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abstract

PURPOSE Thirty-day unplanned readmission is one of the key components in measuring quality in patient care.
Risk of readmission in oncology patients may be associated with a wide variety of specific factors including
laboratory results and diagnoses, and it is hard to include all such features using traditional approaches such as
one-hot encoding in predictive models.

METHODS We used clinical embeddings to represent complex medical concepts in lower dimensional spaces.
For predictive modeling, we used gradient-boosted trees and adopted the shapley additive explanation
framework to offer consistent individualized predictions. We used retrospective inpatient data between 2013 and
2018 with temporal split for training and testing.

RESULTS Our best performing model predicting readmission at discharge using clinical embeddings showed a
testing area under receiver operating characteristic curve of 0.78 (95% CI, 0.77 to 0.80). Use of clinical
embeddings led to up to 23.1% gain in area under precision-recall curve and 6% in area under receiver
operating characteristic curve. Hematology models had more performance gain over surgery and medical
oncology. Our study was the first to develop (1) explainable predictive models for the hematology population and
(2) dynamic models to keep track of readmission risk throughout the duration of patient visit.

CONCLUSION To our knowledge, our study was the first to develop (1) explainable predictive models for the he-
matology population and (2) dynamicmodels to keep track of readmission risk throughout the duration of patient visit.
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INTRODUCTION

Thirty-day unplanned readmission rate is often used as
a measure for quality of care.1 Patients with cancer are
particularly at high risk for hospital readmission,2 as-
sociated with higher cost and safety concerns.3,4 A
study by Jencks et al5 reported that the 30-day
readmission rate for Medicare beneficiaries was
19.6%. The Medicare Payment Advisory Commission
estimated that readmissions result in $15 billion US
dollars in additional annual Medicare expenditures,
which accounts for approximately 10% of overall
Medicare spending on hospital inpatient care.6 Fur-
thermore, readmission can be linked with negative
outcomes, such as higher mortality rates.

Artificial intelligence enables drawing insights from a
vast amount of data without the explicit need to gen-
erate a hypothesis or to make previous assumptions on
data distribution as in traditional research. Machine
learning and deep learning models have been increas-
ingly used in precision oncology.7 Tree-based machine
learning models are among the most commonly used

nonparametric and nonlinear models.8-10 Efficient ap-
proaches for post hoc explanations of individual pre-
dictions from tree-based models are gaining popularity
and can provide critical insights into applications in
clinical decision support.11-14

Embedding techniques, eg, Word2Vec,15 provide low-
dimensional representations of words from their
context to preserve semantic similarity properties.
Those techniques can also be applied to clinical codes
in the electronic health record (EHR), such as Logical
Observation Identifiers Names and Codes (LOINC) and
International Classification of Diseases (ICD)-9
codes,16 to extract low-dimensional features for clini-
cal prediction tasks.17 Liu et al18 showed an im-
provement in the performance of predicting 30-day
readmission by using embeddings of diagnosis codes
and artificial neural networks. It is unclear whether
using clinical embeddings will improve predictive
performance in the cancer population.

In this study, we made threemajor contributions toward
predictive modeling of 30-day unplanned readmission
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for cancer population. First, we developed multiple ex-
plainable tree-based predictive models associated with dif-
ferent time points throughout patient visit. Explainable
predictions were made available shortly after individual
patient’s admission, and the predictions were refined
throughout the course of hospital stay and toward discharge
when additional information was available. Second, we in-
vestigated the benefits of using clinical embeddings derived
from ICD-9 (diagnoses) and LOINC (laboratory tests) codes.
Third, we compared model performance among different
cancer specialties (hematology, medical oncology, and
surgery). To the best of our knowledge, our study is the first to
develop a predictive model for readmission in hematology
population.

METHODS

Study Design

Using EHR data, we conducted a single institutional study
on a cohort of all adult patients (age≥ 18 years) admitted to
the hospital between 2013 and 2017 (n = 18,811). We
performed a temporal split on the data such that the visit
data with discharge date between 2013 and 2016 were
used for model training (n = 15,524), and the data with
discharge date in 2017 were used for model testing (n =
3,287). In the testing data set, we only considered new
patients admitted to the hospital after January 1, 2017, to
avoid potential data leakage with the training data set.

The outcome is a two-class variable denoting whether 30-
day unplanned readmission occurred. The overall rate of
30-day unplanned readmission for the data set based on
our inclusion criteria is 16.4%, with hematology having the
highest readmission rate (23.8% among 6,916 visits),
followed by medical oncology (18.7% among 3,089 visits)
and surgery (9.7% among 8,693 visits). Patient charac-
teristics are summarized in Table 1.

Admission and Discharge Factors

We assigned input features into three groups: baseline
factors, discharge factors, and clinical embeddings. The

features were identified based on the literature13,19-21 and
potential clinical relevance. In the first group, we identified
multiple baseline factors that are typically available shortly
(within 24 hours) after admission: age at admission, gen-
der, number of admissions to the study institution in the
past 6 months, presence of emergency treatment center
visit to the study institution in the past 30 days, service line
(admission department: hematology, medical oncology,
surgery, and others), primary insurance (MEDICARE,
MEDI-CAL, and others), and bone marrow transplant type
(allogeneic or autologous for hematology only). In the
second group, we identified three discharge factors that
were typically obtained during discharge planning of the
inpatient visit: discharge disposition (home, other hospitals,
skilled nursing facilities, rehabilitation, and others), dis-
charge reconciliation (medication review), and length of
stay. Summary statistics of the baseline and discharge
factors are listed in Table 1.

Features From Embeddings of Clinical Codes

For ICD-9 codes, we use the 300-dimensional Word2Vec
embedding model trained by Choi et al16 on the insurance
claims of 4 millions of patients. For each inpatient visit, we
considered up to the most recent 50 diagnoses within the
6months preceding admission and a time point (TP) during
the hospital visit. The choice of TP depends on the pre-
diction time and will be discussed in the next section.
Between 2013 and 2017, our medical center used diag-
noses associated with 2,945 unique ICD-9 codes, where
0.5% of the ICD-9 codes were out of vocabulary for the
insurance claims model. We produced a 300-dimensional
feature vector for each visit by averaging the embeddings of
the ICD-9s.

For LOINC codes, we considered up to the most recent 50
laboratory tests with abnormal results ordered between
admission and TP. The laboratory tests corresponded to
425 unique LOINC codes, where 44% of the LOINC codes
were out of vocabulary for the insurance claims model. As a
result, we decided to exclude LOINC code embeddings

CONTEXT

Key Objective
Thirty-day unplanned readmission is one of the key quality measures in cancer care. In this study, we developed a dynamic,

explainable machine learning model to predict the risk of readmission at various time points throughout a patient’s visit. We
also investigated the benefits of using clinical embeddings in our predictive models.

Knowledge Generated
Predictive performance at admission was modestly lower than at discharge. Addition of International Classification of Dis-

eases-9 codes embeddings improved performance in most cases. Within services, incorporating clinical embeddings led to
more performance gains in hematology than surgery and medical oncology.

Relevance
A dynamic model potentially allows a patient’s readmission risk to be identified early, hencemaking intervention possible. Risk

assessment and prediction explanations could potentially be incorporated in patient education and discharge planning.
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TABLE 1. Patient Characteristics and Outcome

Variables
Training Data Set 2013-2016

(n = 15,524)
Testing Data Set 2017a

(n = 3,287) Total (N = 18,811)

Outcome

Unplanned readmission in days

, 7 days 825 (5.3%) 158 (4.8%) 983 (5.2%)

≥ 7 days and , 14 days 716 (4.6%) 162 (4.9%) 878 (4.7%)

≥ 14 days and , 21 days 508 (3.3%) 115 (3.5%) 623 (3.3%)

≥ 21 days and ≤ 30 days 465 (3.0%) 128 (3.9%) 593 (3.2%)

Rate of unplanned readmission

Overall 16.2% 17.1% 16.4%

Hematology 24.0% 23.1% 23.8%

Medical oncology 17.3% 25.5% 18.7%

Surgery 9.8% 9.4% 9.7%

Baseline factors

Sex

Male 7,965 (51.3%) 1,665 (50.7%) 9,630 (51.2%)

Female 7,559 (48.7%) 1,622 (49.3%) 9,181 (48.8%)

Age at index admission

Median (range) 60 (18-97) 61 (18-99) 60 (18-99)

Interquartile range 50-68 50-69 50-68

Number of admissions in the previous 6 months

= 0 11,007 (70.9%) 2,441 (74.3%) 13,448 (71.5%)

= 1 2,463 (15.9%) 494 (15.0%) 2,957 (15.7%)

= 2 949 (6.1%) 167 (5.1%) 1,116 (5.9%)

≥ 3 1,105 (7.1%) 185 (5.6%) 1,290 (6.9%)

ETC visit in the previous 30 days

True 792 (5.1%) 470 (14.3%) 1,262 (6.7%)

Service line

Hematology 5,682 (36.6%) 1,234 (37.5%) 6,916 (36.8%)

Medical oncology 2,555 (16.5%) 534 (16.2%) 3,089 (16.4%)

Surgery 7,187 (46.3%) 1,506 (45.8%) 8,693 (46.2%)

Others 100 (0.6%) 13 (0.4%) 113 (0.6%)

Primary insurance

MEDICARE 5,521 (35.6%) 1,084 (33.0%) 6,605 (35.1%)

MEDI-CAL 1,564 (10.1%) 255 (7.8%) 1819 (9.7%)

Others 8,439 (54.3%) 1948 (59.3%) 10,387 (55.2%)

Bone marrow transplant

Autologous 1,058 (6.8%) 245 (7.5%) 1,303 (6.9%)

Allogeneic 768 (4.9%) 192 (5.8%) 960 (5.1%)

Discharge factors

Length of stay at index admission

Median (range) 5 (0-232) 5 (0-406) 5 (0-406)

Interquartile range 2-10 3-11 2-10

Discharge to location

Home 11,673 (75.2%) 2,385 (72.6%) 14,058 (74.7%)

(Continued on following page)
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from the insurance claims model for most of our analyses
and developed a custom LOINC embeddings model
based on our center’s laboratory data. We trained 100-
dimensional Wor2Vec embeddings from the LOINCs of
laboratory orders associated with encounters in our EHR.
In the context of word embeddings, an LOINC was
equivalent to a word and an encounter was equivalent to
a sentence. We used the LOINCs associated with
703,839 encounters recorded from July 2009 to De-
cember 2016. We used the skip-gram approach with a
context window equal to 5. LOINCs occurring five times
or less were excluded. This led to embedding repre-
sentations for 1,005 distinct LOINCs. We produced a

100-dimensional feature vector for each visit by aver-
aging the embeddings of the LOINCs.

We concatenated the ICD-9 and LOINC embedding feature
vectors to the baseline and discharge features. Summary of
count of ICD-9 and LOINC codes is listed in Table 1.

Explainable Tree-Based Predictive Modeling

Various combinations of the input features were fed into
machine learning models to predict whether 30-day un-
planned readmission will occur for an inpatient visit.
Specifically, we investigated six scenarios, and clinical
embeddings were used in scenarios 3-6:

TABLE 1. Patient Characteristics and Outcome (Continued)

Variables
Training Data Set 2013-2016

(n = 15,524)
Testing Data Set 2017a

(n = 3,287) Total (N = 18,811)

Other hospitals 3,200 (20.6%) 763 (23.2%) 3,963 (21.1%)

Skilled nursing facilities 354 (2.3%) 97 (3.0%) 451 (2.4%)

Rehabilitation 265 (1.7%) 38 (1.2%) 303 (1.6%)

Others 32 (0.2%) 4 (0.1%) 36 (0.2%)

Discharge reconciliation

True 8,441 (54.4%) 2,635 (80.2%) 11,076 (58.9%)

Medical codes at discharge

Number of ICD-9 codesb

Median 2 5 3

Interquartile range 0-6 2-10 1-6

Number of LOINC codesc

Median 50 50 50

Interquartile range 20-50 22-50 20-50

Abbreviations: ETC, emergency treatment center; ICD, International Classification of Diseases; LOINC, Logical Observation Identifiers Names and Codes.
aFor the data set in 2017, only new patients as of January 1, 2017, were considered.
bTotal count of ICD-9 codes between 6 months before admission and discharge.
cTotal count of LOINC codes between admission and discharge.
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FIG 1. Comparison of testing data set
prediction performance of scenarios 1
and 2. Orange curves represent the
performance of scenario 1, whereas
blue curves represent the perfor-
mance of scenario 2. (A) ROC curve
plot. (B) Precision-recall curve plot.
AUC, area under the curve; ROC, re-
ceiver operating characteristic.
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1. Prediction performed using baseline factors only.
2. Prediction performed at discharge using baseline and

discharge factors.
3. Prediction performed 24 hours after admission using

baseline factors and clinical embeddings based on ICD-
9 codes available until 24 hours after admission.

4. Prediction performed dynamically. In this case, we randomly
selected a time point (TP, median = 2.4 days) during each
visit.Weconsidered ICD-9codesup till TP to generate clinical
embeddings. We also used baseline factors in this case.

5. Prediction at discharge using baseline factors, dis-
charge factors, and clinical embeddings based on ICD-9
codes until discharge.

6. We appended the LOINC embedding feature vector into
the feature vector of scenario 5 to assess potential
improvement in predictive performance.

We chose nonparametric gradient-boosted tree models10 for
classification, along with tree-explainer for local explanations
of the model.11,12 For the training data set, we used 10-fold
cross-validation to identify optimal model hyperparameters.
Appendix Table A1 shows the training data set model per-
formance for various combinations of clinical and embed-
dings factors. The optimal model was then applied on the
testing data set. Receiver operating characteristic (ROC) and
precision-recall curves were used for model assessment. The
associated 95% CIs were calculated by using 1,000 times of
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FIG 2. Summary plots combining local explanation values from individual predictions (scenarios 1 and 2). (A, C) Bar chart showing mean absolute of all
shap values of the model: (A) scenario 1 and (C) scenario 2. (B and D) Beeswarm plots where in each row (corresponds to one feature), one dot
corresponds to one patient in the testing data set. The color of each dot corresponds to a normalized feature value (qualitative: blue for low values and red
for high values), whereas its position along the x-axis depicts the shap value describing the impact on the model prediction: (B) scenario 1 and (D) scenario
2. BMT, bone marrow transplant; ETC, emergency treatment center; SHAP, shapley additive explanation.
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bootstrapped resampling. We then applied tree-explainer
upon the optimal model to compute explanations for each
individual prediction (probabilistic shapley additive explana-
tion [SHAP] value) based on the associated exact shapley
values generated for each feature from individual patient’s visit
data in the testing set. The summation of all SHAP values
associated with all features for an individual patient’s visit is
equal to the model outcome prediction. Features with the
highest SHAP values could be displayed to clinicians along
with each prediction to show the factors contributing the most
to risk of readmission. This could potentially be useful to tailor
intervention. Because individual embedding features do not
offer much insight into model explanation, for each patient’s
visit data, we summed up all SHAP values associated with
embeddings for ICD-9 and LOINC codes, respectively, to
create one SHAP value for ICD-9 and one SHAP value for
LOINC. The overall feature importance was obtained by

calculating the mean absolute SHAP values of individual
features. Python 3.7.6, scikit-learn 0.22.1, lightGBM 2.3.1,
and shap 0.35.0were used formachine learning classification
and explanation.

RESULTS

Explainable Predictions from Admission to Discharge

Figure 1A shows that the area under receiver operating
characteristic curve (AUROC) of the model using both
baseline and discharge factors is 0.75 (95% CI, 0.73 to
0.77, scenario 2), just 1.4% more than that of using
baseline (0.74, 95% CI, 0.72 to 0.75, scenario 1). On the
other hand, Figure 1B shows that the area under precision-
recall curve (AUPRC) of the model using both baseline and
discharge factors is 0.39 (95% CI, 0.36 to 0.43, scenario
2), with 5.4% improvement over using baseline factors only
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FIG 3. Composition of individual predictions from two sample patients using the model in scenario 2. Explained prediction for each patient. Blue
arrows depict the factors contributed to decreased risk of readmission, whereas red arrows depict the factors contributed to increased risk of
readmission. (A) The prediction of readmission risk was 0.06 with explanations that 30-day unplanned readmission was false for this patient. The
patient of age 48 years was admitted to inpatient service in the surgery department for 4 days. This patient had not been admitted to inpatient visit in
the previous 6 months. The patient was discharged to other hospitals, and discharge reconciliation is complete. (B) The prediction of readmission risk
was 0.65 with explanations. Thirty-day unplanned readmission was true for this patient. The patient was admitted to Hematology for Allogeneic Bone
Marrow Transplant. The patient stayed in the inpatient service for 164 days. The patient had been admitted to inpatient visit once in the past 6months.
Discharge reconciliation was not complete. BMT, bone marrow transplant; LOS, length of stay.
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(0.37, 95% CI, 0.33 to 0.40, scenario 1). It should be noted
that for an imbalanced data set, and real-world applications
such as readmission, PRC is a more valuable metric for
model assessment than ROC, as ROC tends to generate
overly promising interpretation of predictive performance.22

Figures 2A and 2B display feature importance bar plots of
mean absolute SHAP values, grouped by individual vari-
ables associated with models using baseline factors and
baseline along with discharge factors, respectively. In both
cases, the number of admissions in the past 6 months before
admission and patient’s age at admission are among themost
important features. For the model with discharge factors,
length of stay is the secondmost important feature. Figures 2C
and 2D display beeswarm plots11 where in each row (cor-
responds to one feature), one dot corresponds to one patient
in the testing data set. The color of each dot corresponds to a
normalized feature value (qualitative: blue for low values and
red for high values), whereas its position along the x-axis
depicts the SHAP value describing the impact on model
performance. Using the beeswarm plot, we can observe the
directionality of the relation between individual factors and
outcome (readmission in our case), along with the magnitude
of the relation. For instance, we observe patients with a larger
number of admissions in the 6months leading to the visit have
increased probability of readmission. Additionally, patients
with lower age have increased risk of readmission in our
cohort. In hematology population, patients with allogeneic
bonemarrow transplant have increased risk, whereas patients
with autologous bone marrow transplant have reduced risk of
readmission. For themodel using discharge factors (Fig 2B), a
larger length of stay corresponds to an increased risk of
readmission, whereas patients with discharge reconciliation
have slightly reduced the risk of readmission.

Figure 3 visualizes the composition of individual explained
predictions from 2 sample patients using the model with
baseline and discharge factors. In each plot, blue arrows
depict the factors contributing to decreased risk of read-
mission whereas red arrows depict the factors contributing
to increased risk of readmission.

Performance Improvement Using Clinical Embeddings

Figure 4A displays the AUROC and AUPRC values of the
model using various combinations of factors with embed-
dings. Using dynamic embeddings (scenario 4, green
curves: AUROC = 0.75 [95% CI, 0.73 to 0.77], AUPRC =
0.42 [95% CI, 0.38 to 0.45]) shows only a 1.3% im-
provement in AUROC compared with using embeddings at
baseline (scenario 3, orange curves: AUROC = 0.74 [95%
CI, 0.72 to 0.76], AUPRC = 0.40 [95% CI, 0.36 to 0.43]).
Incorporating embeddings and factors at discharge shows
5.4% and 15% improvements at AUROC and AUPRC,
respectively (scenario 5, blue curves: AUROC = 0.78 [95%
CI, 0.76 to 0.79], AUPRC = 0.46 [95% CI, 0.42 to 0.49]),
compared with using baseline factors and embeddings
(scenario 3).

If we compare the performance between models with and
without embeddings (Figs 2 and 4), we observe 8.1%
AUPRC improvements for baseline (scenario 1 v 3). The
embedding-related performance gain between scenarios 2
and 5 was 4% AUROC and 18% AUPRC, suggesting that
using embeddings offers notable improvements in overall
precision. No notable performance gain was observed
compared with scenario 5 when adding LOINC embed-
dings to the predictive models (scenario 6, red curves:
AUROC = 0.78 [95% CI, 0.77 to 0.80], AUPRC = 0.45
[95% CI, 0.42 to 0.49]).
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FIG 5. Summary plots combining local explanation values from many individual predictions (scenarios 3-6). (A, C, E, and G) Bar chart
showing mean absolute of all shap values of the model: (A) scenario 3, (C) scenario 4, (E) scenario 5, and (G) scenario 6. (B, D, F, and H)
Beeswarm plots where in each row (corresponds to one feature), one dot corresponds to one patient in the testing data set. The color of each
dot corresponds to a normalized feature value (qualitative: blue for low values and red for high values), whereas its position along the x-axis
depicts the shap value describing the impact on themodel prediction: (B) scenario 3, (D) scenario 4, (F) scenario 5, and (H) scenario 6. BMT,
bone marrow transplant; ETC, emergency treatment center; SHAP, shapley additive explanation.
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The associated feature importance bar plots and local
explanation beeswarm plots are displayed in Figure 5. For
the purpose of visualization, the feature values associated
with ICD-9 and LOINC embeddings were set to zero.

Model Assessment for Various Cancer Services

Using the same predictive model, Table 2 summarizes
testing data set model performance for hematology, sur-
gery, and medical oncology services. We observe more
notable difference in AUPRC among the services than the
associated AUROC. For instance, in the case where only
baseline and discharge factors were used (scenario 2), we
observe 5.7% difference in AUROC among services (0.70-
0.74), whereas there is 96% difference in AUPRC among
services (0.28-0.55). The interservice differences in
AUPRC could be partly related to the interservice differ-
ences in the rate of unplanned readmission. Surgery has a
lower rate of readmission (9.4%) as well as a lower AUPRC
(0.28) comparing with hematology (readmission rate =
23.1%, AUPRC = 0.39) and medical oncology

(readmission rate = 25.5%, AUPRC = 0.55). For im-
provements using clinical embeddings (scenario 2 v 5), we
found 5.7% gain for AUROC and 23.1% gain AUPRC for
hematology. For surgery, the associated gain was 2.7% for
AUROC and 7.1% for AUPRC. For medical oncology, the
gain was up to 4.2% for AUROC and only up to 1.8% gain
for AUPRC.

DISCUSSION

In this study, we have developed multiple models pre-
dicting risk of readmission at different time points
throughout the duration of an inpatient visit. Individual
prediction explanation is available shortly after admission
(scenarios 1 and 3). Dynamic predictions are then provided
throughout the course of the visit (scenarios 4), and a final
prediction is available around time of discharge (scenarios
2, 5, and 6). Predictive performance at admission is
modestly lower than at discharge. However, performing
prediction at admission has the advantage of estimating
individual’s readmission risk early in the visit and makes
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FIG 5. (Continued).

TABLE 2. Testing Data Set Model Assessment for Various Combinations of Input Factors
Scenario 1 2 3 4 5 6

Area under receiver operating characteristic curve

Hematology 0.67 0.70 0.71 0.71 0.74 0.75

Medical oncology 0.70 0.71 0.69 0.72 0.74 0.73

Surgery 0.67 0.74 0.69 0.69 0.76 0.78

Area under precision-recall curve

Hematology 0.35 0.39 0.42 0.44 0.48 0.47

Medical oncology 0.51 0.55 0.50 0.54 0.56 0.55

Surgery 0.25 0.28 0.23 0.23 0.30 0.30
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potential intervention possible. Readmission risk assess-
ment with model explanations may also be incorporated
into discharge planning.

We also found that the inclusion of clinical embeddings
improves the predictive performance in most cases. Spe-
cifically, higher positive predictive value (precision) would
increase clinical utility of our predictive model. By diving
into individual departments of hematology, surgery, and
medical oncology, we found notably different readmission
rate and predictive performance. Performance gains by
including clinical embeddings are different for different
services, with hematological patients benefiting more than
patients in surgery and medical oncology.

Although our study was retrospective in nature, we have
performed temporal split on our data set for training and
testing. In addition, we used only new patients in the testing
data, making sure that no patient in the testing data was
present in the training data. This approach minimized the
risk of data leakage and ensured that the testing was closer
to a prospective setting.

A few studies have been conducted to identify the likelihood
of unplanned readmission and the associated risk factors in
general medicine and a variety of specialties.13,20,21,23-34

With the advancement of artificial intelligence and com-
putational technologies, more complex algorithms can be
used, and the predictions become more individualized. For
instance, using deep learning on a rich set of EHRs,
Rajkomar et al.32 achieved approximately 10% AUROC
improvement in predicting 30-day unplanned readmission
at discharge than traditional approaches. A more recent
work using explainable gradient-boosted trees approach
also achieved similar performance, with an AUROC of 0.76
and the ability to generate personalized predictions.13 For
oncological models, Schmidt et al.21 were the first to de-
velop a statistical model using logistic regression with
validation c-statistics of 0.70. However, the prospective
analysis was descriptive, and no prospective predictive
performance was reported. In addition, the cohort focused
on patients in surgery andmedical oncology services, and it

was unclear whether the model works on hematology
patients. A few studies were found on identifying risk factors
related to inpatient hematological unplanned
readmission,23,28,33,34 and, to our knowledge, our study was
probably the first to explicitly predict 30-day unplanned
readmission for hematology population. At the same time,
the highest AUROC achieved for our study using the ex-
plainable tree-based model is 0.78.

The majority of studies on machine learning and deep
learning modeling used the ROC and the associated area
under the ROC as the key metric for assessment. However,
the measure could be misleading in cases where the data
are imbalanced, leading to overly promising interpretation
of predictive performance.22,35 Precision-based metrics,
relying on the proportion of true positives among all positive
predictions, is a better alternative for imbalanced data sets.
Average precision and precision-recall curve are common
alternatives for ROC and should be more widely adopted.

Recent studies using features from embeddings of clinical
codes or concepts tend to adopt deep learning
approaches.18,36-38 Our results show that even nondeep
learning algorithms, such as gradient-boosted trees, can
yield significant performance gains from the inclusion of
features from clinical embeddings. With a limited number
of patients in a single institution, it seems we were not able
to train embeddings that could significantly improve per-
formance for readmission prediction. A multi-institutional
study should be conducted across cancer centers, using a
larger number of patient visit transactions to develop more
complex embedding models that can be used for the
oncology population. In addition, external validation for the
readmission models should be conducted. Another limi-
tation for clinical utility of this approach is that it is a fixed
model trained on historical data. We are in the process of
deploying this model in our real-time data infrastructure,
which allows for retraining the model regularly with more
recent data, monitoring data consistency, data or concept
drifts, etc, and presenting predictions and explanations in
the EHR.
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APPENDIX

TABLE A1. Cross-Validation Data Set Model Assessment for Various Combinations of Input Factors
Scenario 1 2 3 4 5 6

Area under receiver operating characteristic curve 0.74 0.76 0.76 0.78 0.80 0.80
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