	
were	distinctly	associated	with	area	and	distance.	The	Boidae	family	was	associated	
with	nearer	and	larger	 islands,	whereas	Elapidae	was	broadly	distributed.	Distance	
from	 the	 mainland	 was	 associated	 with	 the	 distribution	 of	 Dipsadidae,	 whereas	
Colubridae	was	influenced	by	both	the	area	and	distance.	The	Viperidae	family	at-
tained	higher	values	of	phylogenetic	diversity	in	smaller	and	more	remote	islands.
Main conclusions: This	island	system	conserved	a	considerable	piece	of	snake	rich-
ness	from	southeastern	Brazil,	 including	island	endemic	species.	Area	and	distance	
from	the	mainland	were	important	drivers	of	snake	diversity	 in	the	Atlantic	Forest	
coastal	islands.	However,	these	predictors	affected	the	different	components	of	di-
versity	in	different	ways.	Phylogenetic	composition	analysis	enables	us	to	understand	
how	basal	nodes	contributed	to	high	levels	of	phylogenetic	diversity	on	smaller	and	
farther	islands	regardless	of	the	decrease	in	species	richness.
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1  | INTRODUC TION

MacArthur	and	Wilson's	Theory	of	Island	Biogeography	proposes	
that	ecological	and	evolutionary	processes,	such	as	colonization,	
speciation,	and	stochastic	extinction,	regulate	species	richness	in	
isolated	areas	by	 creating	 an	equilibrium	between	 the	gain	 and/
or	 exclusion	 of	 species	 (MacArthur	 &	Wilson,	 1963,	 1967).	 The	
fundamental	prediction	of	the	Island	Biogeography	theory	is	that	
the	rates	of	processes	involved	are	dependent	on	the	geographical	
context,	whereas	island	area	and	isolation	play	significant	roles	in	
the	species	richness	equilibrium	(Patino	et	al.,	2017).	Thus,	species	
richness	 is	 expected	 to	 decrease	 in	 smaller	 islands	 farther	 from	
the	mainland	due	to	greater	local	extinctions	and	less	immigration,	
and	to	increase	in	larger	islands	closer	to	the	mainland	because	of	
the	high	levels	of	immigration	and	larger	area	available	for	forag-
ing	(MacArthur	&	Wilson,	1963,	1967;	Warren	et	al.,	2015).	Larger	
islands	also	tend	to	hold	larger	populations	by	reducing	the	prob-
ability	of	stochastic	extinctions	(Whittaker	&	Fernández-Palacios,	
2007).

Most	 studies	 testing	 predictions	 of	 the	 Theory	 of	 Island	
Biogeography	have	focused	on	species	 richness	patterns	 (Kadmon	
&	Pulliam,	1993;	Kalmar	&	Currie,	2006;	Lindgren	&	Cousins,	2017).	
As	an	example,	Centeno,	Sawaya,	and	Marques	(2008)	corroborated	
the	 Theory	 of	 Island	 Biogeography	 by	 comparing	 the	 structures	
(species	 richness,	 composition,	 and	 dominance)	 of	 snake	 assem-
blages	in	a	Brazilian	tropical	island	system,	which	suggested	that	rel-
ictual	snake	populations	from	the	continental	lowland	and	Serra	do	
Mar	coastal	range	were	part	of	the	island's	composition.	However,	
diversity	on	islands	could	also	be	related	to	evolutionary	processes,	
such	as	the	time	available	for	speciation	and	rates	of	extinction	 in	
the	regional	species	pool	(Losos	&	Schluter,	2000;	Rabosky	&	Glor,	
2010).	Furthermore,	strong	evidence	exists	of	fast	speciation	within	
islands	(Amaral,	1921;	Barbo	et	al.,	2016;	Barbo,	Grazziotin,	Sazima,	
Martins,	&	Sawaya,	2012),	which	contributes	to	the	assembling	pro-
cess	in	the	area,	with	endemic	species	being	generated	in	some	is-
land	systems.

Lomolino	(2000)	notes	some	paradigms	and	limitations	of	Island	
Biogeography	Theory,	 including	spatial	and	 temporal	 scales,	 immi-
gration	 filters	 (e.g.,	 intervening	 landscapes	or	 seascapes	 and	envi-
ronmental	conditions	regarding	island	size),	the	neutral	theory,	and	
the	 challenge	 of	 evolutionary	 approaches	 to	 better	 clarify	 the	 as-
sembly	process	in	insular	community	structures.	However,	even	the	
combination	of	molecular	phylogenies	and	species	composition	has	
not	been	well	explored	to	investigate	the	role	of	speciation	in	driving	
island	community	structures.

We	 have	 experienced	 an	 era	 of	 rapidly	 emerging	 community	
phylogenetic	 tools,	 making	 it	 feasible	 to	 test	 island	 biogeography	
predictions	 through	 an	 evolutionary	 timescale.	 Recently,	 Pyron	
and	 Burbrink	 (2014)	 employed	 community	 phylogenetic	 tools	 to	
analyze	patterns	of	snake	diversity	of	510	islands	around	the	globe	
and	 demonstrated	 that	 colonization	 was	 the	 main	 process	 ex-
plaining	 most	 of	 species	 richness	 distribution	 patterns	 in	 islands.	

Furthermore,	they	verified	in	situ	diversification	as	rare	and	not	con-
tributing	to	island	species	richness.	These	authors	also	have	shown	
that	 phylogenetic	 diversity	 on	 islands	 is	 associated	 with	 isolation	
and	climate	but	not	area.	Herein,	we	advance	our	understanding	by	
identifying	the	influence	of	area	and	distance	from	the	mainland	on	
snake	 lineages	 in	 a	megadiverse	 tropical	 biodiversity	 hotspot.	We	
also	shed	light	on	the	possible	processes	responsible	for	island	com-
munity	assembly	under	a	phylogenetic	approach.

We	aimed	to	assess	the	accuracy	of	the	predictions	of	the	Theory	
of	 Island	 Biogeography	 for	 the	 determination	 of	 species	 richness,	
phylogenetic	diversity,	and	lineage	composition	of	snakes	among	the	
coastal	islands	in	the	Atlantic	Forest	hotspot.	We	sought	to	answer	
the	following	questions:	(a)	Do	species	richness	and	phylogenetic	di-
versity	of	coastal	islands	increase	in	larger	and	closer	islands?	and	(b)	
How	different	are	the	phylogenetic	components	regarding	the	vari-
ation	 in	 island	area	and	distance	from	the	mainland?	We	expected	
that	 species	 richness	 and	 phylogenetic	 diversity	 would	 present	 a	
positive	relationship	to	area	and	a	negative	association	to	distance	
from	the	mainland,	as	predicted	by	Island	Biogeography	Theory,	but	
different	lineages	should	affect	richness	and	phylogenetic	diversity	
of	snakes	in	islands	differently.

2  | MATERIAL S AND METHODS

2.1 | Study area and database

We	analyzed	17	coastal	islands	located	in	the	Atlantic	Forest	domain	
in	 São	 Paulo	 state,	 southeastern	 Brazil	 (23°23'00''	 to	 25°19'13''S	
and	44°43'44''	 to	48°06'00''W).	Precipitation	 in	the	 islands	ranges	
from	90	to	330	mm/year,	and	the	average	temperatures	ranges	from	
18	to	27°C	(Cicchi,	Sena,	Peccinini-Seale,	&	Duarte,	2007).	The	cli-
mate	is	considered	tropical	by	Peel,	Finlayson,	and	McMahon	(2007).	
These	islands	conserve	dense	ombrophilous	forest	and	herbaceous	
shrub	phytophysiognomies,	as	well	as	“restinga”	vegetation	(Cicchi,	
Serafim,	 Sena,	 Centeno,	 &	 Jim,	 2009;	 Kurtz	 et	 al.,	 2017;	 Rocha,	
Bergallo,	Conde,	Bittencourt,	&	Santos,	2008).

The	number	of	species	was	recorded	from	Cicchi	et	al.	 (2007),	
Centeno	et	al.	 (2008),	Rocha	et	al.	 (2008),	Cicchi	et	al.	 (2009),	and	
Barbo	 et	 al.	 (2012).	We	 considered,	 as	 a	 regional	 pool,	 108	 spe-
cies	with	 potential	 occurrence	 in	 the	 dense	 ombrophilous	 forests	
of	 the	region	 (see	Zaher	et	al.,	2011),	which	makes	them	potential	
colonizers	for	studied	islands.	To	characterize	island	areas	and	dis-
tance	from	the	mainland,	we	extracted	data	from	Cicchi	et	al.	(2007)	
(Table	1).	We	considered,	as	the	local	pool,	the	species	composition	
of	 each	 island.	 In	 this	way,	we	provided	 a	 complete	 list	 of	 the	40	
species	included	in	our	analyses	(Table	1	and	Supporting	information	
Appendix	S1).

2.2 | Phylogenetic diversity and composition

To	 estimate	 phylogenetic	 diversity,	 we	 used	 a	 consensus	 phylo-
genetic	 tree	 from	 Tonini,	 Beard,	 Ferreira,	 Jetz,	 and	 Pyron	 (2016)	
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encompassing	9,755	species	of	Squamate	 reptiles.	Missing	species	
(Echinanthera bilineata,	Thamnodynastes nattereri,	and	Xenodon mer-
remii)	 in	 this	 phylogeny	were	 conservatively	 placed	 in	 polytomies	
within	genera,	along	with	their	sister	species,	by	using	the	package	
phytools	(Revell,	2018)	of	R	software	version	3.2.1.	Bothrops otavioi 
was	manually	moved	in	Mesquite	Software	(Maddison	&	Maddison,	
2011),	with	 the	 related	 island	endemic	 species	 from	the	 “jararaca”	
group	(see	Barbo	et	al.,	2012)	(Figure	3).

We	estimated	phylogenetic	diversity	by	using	the	richness-inde-
pendent	metric	Phylogenetic Species Variability	(PSV)	(Helmus,	Bland,	
Williams,	&	Ives,	2007).	PSV	quantifies	the	decrease	in	phylogenetic	
relatedness	according	to	similarities	shared	by	all	species	in	a	com-
munity	(herein	in	each	island),	regardless	of	the	total	number	of	spe-
cies.	Briefly,	PSV	is	an	index	based	on	the	phylogenetic	covariance	
expected	for	the	related	taxa,	which	is	scaled	between	0,	where	all	
species	are	closely	related,	and	1,	where	all	species	present	a	similar	
trend	in	the	degree	of	relatedness,	as	with	a	star	phylogeny	(Helmus	
&	Ives,	2012).	We	used	the	package	picante	(Kembel	et	al.,	)	to	cal-
culate	the	PSV	index.

To	evaluate	the	variation	in	lineage	composition	among	islands,	
we	 used	 the	 principal	 coordinates	 of	 the	 phylogenetic	 structure	
analysis	 (PCPS;	 see	Duarte,	2011)	 calculated	 in	 the	PCPS	package	
(Debastiani,	2015;	Debastiani	&	Duarte,	2014).	This	approach	allows	
verification	of	the	main	orthogonal	gradient	of	the	variation	in	the	
phylogenetic	 structure	 among	 the	 islands.	 The	 phylogenetic	 com-
position	matrix	was	calculated	using	phylogenetic	 fuzzy	weighting	

(see	Pillar	&	Duarte,	2010;	Duarte,	Debastiani,	Freitas,	&	Pillar,	2016)	
converted	into	a	Bray	Curtis	dissimilarity	matrix.	The	next	step	was	
to	apply	a	principal	coordinate	analysis	(PcoA)	to	generate	principal	
coordinates	of	phylogenetic	structure	 (PCPS)	for	each	 island.	Each	
PCPS	is	a	vector	describing	an	orthogonal	phylogenetic	gradient	of	
the	lineages	included	(Duarte,	2011;	Duarte,	Prieto,	&	Pillar,	2012).	
PCPS	with	 higher	 eigenvalues	 depicts	 the	monotonic	 gradient	 re-
garding	basal	nodes	of	 the	phylogenetic	 tree	 (Duarte	et	al.,	2012).	
As	 the	 PCPS	 eigenvalues	 decrease,	 finer	 phylogenetic	 gradients	
concerning	more	terminal	nodes	are	described	(Duarte	et	al.,	2012).	
Thus,	 to	 represent	 the	phylogenetic	 composition,	we	 selected	 the	
first	two	PCPS	vectors	with	a	significant	association	with	predictor	
variables	that	represent	the	greater	variation	on	phylogenetic	com-
position	structure	regarding	area	and	distance	from	the	mainland.

2.3 | Data analysis

We	evaluated	the	collinearity	among	predictor	variables	with	vari-
ance	 inflation	 factor	 analyses	 (VIF;	 Zuur,	 Ieno,	 &	 Elphick,	 2010),	
considering	VIF	<	3.0	as	the	threshold	to	exclude	autocorrelated	en-
vironmental	 predictors.	After	 the	VIF	 procedure,	we	 standardized	
the	predictors	by	scaling	them	to	have	the	same	range	of	variation	
(mean	0	and	unit	variance)	to	avoid	potential	type	I	and	II	errors.

To	test	the	influence	of	island	area	and	distance	from	the	main-
land	on	richness,	phylogenetic	diversity	(PSV),	and	PCPS	vectors,	we	
used	a	generalized	linear	model	(GLM)	based	on	Akaike	information	

Islands Area Distance Richness PSV PCPS 1 PCPS 3 PCPS 4

1-Alcatrazes 135 33.4 4 0.64 0.008 0.07 0.04

2-Anchieta 828 0.49 6 0.65 −0.13 −0.005 −0.05

3-Barnabé 173.4 0.01 2 0.59 0.2 0.06 −0.09

4-Bom	Abrigo 154 3.55 2 0.81 −0.18 0.14 0.07

5-Búzios 755 24.09 4 0.68 −0.04 −0.02 −0.02

6-Cananeia 13.7 0.24 16 0.48 0.16 −0.04 0.002

7-Cardoso 22,500 0.08 25 0.42 0.2 −0.02 −0.03

8-Comprida 20,000 0.31 12 0.53 0.09 −0.07 −0.002

9-Couves 64.5 2.53 1 0.0 0.18 0.15 −0.15

10-Mar	Virado 119 2 3 0.57 −0.18 −0.09 −0.15

11-Porchat 15 0.23 10 0.55 0.01 −0.07 −0.03

12-Porcos 24.2 0.74 1 0.0 −0.39 −0.21 −0.008

13-Queimada	
Grande

430 34.8 2 0.81 −0.21 0.15 0.07

14-Santo	
Amaro

14,000 0.05 21 0.50 0.16 −0.07 0.17

15-São	
Sebastião

33,600 1.76 22 0.49 0.17 −0.06 0.16

16-São	Vicente 6,000 0.12 22 0.44 0.19 −0.04 −0.02

17-Vitória 221.3 37.97 4 0.69 −0.24 0.13 0.05

Note.	Predictor	variables:	area	(hectares)	and	distance	from	mainland	(kilometers)	(from	Cicchi	et	al.,	
2007);	 snake	 richness	 and	 phylogenetic	 diversity	 (Phylogenetic Species Variability—PSV);	 and	 as-
sessed	principal	coordinates	of	phylogenetic	structure	(PCPS).

TA B L E  1  Coastal	islands	of	the	Atlantic	
Forest	in	southeastern	Brazil	and	dataset	
of	metrics	used	in	this	study
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criteria	(AIC;	Burnham	&	Anderson,	2002).	The	GLM	model	is	a	use-
ful	tool	when	the	data	exhibit	nonconstant	variance	distribution	or	
when	 no	 normal	 distribution	 of	 errors	 is	 present	 (Crawley,	 2007).	
GLM	is	able	to	define	the	type	of	error	distribution	by	applying	the	
best	model	to	improve	the	correlation	between	the	predictors	and	
response	variables,	which	 is	 the	Gaussian	distribution	 in	 this	case.	
We	applied	two	different	types	of	null	models	to	access	the	signifi-
cance	of	the	GLMs:	in	the	first	one,	the	site	positions	were	randomly	
shuffled	across	the	environmental	gradient;	and,	in	the	second,	the	
species	were	randomly	shuffled	among	the	phylogeny	tips,	generat-
ing	a	set	of	999	null	PCPS	(Debastiani	&	Duarte,	2014).	All	analyses	
were	 performed	 in	 R	 software	 3.2.1	 (R	Development	 Core	 Team,	
2012).

We	also	tested	spatial	autocorrelation	by	Moran's	I	correlograms	
(Legendre	&	Legendre,	2012)	for	species	richness,	phylogenetic	di-
versity	 (PSV	 index),	and	phylogenetic	composition	regarding	PCPS	
vectors.	Briefly,	Moran's	 I	 is	an	 index	of	 similarity	between	values	
(herein	all	response	variables)	of	two	points,	and	such	values	of	spa-
tial	autocorrelation	are	plotted	as	a	function	of	distance	classes	on	
the	abscissa	(Legendre	&	Legendre,	2012).	We	chose	a	priori	seven	
distance	classes	with	equal	number	of	sample	units	allocated	in	each	
class,	which	increases	predictive	power	of	the	analysis	(Legendre	&	
Legendre,	 2012).	 The	 significance	 test	was	 based	 in	 999	 random-
izations.	We	 implemented	Moran's	 I	 correlograms	 in	 the	 software	
Spatial Analysis in Macroecology (SAM;	 Rangel,	 Diniz-Filho,	 &	 Bini,	
2006;	Rangel,	Diniz-Filho,	&	Bini,	2010).

3  | RESULTS

We	 recorded	40	 snake	 species	belonging	 to	 five	 families	on	 the	
17	 islands	 analyzed	 (see	 Supporting	 Information	 Appendix	 S1).	
The	species	pool	of	 these	 islands	 represents	approximately	37%	
of	the	regional	pool	(Zaher	et	al.,	2011).	The	richest	families	were	
Dipsadidae	 and	 Colubridae,	 with	 26	 and	 seven	 species,	 respec-
tively.	“Ilha	do	Cardoso”	exhibited	the	highest	species	richness	(25	
species;	Table	1),	whereas	“Ilhas	dos	Porcos”	and	“Ilha	das	Couves”	
showed	the	lowest	species	richness	(only	one	species)	and	phylo-
genetic	diversity	(Table	1).	The	highest	phylogenetic	diversity	was	

recorded	 in	 “Bom	Abrigo”	 and	 “Queimada	Grande”	 islands	 (both	
with	PSV	=	0.81)	(Table	1).

We	found	that	island	area	per	se	explained	53%	of	species	rich-
ness	variation	(R2	=	0.53,	p	<	0.05,	Figure	1a,	Table	2).	Our	model	was	
not	improved	by	adding	distance	from	the	mainland,	as	area	and	dis-
tance	together	explained	the	same	53%	of	species	richness	variation	
(p	=	0.001,	Table	2).	Distance	itself	was	not	important	in	explaining	
species	richness	variation	(p	=	0.10).	Area	had	a	greater	importance	
in	 driving	 species	 richness	 variation	 pattern	 in	 all	 evaluated	mod-
els	 (wAIC	=	0.74,	 Table	 2).	 Regarding	 phylogenetic	 diversity,	 area	
explained	 26%	 (p	=	0.03),	 and	 the	 distance	 from	 the	mainland	 ex-
plained	34%	of	the	PSV	variation	(p	=	0.01,	Figure	1b,	Table	2).	When	
considered	together	 in	the	model,	the	area	and	distance	explained	
44%	of	the	total	PSV	variation	(p	=	0.01,	Table	2).	Area	and	distance	
together	presented	 the	highest	AIC	weight	 (wAIC	=	0.43,	Table	2),	
but	only	distance	from	the	mainland	exhibited	a	great	part	of	PSV	
explanation	(wAIC	=	0.40,	Table	2).

The	 first	 four	 principal	 coordinates	 of	 phylogenetic	 structure	
(PCPS)	accounted	for	59%,	27%,	17%,	and	13%	of	the	total	phylo-
genetic	composition	variation,	 respectively.	The	PCPS	1	had	a	sig-
nificant	relationship	to	area	(psite	shuffle	=	0.05,	Table	3).	We	did	not	
find	any	 relationship	between	PCPS	2	and	 the	predictors.	PCPS	3	
was	associated	with	distance	 from	 the	mainland	 (psite	 shuffle	=	0.02,	
Table	3),	whereas	PCPS	4	was	significantly	associated	with	the	island	
area	(psite	shuffle	=	0.05;	Table	3),	as	well	as	with	the	distance	and	area	
together	(psite	shuffle	=	0.04;	Table	3).

Island	area	explained	18%	of	 the	variation	 in	 the	phylogenetic	
composition	 (p	=	0.05,	Figure	2a,	Table	3)	 regarding	PCPS	1	 (basal	
nodes).	On	 the	 other	 hand,	 distance	 from	 the	mainland	 explained	
25%	of	the	variation	in	phylogenetic	composition	regarding	PCPS	3	
(p	=	0.02,	Figure	2b,	Table	3).	Area	and	distance	together	explained	
30%	of	the	variation	in	phylogenetic	composition	among	the	islands	
(p	=	0.03;	 Table	 3)	 regarding	 PCPS	 4.	 The	 area	 explained	 16%	 of	
the	phylogenetic	composition	variation	regarding	PCPS	4	(p	=	0.05;	
Figure	2c,	Table	3).

The	ordination	of	the	coastal	islands	and	snake	species	along	the	
PCPS	1	 and	PCPS	3	 axes	 (Figure	3)	 shows	 that	 species	 belonging	
to	Boidae	 (Corallus hortulanus)	 and	Colubridae	 families	were	 asso-
ciated	with	nearer	and	larger	islands.	The	Elapidae	family	(Micrurus 

F I G U R E  1  Relationships	between	island	area	(a	and	b)	and	distance	from	the	mainland	(c)	on	response	species	richness	and	phylogenetic	
diversity	(Phylogenetic Species Variability—PSV;	respectively).	Species	richness	shows	a	significant	positive	association	to	area	(R2	=	0.53,	
p	=	0.0005).	Phylogenetic	diversity	presents	a	negative	relationship	with	area	(R2	=	0.26,	p	=	0.03)	and	a	positive	relationship	with	distance	
from	mainland	(R2	=	0.34,	p	=	0.01).	See	more	details	in	Table	2
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corallinus)	was	 broadly	 distributed	 in	 coastal	 islands	 and	 does	 not	
show	any	significant	association	with	the	predictors.	The	Dipsadidae	
family	presents	a	positive	influence	on	species	richness	and	phyloge-
netic	diversity,	whereas	the	Viperidae	family	species	occur	on	small	
and	more	remote	 islands	(Figure	3).	Species	richness,	phylogenetic	
diversity	(PSV	index),	and	PCPS	vectors	did	not	present	spatial	auto-
correlation	(see	Supporting	information	Figure	S1).

4  | DISCUSSION

The	positive	relationship	between	area	and	snake	species	richness	
follows	 Island	 Biogeography	 Theory	 predictions	 and	 matches	 our	
previous	 expectations,	 but	we	 observed	 an	 idiosyncratic	 relation-
ship	of	area	and	distance	from	the	mainland	for	each	diversity	met-
rics	 analyzed.	 Phylogenetic	 diversity	 increases	with	 distance	 from	
the	mainland,	independently	of	the	decreasing	richness,	with	regard	
to	the	phylogenetic	structure	distribution.	More	recent	clades	were	
clustered	in	the	larger	and	nearer	islands,	whereas	some	older	clades	
presented	widespread	distribution	or	defined	greater	phylogenetic	
diversity	 in	more	 remote	 and	 smaller	 islands.	Therefore,	 allopatric	
speciation	events	related	to	the	occurrence	of	threatened	endemic	
vipers	in	the	Atlantic	Forest	island	system	(Barbo	et	al.,	2016,	2012)	
were	an	 important	factor	 in	these	differences	among	richness	and	
phylogenetic	diversity.

The	species-area	effect	could	be	understood	as	a	complementary	
view	of	habitat	diversity	as	noted	by	Hortal,	Triantis,	Meiri,	Thébault,	
and	Sfenthourakis	(2009)	for	several	animal	groups,	including	verte-
brates	and	invertebrates.	These	authors	suggest	that	the	size	of	the	
island	environments	leads	to	a	monotonical	increase	in	the	available	
niche	dimensions,	and	increasing	habitat	diversity	should	be	related	

to	 an	 increase	 in	 species	 richness.	 Therefore,	 the	maintenance	 of	
sink	populations	 is	 also	 associated	with	 the	 available	 species	 pool	
and,	consequently,	to	habitat	diversity	(Hortal	et	al.,	2009).	We	re-
inforce	the	viewpoint	that	distance	among	assemblages	and	vegeta-
tion	could	be	among	the	most	important	factors	determining	reptile	
species	 composition	 in	 insular	 environments	 (Guerrero,	 Vargas,	 &	
Real,	2005).	Thus,	species	richness	would	be	related	to	potential	col-
onization,	which	might	depend	on	area	and	insularity	(Parent,	2012).

The	relictual	Atlantic	Forest	on	islands	conserves	some	lowland	
species	 from	 the	 southeastern	 coast	 and	 snakes	 of	 ombrophilous	
dense	 vegetation	 of	 Serra	 do	 Mar	 range	 (Centeno	 et	 al.,	 2008).	
Therefore,	Cicchi	et	al.	(2007)	notes	the	fragility	of	these	insular	en-
vironments,	where	more	than	half	of	the	snake	species	prey	on	am-
phibians,	highlighting	the	importance	of	Forest	conservation.	Snake	
population	survival	and,	consequently,	the	assemblage	composition	
of	 the	 islands	 tend	 to	be	affected	by	distinct	mechanisms	such	as	
resource	availability	(primary	productivity	and	prey	availability),	eco-
logical	conditions,	habitat	selection,	and	environmental	heterogene-
ity	(Holt,	1993).

Our	results	agree	in	part	with	those	of	Pyron	and	Burbrink	(2014),	
who,	in	their	evaluation	of	island	snakes	on	a	global	scale,	found	that	
phylogenetic	diversity	was	related	to	isolation	but	not	area.	Herein,	
we	found	that	area	presented	a	negative	relationship	with	phyloge-
netic	diversity,	whereas	distance	was	positively	associated	to	phylo-
genetic	diversity	variation,	with	greater	weight,	contradicting	Island	
Biogeography	Theory	in	terms	of	evolutionary	diversity.	Pyron	and	
Burbrink	 (2014)	also	used	a	richness-independent	phylogenetic	di-
versity	metric	(PSV)	but	did	not	explore	how	the	different	lineages	
were	associated	with	the	predictors	of	Island	Biogeography	Theory.	
Even	with	a	greater	number	of	species,	the	relatedness	of	species	in	
the	phylogeny,	 including	more	recent	clades,	corroborated	the	de-
crease	 in	 the	phylogenetic	diversity	with	 increasing	 island	area.	 In	
other	words,	 larger	 islands	presented	phylogenetic	clustered	com-
position	(Webb,	Ackerly,	McPeek,	&	Donoghue,	2002),	which	could	
indicate	environmental	filters	defining	species	colonization	of	some	
specific	traits	(Graham,	Parra,	Rahbek,	&	McGuire,	2009;	Mouquet	
et	al.,	2012;	Webb	et	al.,	2002).

The	phylogenetic	clustered	composition	in	larger	islands	should	
indicate	more	niche	similarity	among	species	and,	consequently,	the	
possibility	of	competitive	exclusion	effects	 (Losos,	1996;	Pausas	&	
Verdú,	2010;	Webb	et	al.,	2002).	However,	the	great	fasting	capa-
bility,	annual	seasonality	of	feeding	resources,	and	variation	in	niche	
dimensions	among	species	of	snakes	could	prevent	competition	on	
populations	and	assemblages	 in	 this	group	 (Vitt,	1987).	Therefore,	
we	do	not	consider	niche	similarity	as	a	factor	generating	competi-
tive	exclusion	of	closely	related	species,	although	food	and	substrate	
requirements	 might	 limit	 the	 distribution	 of	 taxa	 in	 these	 assem-
blages.	However,	the	dispersion	of	individuals	from	the	mainland	to	
the	 islands	 or	 among	 insular	 populations	 could	 reduce	 the	 extinc-
tion	rates,	given	the	proximity	of	this	island	system	to	the	mainland	
(Brown	&	Kodric-Brown,	1977;	MacArthur	&	Wilson,	1963).

Most	species	within	the	coastal	 islands	are	a	subsample	of	the	
mainland	 species	 pool,	 a	 situation	 that	 highlights	 the	 colonization	

TA B L E  2   Influence	of	area	and	distance	from	the	mainland	on	
richness	and	phylogenetic	diversity	(PSV)	of	snakes	recorded	in	the	
coastal	islands	of	the	Atlantic	Forest	in	southeastern	Brazil

Model AIC ∆AIC wAIC p R2

Richness	~	
Area* 

114.3 0.0 0.74 0.0005 0.53

Richness	~	Dist 125.3 11 0.003 0.10 0.1

Richness	~	
Area	+	Dist* 

116.4 2.1 0.26 0.001 0.53

PSV	~	Area*  −19.5 1.9 0.17 0.03 0.26

PSV	~	Dist*  −21.3 0.2 0.40 0.01 0.34

PSV	~	
Area	+	Dist* 

−21.4 0.0 0.43 0.01 0.44

Notes.	Likelihood	measures	with	Gaussian	distribution.
AIC:	Akaike	information	criterion;	ΔAIC:	Difference	of	Akaike	informa-
tion	criterion	to	each	model	from	the	most	parsimonious	model;	wAIC:	
AIC	weight	for	each	model;	p:	probability;	and	R2:	adjusted	coefficient	of	
determination;	Area:	 Island	area	 in	hectares;	Dist:	 island	distance	from	
mainland	in	kilometers;	Richness:	number	of	species;	and	PSV:	richness-
independent	 phylogenetic	 diversity	 (see	 Materials	 and	 Methods	 for	
details).
*Significant	relationships	of	metrics	and	correspondent	predictors.	
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effect	as	a	very	 important	driver	of	snake	community	assembly	 in	
island	systems	(Burbrink,	McKelvy,	Pyron,	&	Myers,	2015).	However,	
in	 our	 results,	 the	 increase	 on	 phylogenetic	 diversity	 was	 related	
to	 the	 occurrence	 of	 endemic	 species	 of	 Viperidae,	 which	 led	 to	
overdispersed	 assemblages	 in	 smaller	 and	 more	 remote	 islands	
(Figure	3),	independent	of	the	species	richness	reduction.	Differently	
from	Burbrink	et	al.	(2015),	our	results	suggest	the	relevance	of	al-
lopatric	 speciation	 to	 generate	 higher	 phylogenetic	 diversity	 and	
overdispersed	assemblages	in	islands	due	to	endemic	Bothrops	spe-
cies	on	more	 remote	 islands.	The	maintenance	of	 the	basal	 clades	
(Viperidae)	 in	 this	 island	 system	 might	 maintain	 relatively	 longer	
branches	among	 species	on	 smaller	 and	more	 remote	 islands,	due	
to	the	occurrence	of	Bothrops insularis,	B. alcatraz,	and	B. otavioi,	on	
the	“Queimada	Grande,”	“Alcatrazes,”	and	“Vitória”	 islands,	respec-
tively.	These	endemic	species	are	very	important	components	of	the	
phylogenetic	diversity	and	fauna	conservation	of	the	southeastern	
Atlantic	Forest	islands.

Our	 results	 suggest	 that	 principal	 coordinates	 of	 phyloge-
netic	 structure	provide	a	new	 interpretation	of	 the	environmental	

factors	 influencing	phylogenetic	 lineages	 (Duarte,	2011;	Duarte	et	
al.,	2012).	The	“phylogeny-weighted	species	composition”	provides	
a	way	 for	 us	 to	 indicate	 the	 relationships	 of	 each	 clade	 and	 envi-
ronmental	predictors	 as	highlighted	by	Duarte	 (2011).	This	 author	
shows	 that	 species	 scores	 on	 PCPS	 ordination	 demonstrate	 the	
phylogenetic	 composition	 throughout	 the	 environmental	 gradient,	
while	 also	 indicating	 the	 clade	 distributions	 across	 environmental	
predictors.	Moreover,	we	provide	an	additional	view	of	the	dispari-
ties	of	diversity	metrics,	including	species	richness	and	phylogenetic	
diversity,	and	how	snakes	respond	to	main	predictors	of	the	classical	
Island	Biogeography	Theory.

Island	 area	 showed	 a	 greater	 influence	 on	Colubridae	 and	 the	
single	 Boidae	 species	 present.	 These	 species	 use	 arboreal	 sub-
strates	that,	 in	turn,	depend	on	the	availability	of	forested	habitat.	
The	 most	 diversified	 clade,	 Dipsadidae,	 includes	 terrestrial,	 arbo-
real,	and	aquatic	snakes	and	was	also	influenced	by	island	area	and	
mainland	proximity,	which	would	be	related	to	habitat	diversity	and	
heterogeneity	(Hortal	et	al.,	2009).	Association	with	particular	hab-
itats	could	drive	 the	snake	composition	on	 islands	 (Burbrink	et	al.,	

TA B L E  3  Environmental	influence	on	phylogenetic	composition	of	snakes	(PCPS	1,	PCPS	3	and	PCPS	4)	recorded	in	coastal	islands	of	the	
Atlantic	Forest	in	southeastern	Brazil

Model f.obs Psite shuffle Ptaxa shuffle AIC ∆AIC wAIC P R2

PCPS	1	~	Area*  4.12 0.05 0.11 −5.7 0.0 0.52 0.05 0.18

PCPS	1	~	Dist 2.52 0.13 0.3 −4.3 1.4 0.26 0.09 0.11

PCPS	1	~	Area+Dist 2.68 0.09 0.21 −4.0 1.7 0.22 0.07 0.21

PCPS	3	~	Area 2.25 0.15 0.36 −23.2 4.3 0.08 0.22 0.04

PCPS	3	~	Dist*  7.5 0.02 0.05 −27.5 0.0 0.74 0.02 0.25

PCPS	3	~	Area	+	Dist 4.11 0.04 0.12 −24.6 2.9 0.17 0.06 0.22

PCPS	4	~	Area*  4.05 0.05 0.07 −30.7 0.6 0.4 0.05 0.16

PCPS	4	~	Dist 1.08 0.34 0.4 −27.6 3.7 0.08 0.34 −0.002

PCPS	4	~	Area	+	Dist*  4.5 0.04 0.05 −31.3 0.0 0.53 0.03 0.3

Notes.	Likelihood	measures	with	Gaussian	distribution.
AIC:	Akaike	information	criterion;	ΔAIC:	Difference	of	Akaike	information	criterion	from	most	parsimonious	model;	wAIC:	AIC	weight	for	each	model;	
p:	probability;	and	R2:	adjusted	coefficient	of	determination;	Area:	Island	area	in	hectares;	Dist:	island	distance	from	mainland	(meters).
*Significant	relationships	of	PCPS	and	correspondent	predictors.	

F I G U R E  2  Relationships	between	principal	coordinates	of	phylogenetic	structure	(PCPS)	axes	and	predictor	variables.	(a)	PCPS	1	and	
area	(R2	=	0.18,	p	=	0.05);	(b)	PCPS	3	and	distance	from	mainland	(R2	=	0.25,	p	=	0.02);	(c)	PCPS	4	and	area	(R2	=	0.16,	p	=	0.05).	See	more	
details	in	the	Table	3
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2015).	Therefore,	area	and	distance	from	the	mainland	significantly	
influences	 snake	species	 richness	 regarding	 to	 the	Colubridae	and	
Dipsadidae	 clades.	 However,	 decreasing	 area	 and	 increasing	 the	
distance	 from	 the	mainland	 boosted	 the	 Viperidae	 clade,	 causing	
phylogenetic	diversity	maintenance,	while	 also	providing	evidence	
of	allopatric	speciation	in	these	coastal	islands.

Snakes	 typically	 display	 high	 degrees	 of	 specialization	 in	 re-
source	use	(Greene,	1997),	and	the	extinction	rate	of	island	reptiles	
can	be	related	to	natural	history	traits,	including	habitat	specializa-
tion	 (Foufopoulos	&	 Ives,	 1999).	 Therefore,	 the	 plasticity	 in	 natu-
ral	history	traits	and	habitat	use	could	generate	a	trend	for	greater	
abundances	of	birds	 in	 the	Canary	Archipelago	as	well	as	 to	more	
successful	survival	on	islands	(Carrascal,	Seoane,	Palomino,	&	Polo,	
2008).	 Such	 a	 trend	 could	 also	 explain	 the	 greater	 occurrence	 of	
Bothrops species	in	smaller	and	more	remote	islands.	Bothrops alca-
traz,	for	instance,	can	prey	mostly	on	centipedes	and	lizards,	whereas	
B. insularis presents	an	increased	venom	efficiency	on	birds,	the	pre-
ferred	prey	of	larger	individuals	(Martins,	Araújo,	Sawaya,	&	Nunes,	
2001;	Martins,	Marques,	&	Sazima,	2002).

We	corroborate	the	suggestion	that	the	Brazilian	southeastern	is-
lands	maintain	relictual	snake	populations	of	lowland	species	of	Serra	
do	Mar	range	(Centeno	et	al.,	2008),	which	could	be	due	to	ecological	
plasticity	and/or	colonization	success.	We	concluded	that	an	 island's	
area	 is	more	 related	 to	 species	 richness,	whereas	distance	 from	 the	
mainland	drives	phylogenetic	diversity	on	Atlantic	Forest	 coastal	 is-
lands.	We	 empirically	 emphasize	 the	 importance	 of	 isolation	 to	 the	
evolutionary	 processes	 in	 driving	 phylogenetic	 diversity	 and	 lineage	

composition	on	island	systems.	The	nearer	and	greater	islands	are	very	
important	to	the	maintenance	of	snake	species	richness,	but	we	em-
phasize	the	need	to	conserve	endemic	species	from	isolated	areas	in	
the	Atlantic	Forest	island	system	to	preserve	the	snake	phylogenetic	
diversity	of	this	megadiverse	domain.
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