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Abstract: Activated by AMP-dependent and -independent mechanisms, AMP-activated protein
kinase (AMPK) plays a central role in the regulation of cellular bioenergetics and cellular
survival. AMPK regulates a diverse set of signaling networks that converge to epigenetically
mediate transcriptional events. Reversible histone and DNA modifications, such as acetylation
and methylation, result in structural chromatin alterations that influence transcriptional
machinery access to genomic regulatory elements. The orchestration of these epigenetic events
differentiates physiological from pathophysiological phenotypes. AMPK phosphorylation of histones,
DNA methyltransferases and histone post-translational modifiers establish AMPK as a key player in
epigenetic regulation. This review focuses on the role of AMPK as a mediator of cellular survival
through its regulation of chromatin remodeling and the implications this has for health and disease.
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1. Introduction

Epigenetic regulation gives rise to a spectrum of cellular phenotypes observed in a single organism
independent of primary DNA sequence. Such regulation is hereditable and stable, as occurs in
the determination of cell type, but also transient, producing a particular phenotypic outcome to
ensure survival [1–3]. Influencing gene expression, epigenetics promotes organismal adaption by
offering substantial functional variability in response to environmental stimuli [1–3]. This regulation
occurs, in part, through nucleosomal remodeling as a result of histone, DNA, and DNA-binding
protein modifications that include: phosphorylation, acetylation, O-GlcNAcylation, ribosylation,
and methylation. Such signature modifications or marks characterize nucleosome remodeling and
determine the degree of gene activation or silencing. At a fundamental level, stressors such as nutrient
deprivation or heightened physical activity trigger dynamic epigenetic markings that orchestrate
adaptive gene regulation to improve survivability [4–7].

AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis and a key
mediator of adaptation and cell survival, is activated by conditions that produce energy deprivation
such as hypoxia, exercise, nutrient starvation, and infection [8]. AMPK functions as a heterotrimeric
serine/threonine protein kinase composed of a catalytic α-subunit, a scaffolding β-subunit, and a
regulatory γ-subunit. Both α and β-subunits exist in two isoforms (α1, α2, and β1, β2), while the
regulatory γ-subunit exists in three isoforms (γ1, γ2, γ3). The combination of α, β, and γ isoforms can
form 12 different heterotrimeric complexes, each demonstrating unique functions and subcellular or
tissue-specific distributions [9–11]. Once activated, AMPK phosphorylates targets with well-defined
consensus sequences to regulate bioenergetics by modulating metabolic pathways that promote
ATP production and limit energy expenditure [12]. Such roles of AMPK in cellular homeostasis
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are facilitated by gene regulation as a result of chromatin conformational dynamics. To that end,
AMPK orchestrates these changes by phosphorylating several histones and proteins involved in
nucleosome remodeling that enhance mitochondrial biogenesis and function [13]. Additionally,
during acute metabolic stressors, such as fasting or exercise, AMPK associates with chromatin at
promoters of genes involved in lipid and glucose metabolism [14].

Chronic AMPK activation plays a role in cellular and organismal inheritance, evidenced by its
multi-isoform 2R-ohnologue characteristics, which are often evolutionarily conserved in gene coding
regions to support basic survival functions and to increase the possibility for complex tissue diversity
and adaptation [15–17]. Such adaptation for survival early in life initiates epigenetic programming that
correlates with AMPK activation and determines predisposition to disease. For example, insults during
development, such as placental insufficiency or maternal metabolic disorders, increase the probability
of adverse metabolic disorders in later stages of life, such as diabetes mellitus, metabolic syndrome,
insulin resistance, hypertension, vascular disease, and cancer [18]. Furthermore, metabolic disorders,
such as maternal obesity, are often associated with reduced AMPK expression or activity and
concomitant loss of its epigenetic mechanisms associated with adaptation and survival [19,20].
Although the mechanistic basis for this regulation, as well as its implications for inheritance, is still
under exploration, these collective observations point to a fundamentally important role of AMPK as
an epigenetic regulator.

2. Histone Modification

Histones are nuclear-localized, primarily positively charged proteins. However, a number of
histone splice variants have been described with broad cellular functions and localizations [21,22].
Within the nucleus, histones are packaged into an octamer consisting of two H2A, H2B, H3, and H4 [23].
These octameric histone complexes associate via charge–charge interactions with DNA and make up a
nucleosome, which is linked to other nucleosomes by histone H1. Given their tight association with
DNA, histones serve as mediators between stress response signaling cascades and the regulation of
nucleosomal structure that ultimately influence gene expression and cellular survival [24]. AMPK,
both directly and indirectly, regulates the post-translational modification (PTM) status of histones that
play a major role in the regulation of nucleosome structure.

2.1. Histone Phosphorylation

Bioinformatic analysis has identified several histones that contain an AMPK phosphorylation
consensus sequence. These include: H1FX, H2AFX, H2AFY, H2AFY2, H2AFZ, H2BFM, and H3F3B [25],
suggesting that AMPK plays an important role in epigenetic regulation through histone
phosphorylation. Ultimately, such histone phosphorylation promotes cross-talk between epigenetic
regulators to facilitate spatio-temporal nucleosome structural changes that influence transcriptional
machinery [24]. For example, activation by glucose deprivation or UV radiation results in the
colocalization of AMPK and phosphorylating serine 36 in H2B (H2BS36) throughout the carnitine
palmitoyltransferase 1C (CPT1C) and cyclin-dependent kinase inhibitor (p21) promoter regions and gene
bodies. This exposes TP53 or tumor protein (p53) DNA binding sites and subsequent association with
RNA polymerase II (Figure 1) [26,27]. These events enhance CPT1C and p21 expression, which play
a role in cellular survival via activating autophagy and transporting long-chain fatty acids to the
mitochondria, collectively enhancing β-oxidation and energy production [28–30]. Related to cellular
survival, charged multivesicular body protein 1B (CHMP1b) is phosphorylated by AMPK, forms a
“shell” around nucleosomes enriched with H3 phosphorylation and acetylation, and influences gene
transcription [25]. This might play a role in the transition of active and inactive nucleosome regions
and potentially heritable epigenetic marks [31].
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Figure 1. AMPK (AMP-activated protein kinase) promotes cell survival through histone 
phosphorylation. AMPK phosphorylates H2B to promote chromatin relaxation at tumor protein p53 
(p53) recognized promoters and transcription of carnitine palmitoyltransferase 1C (cpt1c) and cyclin-
dependent kinase inhibitor (p21) to enhance cell survival. 

2.2. Histone Acetylation 

Lysine acetylation of the N-terminal tails of histones disrupts the charge–charge interactions 
between DNA and histone tails, producing a euchromatin, a relaxed and active, chromatin state. This 
reaction changes histone–DNA associations, histone–histone associations between adjacent 
nucleosomes, and histone–regulatory protein interactions [32]. Histone acetylation occurs via transfer 
of an acetyl group from acetyl coenzyme-A (acetyl-CoA) to the to the ε-ammonium (NH3+) group of 
lysine catalyzed by histone acetyltransferases (HATs). HAT families are diverse and promote a 
spectrum of interactions and functions. Histone deacetylation restores the DNA-histone interaction 
promoting a heterochromatic, a condensed and silent chromatin state [33]. Antagonistically, histone 
deacetylation, catalyzed by histone deacetylases (HDACs), restores the DNA-histone interaction 
promoting a euchromatic chromatin state [33]. AMPK regulates the activity of both HATs and 
HDACs by influencing cofactor or substrate availability through direct phosphorylation. 

Indirectly, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) activation of AMPK 
affects global HAT activity by increasing available acetyl-CoA levels through several mechanisms. 
AMPK phosphorylates acetyl-CoA carboxylase (ACC) to prevent the conversion of acetyl-CoA to 
malonyl-CoA increasing available acetyl donating groups for HATs (Figure 2a). AMPK also increases 
the formation of acetyl-CoA by phosphorylating acetyl-CoA synthetase short-chain family member 
2 (ACSS2), causing its nuclear translocation for the conversion of acetate, the byproduct of HDAC 
histone deacetylation, to acetyl-CoA (Figure 2a). This mechanism has been shown to increase HAT 
acetylation of H3 at transcription factor EB (TFEB)-responsive promoters to activate genes important 
for autophagy and lysosomal function [34,35]. Yet, in general, increased acetyl-CoA levels in response 
to AICAR results in increased H3 acetylation at lysine 14 (H3K14) and H4 acetylation at lysines 
5,8,12,16 (H4K5,8,12,16) [36]. AMPK activated by metformin regulates histone acetylation in a metabolic 
state-dependent manner. For example, metformin reduces H3 acetylation by decreasing 
bioavailability of mitochondrial acetyl-CoA in breast cancer, bringing acetylation status to normal in 
promoters of cancer-specific genes [37]. 

AMPK also regulates substrate availability of HDACs. The class III HDACs, sirtuins (SIRTs), 
couple deacetylation with nicotinamide adenine dinucleotide (NAD+) hydrolysis to produce O-
acetyl-ADP-ribose [38]. AMPK indirectly activates SIRT1, in part, by increasing the NAD+/NADH 
ratio [38,39]. Once activated, SIRT1 plays a fundamental role in chromatin organization by interacting 
with and deacetylating a variety of transcription factors and coregulators [40]. However, in contrary 
to activating the SIRTs, AMPK indirectly inhibits class I and II HDACs by increasing β-
hydroxybutyrate (βOHB) during fatty acid oxidation. βOHB acts similarly to the HDAC inhibitor 
butyrate, increasing global histone acetylation (Figure 2b) [41]. However, in addition to globally 
inhibiting class I and class II HDACs, AMPK activation also promotes HDACs 4, 5, and 7 
hyperphosphorylation and translocation from the nucleus (Figure 2b) [42]. Both of these events 
increase global histone acetylation. However, despite these global effects, the regulation of gene 
expression is often promoter- and gene cluster-specific, suggesting the importance of direct 
phosphorylation events of AMPK on specific HATs and HDACs. 
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Figure 1. AMPK (AMP-activated protein kinase) promotes cell survival through histone
phosphorylation. AMPK phosphorylates H2B to promote chromatin relaxation at tumor protein
p53 (p53) recognized promoters and transcription of carnitine palmitoyltransferase 1C (cpt1c) and
cyclin-dependent kinase inhibitor (p21) to enhance cell survival.

2.2. Histone Acetylation

Lysine acetylation of the N-terminal tails of histones disrupts the charge–charge interactions
between DNA and histone tails, producing a euchromatin, a relaxed and active, chromatin state.
This reaction changes histone–DNA associations, histone–histone associations between adjacent
nucleosomes, and histone–regulatory protein interactions [32]. Histone acetylation occurs via
transfer of an acetyl group from acetyl coenzyme-A (acetyl-CoA) to the to the ε-ammonium (NH3

+)
group of lysine catalyzed by histone acetyltransferases (HATs). HAT families are diverse and
promote a spectrum of interactions and functions. Histone deacetylation restores the DNA-histone
interaction promoting a heterochromatic, a condensed and silent chromatin state [33]. Antagonistically,
histone deacetylation, catalyzed by histone deacetylases (HDACs), restores the DNA-histone
interaction promoting a euchromatic chromatin state [33]. AMPK regulates the activity of both
HATs and HDACs by influencing cofactor or substrate availability through direct phosphorylation.

Indirectly, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) activation of AMPK
affects global HAT activity by increasing available acetyl-CoA levels through several mechanisms.
AMPK phosphorylates acetyl-CoA carboxylase (ACC) to prevent the conversion of acetyl-CoA to
malonyl-CoA increasing available acetyl donating groups for HATs (Figure 2A). AMPK also increases
the formation of acetyl-CoA by phosphorylating acetyl-CoA synthetase short-chain family member
2 (ACSS2), causing its nuclear translocation for the conversion of acetate, the byproduct of HDAC
histone deacetylation, to acetyl-CoA (Figure 2A). This mechanism has been shown to increase HAT
acetylation of H3 at transcription factor EB (TFEB)-responsive promoters to activate genes important
for autophagy and lysosomal function [34,35]. Yet, in general, increased acetyl-CoA levels in response
to AICAR results in increased H3 acetylation at lysine 14 (H3K14) and H4 acetylation at lysines
5,8,12,16 (H4K5,8,12,16) [36]. AMPK activated by metformin regulates histone acetylation in a metabolic
state-dependent manner. For example, metformin reduces H3 acetylation by decreasing bioavailability
of mitochondrial acetyl-CoA in breast cancer, bringing acetylation status to normal in promoters of
cancer-specific genes [37].

AMPK also regulates substrate availability of HDACs. The class III HDACs, sirtuins (SIRTs),
couple deacetylation with nicotinamide adenine dinucleotide (NAD+) hydrolysis to produce
O-acetyl-ADP-ribose [38]. AMPK indirectly activates SIRT1, in part, by increasing the NAD+/NADH
ratio [38,39]. Once activated, SIRT1 plays a fundamental role in chromatin organization by interacting
with and deacetylating a variety of transcription factors and coregulators [40]. However, in contrary to
activating the SIRTs, AMPK indirectly inhibits class I and II HDACs by increasing β-hydroxybutyrate
(βOHB) during fatty acid oxidation. βOHB acts similarly to the HDAC inhibitor butyrate,
increasing global histone acetylation (Figure 2B) [41]. However, in addition to globally inhibiting class
I and class II HDACs, AMPK activation also promotes HDACs 4, 5, and 7 hyperphosphorylation and
translocation from the nucleus (Figure 2B) [42]. Both of these events increase global histone acetylation.
However, despite these global effects, the regulation of gene expression is often promoter- and gene
cluster-specific, suggesting the importance of direct phosphorylation events of AMPK on specific HATs
and HDACs.
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Figure 2. AMPK activation increases acetyl-CoA and promotes histone acetylation. (A) Through 
phosphorylation, AMPK inhibits acetyl-CoA carboxylase (ACC) while activating acetyl-CoA 
synthetase short-chain family member 2 (ACSS2) to increase acetyl-CoA availability for acetylation; 
(B) AMPK increases β-hydroxybutyrate (βOHB) to inhibit histone deacetylases (HDACs) and 
promotes HDAC nuclear export via hyperphosphorylation. Both of these events increase histone 
acetylation. 

Investigations into epigenetically regulated networks identified HAT1 and retinoblastoma 
binding protein 7 (RBBP7) as direct targets of AMPK that dimerize following phosphorylation. This 
results in enhanced euchromatin structure at the promoters of peroxisome proliferator–activated receptor 
gamma coactivator–1α (PGC-1α), transcription factor A (Tfam), nuclear respiratory factors 1 and 2 (NRF1 
and NRF2), and uncoupling proteins 2 and 3 (UCP2 and UCP3). The corresponding induction of these 
genes produces enhanced mitochondrial function (Figure 3a) [13]. In addition to HAT1 and RBBP7, 
AMPK phosphorylates HDAC5, promoting its dissociation from the promoters releasing its 
suppressive effects to increase expression of an array of metabolic genes, including glucose 
transporter type 4 (GLUT-4) (Figure 3b) [43]. 

Although less characterized, it is likely that AMPK phosphorylates an array of HATs including 
transcription regulator family member A (SIN3), CREB binding protein (CREBBP), elongator 
acetyltransferase complex subunits (ELP) 2, 3, and 4, and K(lysine) acetyltransferases (KAT) 2A, 2B, 
6A, 6B, 7, and 8, and HDACs 1–5, 8–9, and 10, 11, as well as SIRTs 2, 3, 4, 5, 6, and 7; all of which 
contain AMPK consensus sequences and are opportune for future study [13]. 

Figure 2. AMPK activation increases acetyl-CoA and promotes histone acetylation. (A) Through
phosphorylation, AMPK inhibits acetyl-CoA carboxylase (ACC) while activating acetyl-CoA synthetase
short-chain family member 2 (ACSS2) to increase acetyl-CoA availability for acetylation; (B) AMPK
increases β-hydroxybutyrate (βOHB) to inhibit histone deacetylases (HDACs) and promotes HDAC
nuclear export via hyperphosphorylation. Both of these events increase histone acetylation.

Investigations into epigenetically regulated networks identified HAT1 and retinoblastoma binding
protein 7 (RBBP7) as direct targets of AMPK that dimerize following phosphorylation. This results in
enhanced euchromatin structure at the promoters of peroxisome proliferator–activated receptor gamma
coactivator–1α (PGC-1α), transcription factor A (Tfam), nuclear respiratory factors 1 and 2 (NRF1 and
NRF2), and uncoupling proteins 2 and 3 (UCP2 and UCP3). The corresponding induction of these
genes produces enhanced mitochondrial function (Figure 3A) [13]. In addition to HAT1 and RBBP7,
AMPK phosphorylates HDAC5, promoting its dissociation from the promoters releasing its suppressive
effects to increase expression of an array of metabolic genes, including glucose transporter type 4
(GLUT-4) (Figure 3B) [43].

Although less characterized, it is likely that AMPK phosphorylates an array of HATs
including transcription regulator family member A (SIN3), CREB binding protein (CREBBP),
elongator acetyltransferase complex subunits (ELP) 2, 3, and 4, and K(lysine) acetyltransferases
(KAT) 2A, 2B, 6A, 6B, 7, and 8, and HDACs 1–5, 8–9, and 10, 11, as well as SIRTs 2, 3, 4, 5, 6, and 7;
all of which contain AMPK consensus sequences and are opportune for future study [13].

2.3. Histone Methylation

Histone methylation occurs on lysine and arginine, and its effects on gene expression
are dependent upon the site and degree of methylation. For example, methylation of H3K4,
H3K36, and H3K79 promotes an active euchromatin state; while methylation of H3K9 and H3K27

promotes a silent heterochromatic state [44–46]. Both lysine-specific and arginine-specific histone
methyltransferases use S-adenosyl methionine (SAM) as cofactors and methyl donor catalyzing the
transfer of one, two, or three methyl groups. The demethylases, however, serve a variety of functions
and include two primary classes: flavin adenine dinucleotide (FAD)-dependent amine oxidase and
Fe(II) and α-ketoglutarate-dependent hydroxylase. The regulation of demethylases via α-ketoglutarate,
a tricarboxylic acid (TCA) cycle intermediate, suggests that AMPK may play a role in regulating
histone methylation and demethylation because AMPK is activated by conditions where TCA cycle
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intermediates are depleted and, once activated, these intermediates are restored. For example,
enhanced amino acid, fatty acid, or glycogen catabolism by AMPK increases α-ketoglutarate, which,
in turn, may increase histone demethylase activity [47]. In addition to restoring α-ketoglutarate
levels, AMPK phosphorylates and inhibits fumarase a TCA cycle enzyme that converts fumarate
to malate. Subsequently, elevated fumarate levels inhibit lysine-specific demethylase 2A (KDM2A),
restoring H3K36 dimethylation (H3K36me2) at promoters of genes mediating cell growth (Figure 4A) [48].
In addition to these indirect effects, AMPK activates the demethyltransferase lysine demethylase
5 (KDM5) and lysine-specific histone demethylase-1 (LSD1) that remove H3K4 trimethylation
(H3K4me3) [49]. Although AMPK activates histone demethyltransferase activity, it inhibits several
complexes that regulate methyltransferase activity including the methylation complex polycomb
repressive complex 2 (PRC2) and the histone methyltransferase-containing COMPASS complex
(complex proteins associated with Set1) [20,50]. While the inhibition of PRC2 occurs through the
phosphorylation of histone methyl transferase enhancer of zeste homolog 2 (EZH2), which decreases
H2K27 monomethylation (H2K27me1), inhibition of the COMPASS complex by AMPK decreases
H3K4me3, a marker of transcriptional activation (Figure 4B) [50–52]. Globally, inhibition of PRC2
results in the upregulation of tumor suppressor PRC2 target genes and suppression of tumor growth,
while COMPASS complex inhibition is a protective mechanism that halts chromatin marking in the
presence of nutrient deficiency to promote stress tolerance (Figure 4B) [20,50–52].

However, the orchestration between the methylation and demethylation activities of AMPK
is promoter-specific. For example, AMPK recruits PRC2 and LSD1 to the promoter of caudal
type homeobox2 (Cdx2), increasing H3K4me3 but not H3K27me3 [53]. This increases CDX2 expression,
which transactivates solute carrier family 5 member 8 (SLC5A8) to increase immune function and cell
survival under several stress conditions (Figure 4C) [54,55].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 15 
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Figure 3. AMPK inhibits histone deacetylase activity to promote histone acetylation. (A) AMPK 
phosphorylates histone acetylase1 and retinoblastoma binding protein 7 (RBBP7) to form a complex 
that acetylates histones at promoters of peroxisome proliferator-activated receptor gamma coactivator-1α 
(PGC-1α), uncoupling proteins (UCPs) to increase mitochondrial biogenesis and function; (B) AMPK 
phosphorylates and inhibits HDAC5 enhancing acetylation at the glucose transporter type 4 (GLUT-4) 
promoter increasing its transcription. 
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Figure 3. AMPK inhibits histone deacetylase activity to promote histone acetylation. (A) AMPK
phosphorylates histone acetylase1 and retinoblastoma binding protein 7 (RBBP7) to form a complex
that acetylates histones at promoters of peroxisome proliferator-activated receptor gamma coactivator-1α

(PGC-1α), uncoupling proteins (UCPs) to increase mitochondrial biogenesis and function; (B) AMPK
phosphorylates and inhibits HDAC5 enhancing acetylation at the glucose transporter type 4 (GLUT-4)
promoter increasing its transcription.
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Figure 4. AMPK regulates histone methylation. (A) AMPK phosphorylates fumarase increase 
fumarate, which inhibits lysine-specific demethylase 2A (KDM2A), increasing histone methylation at 
cell growth; (B) AMPK decreases histone methylation through inhibition of polycomb repressive 
complex 2 (PRC2) and complex proteins associated with set1 (COMPASS complex); (C) AMPK 
modulates histone 3 methylations status to increase caudal type homeobox2 [cell differentiation]) 
(Cdx2) expression and metabolic homeostasis. LSD1: lysine-specific histone demethylase-1; EZH2: 
zeste homolog 2. 

2.4. Histone O-GlcNAcylation 

O-GlcNAcylation is the addition of an O-linked N-acetylglucosamine (O-GlcNAc) group to a 
serine or threonine by O-GlcNAc transferase (OGT). The donor substrate for O-GlcNAcylation, 
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), is a product of the hexamine biosynthetic 
pathway (HBP) in which glucose, fatty acid, amino acid, and ATP metabolism converge implicating 
its role as a nutrient and stress sensor [56]. O-GlcNAcase (OGA) removes O-GlcNAc through 
hydrolysis. The dynamics of histone O-GlcNAcylation regulate a variety of activities including other 
histone PTMs such as acetylation, methylation, and phosphorylation, and is highly sensitive to a 
spectrum of cellular stressors such as hypoxia, heat shock, and starvation (Figure 5a) [57]. AMPK 
phosphorylates O-GlcNAc transferase (OGT) promoting its dissociation from chromatin. This 
inhibits its O-GlcNAcylation of H2BS112 in response to extracellular glucose through the hexosamine 
biosynthesis pathway (HBP) and promotes H2BK120 mono-ubiquitination and transcriptional 
activation (Figure 5b) [56]. 

Figure 4. AMPK regulates histone methylation. (A) AMPK phosphorylates fumarase increase fumarate,
which inhibits lysine-specific demethylase 2A (KDM2A), increasing histone methylation at cell growth;
(B) AMPK decreases histone methylation through inhibition of polycomb repressive complex 2 (PRC2)
and complex proteins associated with set1 (COMPASS complex); (C) AMPK modulates histone 3
methylations status to increase caudal type homeobox2 [cell differentiation]) (Cdx2) expression and
metabolic homeostasis. LSD1: lysine-specific histone demethylase-1; EZH2: zeste homolog 2.

2.4. Histone O-GlcNAcylation

O-GlcNAcylation is the addition of an O-linked N-acetylglucosamine (O-GlcNAc) group to
a serine or threonine by O-GlcNAc transferase (OGT). The donor substrate for O-GlcNAcylation,
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), is a product of the hexamine biosynthetic
pathway (HBP) in which glucose, fatty acid, amino acid, and ATP metabolism converge
implicating its role as a nutrient and stress sensor [56]. O-GlcNAcase (OGA) removes O-GlcNAc
through hydrolysis. The dynamics of histone O-GlcNAcylation regulate a variety of activities
including other histone PTMs such as acetylation, methylation, and phosphorylation, and is
highly sensitive to a spectrum of cellular stressors such as hypoxia, heat shock, and starvation
(Figure 5A) [57]. AMPK phosphorylates O-GlcNAc transferase (OGT) promoting its dissociation
from chromatin. This inhibits its O-GlcNAcylation of H2BS112 in response to extracellular glucose
through the hexosamine biosynthesis pathway (HBP) and promotes H2BK120 mono-ubiquitination
and transcriptional activation (Figure 5B) [56].

2.5. Histone Ribosylation

Histone ADP-ribosylation can occur as addition of mono- or poly-ADP-ribosylation units
by mono-ADP ribosyltransferases (ARTs) or poly-(ADP-ribose) polymerases (PARPs), respectively.
NAD+ serves as the main source for histone ADP-ribosylation, which can occur on many amino
acids restructuring chromatin into a euchromatin state [58,59]. AMPK phosphorylates and activates
PARP1 [60,61]. Substrates of PARP1 include PARP1 itself and the tail of histones H1, H2A, H2B,
H3, and H4, creating a poly(ADP-ribose)ylated mark at transcription start sites in transcriptionally
necessary genes during metaphase [62]. Contrarily, when PARP1 is not active as a polymerase,
it binds to DNA and promotes a heterochromatin state [59]. This is underscored by AMPK’s
phosphorylation of PARP1, causing its dissociation from the B-cell lymphoma protein 6 (Bcl-6) to
increase its expression [61].
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Figure 5. AMPK regulates histone O-GlcNAcylation and ADP-ribosylation. (A) O-GlcNAc transferase
adds O-GlcNAc to a serine or threonine to produce O-GlcNAcylation. Nutrient and stress sensor
stimulates hexosamine biosynthetic pathway (HBP) to create UDP-GlcNAc, which is a donor
substrate for O-GlcNAcylation. Histone O-GlcNAcylation regulates acetylation, methylation,
and phosphorylation; (B) AMPK phosphorylates O-GlcNAc transferase and inhibits O-GlcNAcylation
to increase transcription. OGA: O-GlcNAcase; OGT: O-GlcNAc transferase.

3. DNA Modification

More abundantly enriched in promoter regions, cytosine-guanine dinucleotides (CpG) are
susceptible to methylation at the 5’ cytosine position by a family of DNA methyltransferases (DNMTs).
Each DNA methyltransferase member has a slightly different functional role in the global regulation of
global DNA methylation. While DNMT 3a and 3b create the methyl “marks” that are carried through
mitosis, DNMT1 maintains these methylation marks and regulates the dynamics of DNA modification
and nucleosomal remodeling [63]. Following methylation, a number of functional changes occur.
Due to its electron donating effects, methylation weakens Watson–Crick base pairing and recruits
methyl-CpG binding domain proteins (MBDs), HDACs, and transcriptional repressors that collectively
organize chromatin into a heterochromatic, a transcriptionally inactive conformation. These CpG
methylations are highly dynamic- and stimulation-dependent. Removal of the CpG methylation
requires oxidation of 5-methycytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), which is then
converted to 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC) followed by complete removal
of the functional group by ten-eleven translocation hydroxylases (TETs) [64,65]. Although TETs are
required to actively remove CpG methyl groups, the process occurs passively and semi-conservatively
during DNA replication [66].

DNA Methylation

AMPK regulates global methylation by changing the substrates required for DNMT and
TET activity. For example, SAM, the methyl donor for DNMT3a and DNMT3b, is converted to
S-adenosylhomocysteine (SAH) upon CpG methylation [67]. Therefore, while SAM is required for
DNMT3a and DNMT3b activity, SAH has an opposing inhibitory effect [67]. Supporting DNMT3a and
DNMT3b activation, AMPK increases mitochondrial function and serine hydroxymethyltransferase
2 (SHMT2). Once activated, SHMT2 facilitates the one carbon transfer from folate to SAH,
making SAM, and increasing the SAM/SAH ratio [67]. AMPK also increases the SAM/SAH ratio by
transactivating let-7 micro RNA that subsequently degrades H19, relieving a direct inhibitory effect
on S-adenosylhomocysteine hydrolase (SAHH). Subsequent activation of SAHH enables DNMT3b
activation [68]. Taken together, these studies indicate that AMPK increases the SAM/SAH ratio that
has an activating effect on DNMT3a and DNMT3b. These AMPK-dependent shifts in methylation
also correlate to metabolic adaptive situations. For example, promoter methylation of cytochrome
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C oxidase subunit 4I1 (COX4I) and fatty acid binding protein 3 (FABP3) increases during exercise,
while peroxisome proliferator-activated receptor δ (PPARδ) promoter methylation increases after fasting
(Figure 6A) [69]. However, the overall effect AMPK has on DNA methylation is likely to be stimulation-,
tissue-, promoter-, and DNMT isoform-specific. Paralleling its role as an epigenetic metabolic
regulator in histone acetylation through HAT1 and RBBP7, AMPK also phosphorylates DNMT1S730,
inhibiting methyl CpG in PGC-1α, Tfam, NRF1, NRF2, UCP2 and UCP3 promoters [13]. This results in
improved mitochondrial function, a requirement for cell survival [13,70].
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Figure 6. AMPK regulates DNA methylation. (A) AMPK activates serine hydroxymethyltransferase
2 (SHMT2) and Let-7 to increase SAM:SAH ratio providing substrate for DNA methyltransferase
3 (DNMT3) methylation of promoters such as COX4I and FABP3; (B) AMPK directly regulates isocitrase
dehydrogenase 2 (IDH2) to yield α-ketoglutarates to promote ten-eleven translocation hydroxylases
(TETs) activation. AMPK likely also directly regulates TETs catalyzing the conversion of 5-mc to
unmethylated cytosine while inhibiting DNA methyltransferase 1 (DNMT1). These actions result in
decreased promoter methylation of PR domain containing 16 (Prdm16), PGC-1α, and the uncoupler proteins.

In addition to the DNMTs, AMPK also regulates TETs, which, in turn, govern loci-specific
CpG methylation. The effect of AMPK on TETs occurs through its regulation of TCA cycle
intermediates. For example, AMPK regulates isocitrase dehydrogenase 2 (IDH2) to increase the levels
of α-ketoglutarate, an activator of TET1–TET4 resulting in CpG demethylation [47,71]. Activation of
TET1–TET4 results in transactivation of the PR domain containing 16 (Prdm16) gene in progenitor cells
that promotes brown adipogenesis, therefore supporting AMPK’s role as an epigenetic regulator of
metabolic function (Figure 6B) [47].

4. Approaches to Elucidating the AMPK-Modulated Epigenetic Landscape

Although biochemical studies have resolved a number of mechanistic insights into the role AMPK
plays in the epigenetic regulation of chromatin structure, the study of AMPK on epigenetic function
is still in its infancy. A number of predictive algorithms and studies have identified a potential role
of AMPK on a number of epigenetic regulators. However, the role they may play under different
physiological stimulations and their tissue specificity are still unknown. Because of the interconnected
nature between regulatory cascades, the study of AMPK on epigenetic function in a disease-relevant
capacity requires systems biological and bioinformatics approaches.

Scientific advances in the computational and Big Data arenas have resulted in novel experimental
approaches, databases, and bioinformatics techniques that can be used in the exploration of AMPK
epigenetic-regulated signaling pathways. Examples of tools used to explore chromatin characteristics
include H3K27 acetylation H3K4 and monomethylation (H3K4me1) immunoprecipitation sequencing
(IP-Seq); assay for transposase-accessible chromatin using sequencing (ATAC-seq); assay for
transposase-accessible chromatin using sequencing (ATAC-seq); and Hi-C [72]. The relationship
between DNA, histone modifications, histone remodeling, followed by Hi-C structural mapping,
provides an integrative understanding of how AMPK can influence chromatin architecture.
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The identification of AMPK-regulated networks can be explored using consensus sequence mapping
and machine learning in computing environments such as R/Bioconductor computing [25,73–75].
The expression of effected genes and loci and their application of these loci to disease-relevant stimuli
can be further explored via cross-referencing with expression profiles housed in the Gene Expression
Omnibus (GEO) database, Sequence Read Archive (SRA), Single Nucleotide Polymorphism database
(dbSNP), 3D Genome database C (3DGD), and CR2Cancer [76–79]. Integration of these datasets can
provide a comprehensive picture of the influence AMPK has on epigenetic signaling cascades in
addition to their genetic loci and disease-specific regulation (Figure 7).
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Figure 7. Methods for resolving disease-relevant AMPK-regulated epigenetic networks. Developed
sequencing technologies are listed on the left-hand figure panels. Publicly available data repositories
are listed on the right. Computing platforms R and relevant Bioconductor packages including
Genomic interactions, SystemPipeR, Genomic Ranges, and BioMart can be used to integrate
sequencing technologies, publicly available datasets, and AMPK target predictions as illustrated
in the center panels.

5. Conclusions

AMPK’s role as an epigenetic landscape modulator is underscored by its multifunctional kinase
effects that regulate histones and epigenetic enzymes to mediate histone and DNA modifications.
AMPK is crucial for cell survival and adaptation as evident by its activation upon nutrient depletion
and stressors resulting in histone phosphorylation, acetylation, methylation, O-GlcNAcylation,
and ribosylation. Additional, AMPK regulates DNA methylation mediated by influencing the
SAM/SAH ratio, TET regulation and inhibition of DNMT1. Technological advances in data analysis
continue to reveal the remarkable and diverse roles of AMPK in signaling pathways and epigenetic
regulation, providing opportunities to exploit novel therapies relating to health and disease.

Funding: This research received no external funding.

Acknowledgments: We would like to acknowledge David A. Johnson for his thoughtful review of the manuscript
and comment to aid in clarity. We would also like to acknowledge John Shyy for his continued support
and guidance.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2018, 19, 3238 10 of 14

Abbreviations

AMPK AMP-activated protein kinase
CPT1C carnitine palmitoyltransferase 1C
p21 cyclin-dependent kinase inhibitor
p53 TP53 or tumor protein
HAT histone deacetylases
acetyl-CoA acetyl coenzyme-A
HDAC histone deacetylases
AICAR 5-Aminoimidazole-4-carboxamide ribonucleotide
ACC acetyl-CoA carboxylase
ACSS2 acetyl-CoA synthetase short-chain family member 2
TFEB transcription factor EB
SIRT sirtuin
NAD+ nicotinamide adenine dinucleotide
βOHB β-hydroxybutyrate
RBBP7 retinoblastoma binding protein 7
PGC-1α peroxisome proliferator-activated receptor gamma coactivator-1α
Tfam transcription factor A
NRF nuclear respiratory factors
UCP uncoupling proteins
SAM S-adenosyl methionine
GLUT-4 glucose transporter type 4
KDM2A lysine-specific demethylase 2A
KDM5 demethyltransferase lysine demethylase 5
LSD1 lysine-specific histone demethylase-1
PRC2 polycomb repressive complex 2
COMPASS complex proteins associated with Set1
EZH2 enhancer of zeste homolog 2
Cdx2 caudal type homeobox2
SLC5A8 solute carrier family 5 member 8
O-GlcNAc O-linked N-acetylglucosamine
OGT O-GlcNAc transferase
UDP-GlcNAc uridine diphosphate N-acetylglucosamine
HBP hexosamine biosynthesis pathway
ART mono-ADP ribosyltransferase
PTM Post translational modification
PARP poly-(ADP-ribose) polymerase
Bcl-6 B-cell Lymphoma protein 6
CpG cytosine-guanine dinucleotides
DNMT DNA methyltransferase
MBD methyl-CpG binding domain proteins
5-mC 5-methycytosine
5-hmC 5-hydroxymethylcytosine
5-fC 5-formylcytosine
5-caC 5-carboxylcytosine
TETs ten-eleven translocation hydroxylases
SAH S-adenosylhomocysteine
SHMT2 serine hydroxymethyltransferase 2
SAHH S-adenosylhomocysteine hydrolase
COX4I cytochrome C oxidase subunit 4I1
FABP3 fatty acid binding protein 3
PPARδ peroxisome proliferator-activated receptor δ
TCA tricarboxylic acid
IDH2 isocitrase dehydrogenase 2
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IP-Seq immunoprecipitation sequencing
ATAC-seq assay for transposase-accessible chromatin using sequencing
GEO gene expression omnibus
SRA sequence read archive
dbSNP single nucleotide polymorphism database
3DGD 3D genome database
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