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Global trends and hot topics in
electrical stimulation of skeletal
muscle research over the past
decade: A bibliometric analysis

Yi Huang, Yuxiang Gong, Yu Liu* and Jianqiang Lu*

Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of

Sport, Shanghai, China

Background: Over the past decade, numerous advances have been made

in the research on electrical stimulation of skeletal muscle. However, the

developing status and future direction of this field remain unclear. This study

aims to visualize the evolution and summarize global research hot topics and

trends based on quantitative and qualitative evidence from bibliometrics.

Methods: Literature search was based on the Web of Science Core Collection

(WoSCC) database from 2011 to 2021. CiteSpace and VOSviewer, typical

bibliometric tools, were used to perform analysis and visualization.

Results: A total of 3,059 documents were identified. The number of literature

is on the rise in general. Worldwide, researchers come primarily from North

America and Europe, represented by the USA, France, Switzerland, andCanada.

The Udice French Research Universities is the most published a�liation. Millet

GY and Ma�uletti NA are the most prolific and the most co-cited authors,

respectively. Plos One is the most popular journal, and the Journal of Applied

Physiology is the top co-cited journal. The main keywords are muscle fatigue,

neuromuscular electrical stimulation, spinal cord injury, tissue engineering, and

atrophy. Moreover, this study systematically described the hotspots in this field.

Conclusion: As the first bibliometric analysis of electrical stimulation of

skeletal muscle research over the past decade, this study can help scholars

recognize hot topics and trends and provide a reference for further exploration

in this field.

KEYWORDS

skeletal muscle, electrical stimulation, bibliometric analysis, visualization, network

analysis

Introduction

Skeletal muscle is the center of contractile force production and has a great capacity

for regeneration (1–3). However, the loss of muscle functionality is unavoidable under

exceptional circumstances, such as serious injury. In the entire lifespan, maintaining

skeletal muscle mass and function is crucial for preserving metabolic health (4)

and supporting independent locomotion. Limb muscle dysfunction often occurs as

a comorbidity of many diseases (5, 6) and has significant clinical implications like

Frontiers inNeurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2022.991099
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2022.991099&domain=pdf&date_stamp=2022-10-05
mailto:yuliu@sus.edu.cn
mailto:lujianqiang@sus.edu.cn
https://doi.org/10.3389/fneur.2022.991099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2022.991099/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.991099

reduction of exercise tolerance and quality of life, even survival.

Although exercise training may be a potent intervention to

resolve the situation (7, 8), other therapy, such as neuromuscular

electrical stimulation (NMES) (9, 10), is widely used as well.

In addition to the health issue, optimal strategies for skeletal

muscle remodeling (11) and reconditioning are also noteworthy.

Particularly within the athletic community, there is a great

interest in enhancing skeletal muscle adaptation to training (12)

to maximize physical potential in competitive events.

Since the first observation of the peroneal nerve stimulated

by electric current to correct foot drop in hemiplegic patients

(13), many studies have demonstrated electrical stimulation’s

therapeutic effects on neuromuscular disorders (14–16). A

variety of new stimulation patterns and techniques have

been explored. With the development of brain-behavioral

relationships and pathophysiological aspects of various

neurological disorders, invasive and non-invasive stimulation

has been applied experimentally and clinically (17–19). In

addition, there needs to be more evidence of optimizing the

electrical stimulation effect, such as selecting efficient parameters

and updating appropriate biological electrode materials.

Over the past few decades, electropathy of skeletal muscle

has made significant progress. Ethier et al. performed functional

electrical stimulation (FES) by implanted microelectrodes to

restore voluntary movement in paralyzed patients (20). With

continuous technological innovation, more and more literature

has emerged on the electrical stimulation of skeletal muscle

research, but the current research status is unclear.

Bibliometric analysis, a popular and rigorous method,

is used for evaluating and exploring large volumes of

published scientific output. It follows specific techniques and

procedures and is based on qualitative and quantitative evidence

(21). Bibliometrics can reveal collaboration patterns, research

constituents, and emerging trends, as well as explore the

knowledge structure of a given field, thus helping researchers to

have a quick overview of a research area, identify gaps and obtain

novel ideas (22). In recent years, bibliometric analysis has gained

in popularity in medical research, and this phenomenon can be

due to (1) the availability and advancement of analysis software

like VOSviewer, CiteSpace, Leximancer, and scientific databases

like Web of Science, and (2) the intercrossed application of

the bibliometric methodology from information science to

medical research. Previous bibliometric analysis of electrical

stimulation research involves pelvic floor physiotherapy (23)

and invasive and non-invasive brain stimulation (24–26). The

developing status and prospects of the research on electrical

stimulation of skeletal muscle are knowledge gaps in the current

medical literature.

Therefore, we performed a bibliometric analysis

of electrical stimulation of skeletal muscle research

over the past decade (2011–2021). This study aims

to visualize the evolution and summarize the hot

topics and trends in this research field. Furthermore,

the emphases and prospects of subsequent research

are suggested.

Materials and methods

The techniques of bibliometric analysis

Performance analysis and science mapping are two core

techniques of bibliometric analysis. Essentially, performance

analysis focuses on the contributions of different research

constituents (such as countries, institutions, authors, and

journals), and science mapping accounts for the relationships

between them (27).

Performance analysis, which is descriptive, is standard

practice for bibliometric studies. The most significant measures

of the analysis are the publications quantities and citations

(annual or per research constituent). Specifically, publications

reflect productivity, while citations provide an estimate

of influence.

Science mapping techniques include the analysis of

citation, co-citation, co-authorship, and co-word. These

techniques, especially in combination with network analysis,

help researchers understand the intellectual linkages between

research constituents and the knowledge structure of the

research field. Table 1 summarizes several different scientific

mapping techniques.

Citation is themost objective and direct indicator to evaluate

the impact of a publication (28). In citation analysis, the number

of citations a paper receives determines its impact. Therefore,

we can ascertain the most influential publications and thus

understand the intellectual dynamics of a research field.

Co-citation analysis assumes that publications cited together

frequently are similar in theme (29). The connections among

co-occur publications form a co-citation network. Researchers

use co-citation analysis to identify authoritative publications

and excavate thematic clusters. Co-cited is defined as authors,

journals, or references cited together by researchers.

Co-authorship analysis reveals the intellectual collaboration

among researchers, countries, and institutions (30). Since it

exposes the dominant authors and regions, co-authorship

analysis provides a potential opportunity for prospective

scholars to contact and cooperate with influential and trending

scholars in their research field. In addition, this analysis maps

collaborative relationships across periods, allowing scholars

to review the intellectual development trajectory underlying

collaboration networks.

Co-word analysis examines the thematic relationships

between the words that frequently appear together. The terms

analyzed usually come from author keywords but can also be

derived from titles, abstracts, and full texts. Co-word analysis can

present representative content of each thematic cluster and can

be used to predict future directions in a research field.
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TABLE 1 Techniques for science mapping.

Category Data types Unit of analysis Function

Citation analysis Author name, citations, title, journals, references Documents Identifying the most influential publications

Co-citation analysis References Documents Understanding the development of the foundational themes

Co-authorship analysis Author, countries, institutions Documents Examining the social interactions or intellectual

relationships between research constituents

Co-word analysis Title, abstract,

author keywords

Words Exploring the existing or future relationships among

research topics

Data source and search strategy

Comprehensive publications retrieved were based on the

Web of Science Core Collection (WoSCC), and the MeSH

major topics query confirmed subject terms (31, 32). The

first data collection was completed on June 8, 2022, and

updated on September 8, 2022, by searching the WoSCC for

literature published between 2011 and 2021. The subject terms

were as follows: (“Skeletal Muscle∗” OR “Voluntary Muscle∗”

OR “Upper Limb Muscle∗” OR “Lower Limb Muscle∗”)

AND (“Electric Stimulation∗” OR “Electrical Stimulation∗” OR

“Stimulation∗ Electrical” OR “Stimulation∗ Electric”). Only

research articles and reviews were included, and the language

was restricted to English. A total of 3,059 records were

extracted in this study. Figure 1 shows the retrieval process and

research framework.

Since this study did not involve animal or human

experiments and all data were obtained from the open database,

an ethical statement was not required.

Data analysis

The retrieved data were processed directly using the

WoSCC built-in analysis module and then exported in

bibliometrics software for further analysis. WoSCC enables

the export of primary data, such as document amounts,

citation reports, authors’ information, countries/regions,

affiliations, and journals. MATLAB R2020a was used to draw

relevant figures.

VOSviewer and CiteSpace software, visual and synthetic

analytic systems, were selected for data mining and mapping the

retrieved articles (33–36).

The VOSviewer (version 1.6.18) was used to integrate

primary information about co-citation on authors,

collaborations between countries or institutions, and co-

occurrence on keywords into network maps. It is obvious to

judge the importance through the node’s size and the line’s

thickness in the classified colored network maps. Large circles

and labels signify great weights; broad lines signify strong

relationships. Different colors can distinguish clusters. Then

hotspots and trends in electrical stimulation of skeletal muscle

studies are visualized in the co-word network.

The CiteSpace (version 6.1.R2) was used for authors,

institutions, highest citation journals and references, and burst

detection. Centrality reflects the significance of a node in

the network. The citation burst demonstrates a keyword or

a reference frequently occurring in a specific period (37).

Potential research frontiers can be dug out via burst keywords

and references.

Results

Overview of published documents

A total of 3,137 records were identified. The main types were

articles (86.35%) and reviews (11.83%), accounting for almost

all publications. Therefore, we concentrated on analyzing and

assessing these two types of papers (a total of 3,059).

Figure 2A shows the number of publications on electrical

stimulation of skeletal muscle research and the average total

citations per paper (the red line). During the last 10 years, the

literature number fluctuated but generally showed an upward

trend, and the average total citations per literature were kept at

least 10 times (from 2011 to 2019). The yearly output exceeded

300 in 2018. However, the volume of papers was down in 2021.

Furthermore, we performed an analysis of research areas and

disciplines. Neurosciences is the most published area of study,

followed by Physiology, Sport Sciences, and Rehabilitation, as

shown in Figure 2B. A dual-map overlay was structured in

Figure 2C to refine the research basis further. The colored

paths in the dual-map overlay represent the citation relationship

of both sides. On the left is the journal distribution of

citing references, science mapping such as molecular, biology,

medicine, clinical, neurology, and sports, representing the

primary discipline and could be regarded as the application

fields. On the right side is the cited references distribution, like

molecular, biology, genetics, sport, and rehabilitation, signifying

the disciplines mainly referenced and research basis.
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FIGURE 1

Flow chart of bibliometric research.

Leading countries/regions and a�liations

All related papers were from 78 countries/regions.

According to Table 2, the USA published the most papers

(n = 940), accounting for 30.73%, followed by Japan (369

papers, 12.06%), Canada (304 papers, 9.94%), France (259

papers, 8.47%), and England (229 papers, 7.49%). In addition,

the USA had significant advantages in total citations (n

= 22,612), citations per paper (n = 24.06) and centrality

(0.4). Figure 3A shows the distribution of countries/regions

that contributed to the research, and Figure 3B shows the

publication collaborations in different countries/regions.

Global cooperation is shown in Figure 3C. There is strong

cooperation among various countries. For instance, the USA

frequently connects with Canada, France, England, Australia,

and Italy.

A total of more than 2,789 institutions worldwide got

involved. Figure 3D shows the collaborations among them. The

University of Toronto, Schulthess Clin, University of Florida,

University of Copenhagen, and Northwestern University are in

larger circles on the network map, implying the importance

of these institutions in the whole cooperation relationship. In

the new version of the WoS database, the affiliation indicates

the merged institution. The details of the top 10 prolific

affiliations are shown in Figure 3E. Udice French Research

Universities is ranked first, with 111 papers and 2,733 citations,

followed by Institut National De La Sante Et De La Recherche

Medicale (103 publications, 2,823 citations) and US Department
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FIGURE 2

(A) Growth trend in publications from 2011 to 2021. (B) Research areas of publications. (C) Dual-map overlay of journals.

TABLE 2 The top 10 productive countries/regions from 2011 to 2021.

Rank Country Count (%) Total citation Citation per paper Centrality

1 USA 940 (30.73%) 22,612 24.06 0.40

2 Japan 369 (12.06%) 5,663 15.35 0.06

3 Canada 304 (9.94%) 6,165 20.28 0.07

4 France 259 (8.47%) 5,407 20.88 0.24

5 England 229 (7.49%) 4,696 20.51 0.20

6 Australia 203 (6.64%) 4,202 20.70 0.20

7 China 191 (6.24%) 4,077 21.35 0.02

8 Italy 187 (6.11%) 4,157 22.23 0.19

9 Brazil 167 (5.45%) 2,201 13.18 0.06

10 Germany 165 (5.39%) 4,301 26.07 0.08

of Veterans Affairs (77 publications, 1,796 citations). Harvard

University reveals the highest citations per paper (n = 42.57).

Furthermore, the top 10 affiliations locate in North America

and Europe.

Active authors and co-cited authors

A total of 11,377 authors participated in the studies. Table 3

lists the top 10 authors with the largest publications and co-cited
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FIGURE 3

(A) Distribution of countries/regions that contributed to research (the shade of the color bar reflects the number of literature). (B) Publication

collaboration of the top 10 productive countries. (C) Network map of global collaborative relationships. (D) Co-authorship network map of

institutions. (E) Citation analysis of the top 10 productive a�liations.

authors with the highest citations. These authors are mainly

from France or the USA. Millet GY is the most prolific author

(n = 50), followed by Maffiuletti NA (n = 37) and Place N (n

= 29). The collaboration network between authors is shown

in Figure 4A. Authors from neighboring countries have close

academic collaboration, but the connections between different

continents are still weak. The co-cited author refers to the author

who is also cited by other papers and constitutes a co-citation

relationship. The degree of citation is a crucial index to measure

the author’s contribution. Figure 4B shows a network map of

co-cited authors. Maffiuletti NA is the most frequently co-cited

author with 489 citations.

Distribution of journals and co-cited
journals

All papers were published in 801 journals. Table 4 lists the

most influential journals; half of them are from the USA. The

number of publications in the top 10 journals varies from 39

to 104 (average 70), accounting for 22.69% of the total. Eight

journals have impact factors above 3.000, publishing 18.96% of

the whole papers. PLOS ONE published the most papers (n =

104), accounting for 3.40%, with 3,248 citations. Medicine and

Science in Sports and Exercise had the highest impact factor

(5.411) and average citations per paper (33.40).
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TABLE 3 The top 10 prolific and co-cited authors from 2011 to 2021.

Rank Author Counts Citations Country Co-cited author Citations Country

1 Millet GY 50 1,222 France Maffiuletti NA 489 Switzerland

2 Maffiuletti NA 37 855 Switzerland Gorgey AS 426 USA

3 Place N 29 554 Switzerland Gandevia SC 319 Australia

4 Gorgey AS 29 554 USA Gregory CM 272 USA

5 Gondin J 22 432 France Taylor JL 272 Australia

6 Nakazato K 20 384 Japan Amann M 245 USA

7 Verges S 19 613 France Zehr EP 230 Canada

8 Taylor JL 19 485 Australia Gondin J 201 France

9 Dixon WE 19 383 USA Enoka RM 194 USA

10 Martin A 17 292 France Kern H 190 Austria

FIGURE 4

Collaboration network map of (A) authors and (B) co-cited authors.

Table 4 also presents the top 10 co-cited journals. Two have

more than 5,000 citations, and eight have impact factors above

3.000. The Journal of Applied Physiology from the USA is at the

top, with 7,192 citations. The Journal of Physiology-London from

England ranks second, with 6,397 citations.

Based on the 2020 Journal citation reports (JCR), more than

half of the top 10 prolific journals and co-cited journals are in

the Q2 and above region.

Cited references and co-cited references

Table 5 summarizes the top 10 cited references. What Is the

Evidence for Physical Therapy Poststroke? A Systematic Review

and Meta-Analysis, published by Veerbeek et al. (38) in 2014, is

themost cited paper, a total of 572 times. Another five references,

published by Maltais et al. (39), Wagner et al. (40), Guo et al.

(41), Zhang et al. (42), and Ajiboye et al. (43), have been cited

more than 300 times. The remaining four highly cited papers are

listed in the reference list (20, 44–46).

A total of 94,666 co-cited references were identified.

Figure 5A shows the network map of co-cited references.

Recruitment patterns in human skeletal muscle during electrical

stimulation, published by Gregory et al. (47). in 2005, is the

most influential paper, indicating a solid citation relationship to

the rest of the literature. The remaining references appearing in

Figure 5A are listed in Supplement 1.

Furthermore, Figure 5B shows the top 20 references with

the strongest citation bursts. These references contribute to the

theoretical basis for research frontiers and reflect the evolution
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TABLE 4 The top 10 journals and co-cited journals.

Rank Journal Count Citation/average

citation

IF (2020) JCR Co-cited journal Citation IF (2020) JCR

1 Plos One (USA) 104 (3.40%) 3,248 (31.23) 3.24 Q2 Journal of Applied

Physiology (USA)

7,192 3.532 Q2

2 European Journal of

Applied Physiology

(Germany)

96 (3.14%) 2,038 (21.23) 3.078 Q2 Journal of

Physiology-London

(England)

6,397 5.182 Q1

3 Journal of Applied

Physiology (USA)

94 (3.07%) 1,831 (19.48) 3.532 Q2 Muscle Nerve (USA) 3,748 3.217 Q3

4 Muscle Nerve (USA) 84 (2.75%) 1,085 (12.92) 3.217 Q3 Journal of

Neurophysiology (USA)

3,170 2.714 Q3

5 Journal of

Neurophysiology (USA)

67 (2.19%) 1,157 (17.27) 2.714 Q3 European Journal of

Applied Physiology

(Germany)

2,912 3.078 Q2

6 Frontiers in Physiology

(Switzerland)

67 (2.19%) 684 (10.21) 4.566 Q1 Medicine and Science in

Sports and Exercise

(USA)

2,629 5.411 Q1

7 Medicine and Science in

Sports and Exercise

(USA)

55 (1.80%) 1,837 (33.40) 5.411 Q1 Archives of Physical

Medicine and

Rehabilitation (USA)

2,609 3.966 Q1

8 Journal of

Electromyography and

Kinesiology (England)

47 (1.54%) 532 (11.32) 2.368 Q3 Experimental Brain

Research (USA)

2,318 1.972 Q4

9 Journal of

Physiology-London

(England)

41 (1.34%) 999 (24.37) 5.182 Q1 Plos One (USA) 1,777 3.240 Q2

10 Scientific Reports

(England)

39 (1.28%) 778 (19.95) 4.380 Q1 Physical Therapy (USA) 1,621 3.140 Q1

process in a particular field (48). “Maffiuletti NA (49), 2010, EUR

J APPL PHYSIOL” has the strongest citation bursts (strength

17.50). A total of seven references have the most recent burst

(2019–2021), and “Nikolic N (50), 2017, ACTA PHYSIO” is

the strongest (strength 10.34) among them. The remaining

references appearing in Figure 5B are listed in Supplement 2.

Co-occurrence keywords and burst
keywords

A total of 5,988 author keywords were extracted from 3,059

documents. The top 50 co-occurring keywords were identified in

VOSviewer software. In order to accurately reveal the evolution

of keywords, the subject terms of skeletal muscle and electrical

stimulation, having the most frequent occurrence, without

doubt, were excluded from the network analysis.

Figure 6A shows the density visualization of the keywords

and the hotspot intensity. The keywords with the highest

density (located in warm red areas) are fatigue, spinal

cord injury, NMES, rehabilitation, electromyography,

exercise, FES, transcranial magnetic stimulation, strength,

and atrophy.

In addition, Figure 6B shows the visualization of the

co-occurrence network. There are 3 clusters to which the

keywords belong. Cluster 1 (red) focuses on the treatment of

muscle fatigue, including electrical stimulation, transcranial

magnetic stimulation, or strength training. Electromyography,

another central node, has connections with h-reflex,

voluntary activation, m-wave, and motor unit, indicating

that the monitoring and quantification of peripheral nerves,

neurons, and muscle function are the topics of many studies.

Furthermore, cluster 2 (green) concerns the application

scenarios of NMES and exercise (resistance training), such

as muscle atrophy, the aging process, sarcopenia, muscle

damage, and weakness. These interventions may work at

the molecular level, relating to the neuromuscular junction,

excitation-contraction coupling, mitochondria, and satellite

cells, and improve muscular strength and contraction. Finally,

cluster 3 (blue) highlights the rehabilitation of clinical diseases,
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TABLE 5 The top 10 most cited references.

Rank Cited reference Year Citation Journal First author

1 What Is the Evidence for Physical Therapy Poststroke? A

Systematic Review and Meta-Analysis

2014 572 PLoS ONE Veerbeek JM

2 An Official American Thoracic Society/European

Respiratory Society Statement: Update on Limb Muscle

Dysfunction in Chronic Obstructive Pulmonary Disease

Executive Summary

2014 402 American Journal

of Respiratory and

Critical Care

Medicine

Maltais F

3 Targeted neurotechnology restores walking in humans with

spinal cord injury

2018 363 Nature Wagner FB

4 Conducting Polymers for Tissue Engineering 2018 351 Biomacromolecules Guo BL

5 A Human iPSC Model of Hutchinson Gilford Progeria

Reveals Vascular Smooth Muscle and Mesenchymal Stem

Cell Defects

2011 343 Cell stem cell Zhang JQ

6 Restoration of reaching and grasping movements through

brain-controlled muscle stimulation in a person with

tetraplegia: a proof-of-concept demonstration

2017 337 Lancet Ajiboye, AB

7 Restoration of grasp following paralysis through

brain-controlled stimulation of muscles

2012 296 Nature Ethier C

8 Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel

Composite Scaffolds for Engineered 3D Cardiac Anisotropy

2017 286 ACS nano Wu YB

9 Physical Therapy for the Critically III in the ICU: A

Systematic Review and Meta-Analysis

2013 271 Critical care

medicine

Kayambu G

10 Biomaterials based strategies for skeletal muscle tissue

engineering: Existing technologies and future trends

2015 254 Biomaterials Qazi TH

for instance, spinal cord injury and stroke, which result in severe

muscle dysfunction. FES and transcutaneous electrical nerve

stimulation, two types of physical therapies, are mentioned

mainly in cluster 3.

Visible analysis of the phased hot topics is based on

the timeline viewer (as shown in Figure 7A) from CiteSpace

software. In the first five years (2011–2016), the studies

focused on exploring the treatment of muscle function decline

under pathological, fatigue, or injury conditions and its

mechanism. The main keywords were: neuromuscular electrical

stimulation, exercise, atrophy, stroke, obstructive pulmonary

disease, motor cortex, plasticity, regeneration, neurotrophic

factor, oxidative stress, and so on. The studies during

2016–2021 developed toward more specific aspects, with the

keywords such as spinal excitability, motor control, older

adult, sex difference, pathway, tissue engineering, endurance,

contraction, and so on.

Keyword bursts also can be used to identify hot topics,

frontiers, and trends in a specific research field. As shown

in Figure 7B, the keywords with the most recent bursts are

tissue engineering, skeletal muscle tissue, atrophy, parameter,

resistance, and electrical pulse stimulation. The red lines

in the diagram reflect the strongest citation bursts period.

Corticospinal excitability is the keyword with the longest burst

period, lasting five years (2014–2019). Table 6 lists the top

five funding agencies and the most co-occurring keywords

in the funded studies to further identify the funding and

research topics.

Discussion

Characteristics of the papers

This study provides a bibliometric analysis on electrical

stimulation of skeletal muscle research over the past 10

years. The number of publications increased generally, but

statistically, it remained at 230–335. This phenomenon indicates

that it may have been a relatively mature research direction.

Moreover, original research articles account for 86.35% of

the total, followed by reviews (11.83%), implying a lot

of new contributions to knowledge and summaries of the

existing research. Neurosciences, Physiology, Sport Sciences,

and Rehabilitation are the most prominent research area

(as shown in Figure 2B). With the help of a dual-map

overlay (as shown in Figure 2C), we find that molecular

biology, genetics, sport, and rehabilitation are the primary

research basis, and clinical medicine, neurology, and sports
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FIGURE 5

(A) The co-citation network map of references. (B) The top 20 references with the strongest citation bursts. The red segment denoted the burst

duration of a reference.

are significant application fields. Therefore, we speculate

that these studies aim to understand better the response

and adaptation of skeletal muscle to electrical stimulation

in clinical pathological or neurological diseases and then

explain the molecular mechanisms at the neuroscientific and

physiological levels. Skeletal muscle is the supportive organ

for daily exercise and physical activity, then maintaining the

quality of human life. The effects of electrical stimulation

on skeletal muscle function recovery and promotion are also

worth noting.

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2022.991099
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huang et al. 10.3389/fneur.2022.991099

FIGURE 6

Visualization of keywords. (A) Density map of keywords co-occurrence. (B) Cluster network map. Nodes of the same color form a cluster.
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FIGURE 7

(A) Timeline viewer of keywords evolution. (B) The top 25 keywords with the strongest citation bursts.

Geographical distribution of author and
research group

A total of 11,377 authors contributed to the electrical

stimulation of skeletal muscle research. However, according

to statistics, only six authors published more than 20 papers,

accounting for 0.08% of the total (references published by

the top six productive authors are listed in Supplement 3); 66

authors published more than 10 papers, accounting for 0.58%.

Most authors (n = 8,722, 76.78%) published only one paper.

Although many researchers are engaged in the relevant work,

only a small number of them have concentrated on this area.
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TABLE 6 The top 5 funding agencies and co-occurrence keywords from publications.

Funding agency Count (%) Country/region Top co-occurrence keywords (frequency)

United states department of health

human services

427 (13.96%) USA Spinal cord injury (45), exercise (26), fatigue (26), functional electrical

stimulation (26), electromyography (16), rehabilitation (16), aging (15),

neuromuscular electrical stimulation (15).

National institutes of health 423 (13.83%) USA Spinal cord injury (44), functional electrical stimulation (26), exercise (25),

fatigue (24), electromyography (16), aging (15), rehabilitation (15),

neuromuscular electrical stimulation (15).

Ministry of education culture

sports science and technology

japan

237 (7.75%) Japan Exercise (16), atrophy (12), rehabilitation (11), h-reflex (8), muscle contraction

(8), myokine (7), resistance training (7), spinal reflex (7).

Japan society for the promotion of

science

192 (6.28%) Japan Exercise (13), rehabilitation (11), h-reflex (8), atrophy (7), muscle contraction

(7), myokine (7), resistance training (7), spinal reflex (7).

European commission 143 (4.68%) Europe Exercise (12), electromyography (8), fatigue (8), neuromuscular electrical

stimulation (7), atrophy (6), h-reflex (5), spinal cord injury (5), strength (5).

Four of the top 10 prolific authors are from France, and

two are from Switzerland. They are located in a densely

connected local area within the cooperative network (as shown

in Figure 4A), implying solid cooperative relationships. Millet

GY is the leading author in the number of publications (n= 50)

and citations (1,222 times). Four of the top 10 co-cited authors

are from the USA. Analyzing the findings of the 10 authors,

Effects of Resistance Training on Adiposity and Metabolism after

Spinal Cord Injury, published by Gorgey in 2012 (51); Motor

unit recruitment during neuromuscular electrical stimulation:

a critical appraisal, published by Gregory in 2011 (52);

Group III/IV muscle afferents limit the intramuscular metabolic

perturbation during whole body exercise in humans, published

by Amann in 2016 (53); and Neural control of lengthening

contractions, published by Enoka in 2016 (54) are cited the most,

more than 500 times. French and American scholars actively in

this field and achieved high-quality research results.

According to Table 2, it is evident that the USA has

advantages in the number of publications, citations, and

centrality. Centrality is a measure of the significance of nodes

in the network graph. Furthermore, the USA has extensive

exchanges and cooperation with 50 countries, ranking first,

followed by Australia (40 countries) and France (38 countries).

All the evidence points out the dominance of the USA in global

research. This is probably based on a large number of institutions

and lots of research funding.

Only two of the top 10 productive countries are developing

countries, China and Brazil. As far as the top 10 affiliations

are concerned, six are from the USA, followed by France (3

affiliations). None of them locates in developing countries.

Overall, the global influence of developing countries is limited in

this field. As seen in Figure 3D, the location relationship among

institutions is relatively scattered, indicating that worldwide

academic cooperation is not strong enough. In order to

promote mutual development, it is necessary to reinforce global

communication and collaboration.

Analysis of literature sources

A total of 3,059 papers were published in 801

journals. The top 10 prolific journals account for

22.69% of all publications. Most published articles

distribute in other journals, indicating that many

journals have been paying attention to the progress in

this field.

Analysis of literature sources helps researchers find the

core journals. As shown in Table 4, Plos One published

the most papers, indicating its high popularity among

scholars. However, the average citation of Medicine and

Science in Sports and Exercise is the highest, reflecting

the relatively good quality of papers published in this

journal. In addition, eight journals are in the top 10

for productivity and co-citation. These journals may

be good choices for researchers to present their work.

Statistically, the most co-cited journal is the Journal of Applied

Physiology, proving it has a good academic reputation in

the industry.

The majority of the top 10 cited papers are original research,

in general, involving the treatment of electrical stimulation on

skeletal muscle dysfunction, design strategy, and application

of conductive biomaterials in muscle tissue engineering. These

studies reflect the concentrations of the researchers and provide

empirical evidence for further research. Specifically, the most

cited article is What Is the Evidence for Physical Therapy

Poststroke? A Systematic Review and Meta-Analysis, providing

an update of the evidence for stroke rehabilitation interventions

in the domain of physical therapy, written by Veerbeek et al.
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(38). Following articles are related to the therapeutic effect of

neuromuscular electrical stimulation written by Maltais et al.

(39), and the re-establishment of adaptive control of paralyzed

muscles using the invasive electrical stimulation after spinal cord

injury, written by Wagner et al. (40), respectively.

Analysis of the hot topics and trends

Based on co-word analysis combined with network analysis

and keyword citation burst detection, hot topics and trends in

this research field can be identified. Fatigue, NMES, exercise,

rehabilitation, FES, and spinal cord injury are hot topics, and

tissue engineering is the most citation-burst keyword recently,

indicating the likely future trends.

E�ect of electrical stimulation on muscle
fatigue

The performance and recovery of human muscle fatigue

have recently been an important research topic (Figure 6B,

cluster 1). Muscle fatigue typically presents with temporary

strength loss (55, 56), such as a reduction of maximal voluntary

contraction (MVC) (57). It will negatively affect the individual’s

motor ability and physical performance (58, 59), especially in

competitive sports. There are both central and peripheral causes

for the alterations of neuromuscular functional status. Recent

research suggests that intramuscular inorganic phosphate is a

primary cause of peripheral fatigue, skeletal muscle acidosis,

probably acting on muscle afferents, as a contributor to central

fatigue during exercise (60).

When it comes to restoration dynamics of skeletal muscle

function, recovery strategies are highly required to alleviate

fatigue, regain performance, and then reduce the risk of injury.

The conventional idea is that these strategies should target

the major causes of fatigue (61). For instance, hydration, diet,

and sleep help replenish substrate stores and optimize muscle-

damage repair. These interventions are effective in counteracting

fatigue mechanisms. However, there is no consensus about the

ability of electrical stimulation for a quick return to the initial

level of muscle performance.

Babault et al. (62) summarized the effect of electrical

stimulation on the ability to performance maintaining

after exercise. They found that electrical stimulation did

not work significantly in 11 of 12 studies. According to

electromyography signals, a recent meta-analysis (63) suggests

that electrical stimulation effectively reduces muscle fatigue

during exercise but not a statistically significant effect. Even

so, researchers do not deny the practical benefits of electrical

stimulation (64–66). For instance, electrical stimulation

helps reduce muscle soreness (67, 68) and enhances the

clearance of creatine kinase and blood lactate (69, 70). In

conclusion, electrical stimulation, as a common method for

recovery purposes, the evidence concerning its therapeutic

effects is limited. Additional studies are needed to establish

efficient recovery protocols, particularly regarding the chronic

effects, antiinflammatory or pro-inflammatory response, and

combinations of recovery strategies.

NMES is commonly used to artificially control voluntary

contractions of skeletal muscle (71, 72) and evaluate muscle

performance or neuromuscular activation levels. The unique

mechanism of NMES, but also a drawback, is the reversal

of the regular voluntary recruitment pattern, which means

the large and fatigable motor units are recruited earlier than

smaller motor units (52). This phenomenon may limit practical

applications because NMES tends to cause muscle fatigue (73).

Michael et al. (74) demonstrated a new control modality for

orderly recruitment to enhance performance and reduce fatigue.

In order to achieve the maximum efficiency of NMES when

applied to research, rehabilitation, and exercise, more scientific

evidence is required, including the mechanism of orderly

recruitment of motor units, parameters, and new technologies

for NMES implementation (75). It will be a long-term goal in

physiology, medicine, and engineering.

FES for rehabilitation of paralytic skeletal
muscles

There is a cross-linked network between the representative

keywords of spinal cord injury, rehabilitation, FES, and stroke

(Figure 6B, cluster 3). It indicates the formation of a specific

research field and a research hotspot. Spinal cord injury (SCI)

and stroke, although having different pathogenesis, are both

critical factors causing paralysis. SCI can be traumatic (e.g.,

traffic accident) or non-traumatic (e.g., tumor). The connection

between the central nervous system and the rest of the body

breaks when the spinal cord is damaged, inducing a loss of

sensory ormotor ability. A lesion of the lumbar or thoracic levels

leads to paraplegia, and the cervical level results in tetraplegia,

which all seriously influence voluntary movement. Stroke is a

partial death of brain tissue due to an interruption of the blood

supply. Hemiplegia, impaired movement on one side of the

body, is a common consequence of stroke. This condition can

range from a slight decrease to severe damage or complete loss

of motor capacity.

In recent years, the rehabilitation of voluntary movement

has been enriched with the constant accumulation of

neurophysiological evidence about the mechanism of motor

function recovery (76). FES is an effective intervention that

can assist functional and purposeful movements after SCI

or stroke (77). FES therapy may promote adaptive plasticity,

activate spare fibers, and stimulate central generators while

bypassing damaged pathways. Since stimulus parameters
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influence the sequent movement, the safety, and the comfort

of a person, confirming the parameters before using FES is

essential. Electrode placement and stimulation intensity are

two main aspects (9, 78). FES has been widely used in various

rehabilitation programs. It improves walking and gripping and

indirectly regulates cardiovascular health (79). Furthermore,

FES also affects muscle fiber type transformation, metabolic

gene activation, and diabetes risk factors reduction. However,

there is contrary evidence that two weeks of FES-aided cycling

would not contribute to immediate improvements in leg

swelling or spasticity (80). The potential causes for these

differences remain unclear.

With the aging of the population worldwide, the prevalence

of FES is likely to increase over the coming years. Some research

focuses on exploring new technology and strategy to deliver

stimulation. Integrating FES and brain-computer interfaces

(BCI) has been a hot global topic in neurorehabilitation

(81). Furthermore, with the benefits of better mechanical

compliance and lower skin irritation (82), the textile-based

electrode for FES attracts the attention of researchers. In

conclusion, more evidence is required to support effective

FES protocols.

Development of tissue engineering in
skeletal muscle physiology

As shown in Figure 7B, tissue engineering is the

keyword with the most citation burst, followed by skeletal

muscle tissue and atrophy. Therefore, we briefly described

the recent advances in tissue engineering in skeletal

muscle physiology.

Based on the development of induced pluripotent stem cell

(iPS) technology (83), tissue engineering enables the production

of in-vitro tissue models (84). The artificial tissue model of

skeletal muscle provides a platform to exploremuscle physiology

and the mechanism of muscle diseases (85). Muscle atrophy

and contractile deficit are common complications of chronic

inflammatory diseases. Exercise is a protective intervention, but

its mechanism remains unclear. Chen et al. (86) verified that

exercise-mimetic electrical stimulation attenuated interferon-

γ (IFN-γ )–induced atrophy and weakness of the in-vitro

skeletal muscle model. Specifically, the JAK (Janus kinase)/

STAT1 (signal transducer and activator of transcription 1)

signaling pathway amplified by IFN-γ was down-regulated.

Then the myobundle secretome altered, causing myofiber

hypertrophy. Takahashi et al. (87) found that the periodic

exercise induced by continuous electrical pulse stimulation

strengthed the contractility of the engineered myofibers,

and improved the level of interleukin-6 (IL-6) and vascular

endothelial growth factor (VEGF). This type of engineered

tissue can be used to better understand the relationship between

mechanical stress and myogenesis. In addition, a number of

studies focused on the optimization of in-vitro human skeletal

muscle model (88, 89). These in-vitro models are expected

to mimic real physiological properties, such as the alignment

of muscle fibers, the basement structure of the extracellular

matrix, and the contraction patterns. It is worth mentioning

that electrical stimulation plays an important role both in

inducing artificial movement of cells and forming mature

neuromuscular junctions.

In summary, the tissue-engineered model of human

skeletal muscle has become a powerful tool for studying

myogenesis, metabolism, and the mechanisms of motoneurons

and neuromuscular junction diseases. We believe that research

on skeletal muscle tissue engineering will increase in the

coming years.

Conclusion

Over the past decade, the effects of electrical stimulation

on the physiological function of skeletal muscle and

neuromuscular diseases have attracted the attention of the

academic community. Bibliometrics analysis helps scholars

understand academic cooperation, research trends, and hot

topics from numerous literatures.

In this study, we summarized the countries, affiliations,

authors, journals, and citation data that contributed to the

research on the electrical stimulation of skeletal muscle.

Research groups from the USA and France are important

contributors to the development of this field. In order to achieve

more high-quality research results, international cooperation

is supposed to strengthen. Based on the bibliometric review,

the main hot topics and possible future directions are

identified, for instance, the keywords of muscle fatigue,

NMES, spinal cord injury, tissue engineering, and atrophy.

Further studies are needed to explore new technology

and application strategy to promote the development of

this field.
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