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Abstract

Background: In the 1950s, Reed and coworkers discovered an enzyme activity in Streptococcus faecalis (Enterococcus
faecalis) extracts that inactivated the Escherichia. coli and E. faecalis pyruvate dehydrogenase complexes through cleavage
of the lipoamide bond. The enzyme that caused this lipoamidase activity remained unidentified until Jiang and Cronan
discovered the gene encoding lipoamidase (Lpa) through the screening of an expression library. Subsequent cloning and
characterization of the recombinant enzyme revealed that lipoamidase is an 80 kDa protein composed of an amidase
domain containing a classic Ser-Ser-Lys catalytic triad and a carboxy-terminal domain of unknown function. Here, we show
that the amidase domain can be used as an in vivo probe which specifically inactivates lipoylated enzymes.

Methodology/Principal Findings: We evaluated whether Lpa could function as an inducible probe of a-ketoacid
dehydrogenase inactivation using E. coli as a model system. Lpa expression resulted in cleavage of lipoic acid from the three
lipoylated proteins expressed in E. coli, but did not result in cleavage of biotin from the sole biotinylated protein, the biotin
carboxyl carrier protein. When expressed in lipoylation deficient E. coli, Lpa is not toxic, indicating that Lpa does not
interfere with any other critical metabolic pathways. When truncated to the amidase domain, Lpa retained lipoamidase
activity without acquiring biotinidase activity, indicating that the carboxy-terminal domain is not essential for substrate
recognition or function. Substitution of any of the three catalytic triad amino acids with alanine produced inactive Lpa
proteins.

Conclusions/Significance: The enzyme lipoamidase is active against a broad range of lipoylated proteins in vivo, but does
not affect the growth of lipoylation deficient E. coli. Lpa can be truncated to 60% of its original size with only a partial loss of
activity, resulting in a smaller probe that can be used to study the effects of a-ketoacid dehydrogenase inactivation in vivo.
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Introduction

The cofactor lipoic acid is necessary for the oxidative decarbox-

ylation of 2-ketoacids, an activity essential to the tricarboxylic acid

cycle, amino acid metabolism, heme biosynthesis, and other

metabolic processes. Oxidative decarboxylation is carried out by

large, multisubunit complexes, including pyruvate dehydrogenase

(PDH), a-ketoglutarate dehydrogenase (KDH), and branched chain

a-ketoacid dehydrogenase (BCDH) [1,2]. These complexes are

composed of three subunits, the E1 a-ketoacid dehydrogenase, the

E2 transacetylase, and the E3 dihydrolipoyldehydrogenase [1,3].

The carbonyl of lipoic acid is attached to the e-amino group of

specific lysine residues on the E2 subunits, forming an amide bond

[4]. Lipoic acid plays two critical roles in a-ketoacid dehydrogenase

complexes. It is reductively acylated by the E1 subunit and

subsequently functions as a swinging arm to transfer the covalently

bound acyl group to the active site of the E3 subunit [1]. A fourth

enzyme complex, called the glycine cleavage complex (GCV),

catalyzes similar reactions, but the nomenclature is different and the

subunit containing lipoic acid is referred to as the H-protein [5,6].

In the 1950s, while studying the role of lipoic acid in the

activation of the Streptococcus faecalis (now Enterococcus faecalis) PDH,

Reed and coworkers discovered a partially purified enzyme

activity from E. faecalis that inactivated the Escherichia coli and E.

faecalis PDH and caused the release of free lipoic acid [7]. Further

purification and analysis of the unidentified protein, called

lipoamidase (Lpa), established that the enzyme cleaved lipoic acid

from a-ketoacid dehydrogenases and lipoic acid amide and ester

small molecules but had little to no activity on e-N-biotinyl-L-

lysine (biotinyl-lysine), e-N-acetyl-L-lysine, or e-N-benzoyl-L-lysine

[8]. The gene and protein that were the source of this activity

remained unknown for 50 years, until Jiang and Cronan identified

the Lpa gene by screening an expression library for Lpa activity

[9]. The Lpa gene encodes an 80 kDa protein with an N-terminal

amidase domain featuring a characteristic Ser-Ser-Lys catalytic

triad and a C-terminal domain of unknown function [9].

Overexpression of Lpa in E. coli and purification of the enzyme

to near homogeneity enabled further study of Lpa activity. The

purified enzyme inactivated E. coli lipoyl proteins and cleaved

lipoate from lipoyl-lysine. Purified Lpa also cleaved biotin from
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biotinyl-lysine, albeit at reduced levels compared to cleavage of

lipoate from lipoyl-lysine.

Since its discovery in partially purified E. faecalis extracts 50

years ago, lipoamidase activity has played an important role in

establishing lipoate as an essential cofactor for a-ketoacid

dehydrogenase activity and in studies of E. coli lipoic acid

biosynthesis [2]. The recent identification of the gene encoding

Lpa now makes it possible to use Lpa as a probe to study the

effects of a-ketoacid dehydrogenase inactivation in vivo. We

evaluated the activity and specificity of Lpa in E. coli using an

inducible expression system. Lpa cleaved radiolabeled lipoic acid

from all three lipoylated proteins in E. coli, and inhibited bacterial

growth. Substitution of any of the three catalytic triad amino acids

to alanine yielded inactive enzyme in vivo. Expression of Lpa in vivo

does not affect biotinylation of the E. coli acetyl-CoA carboxylase

(ACCase), demonstrating that Lpa is a specific probe for lipoate

disruption despite its broad substrate specificity among lipoylated

proteins. Consequently, expression of Lpa in lipoate deficient cells

is not toxic. Lpa retains activity and specificity when truncated to

its 47 kDa amidase domain, resulting in a small, soluble probe that

is amenable to heterologous expression.

Materials and Methods

Cloning of Lpa and Lpa mutants
All primers used for this work are listed in Table 1. Primers

were obtained from Invitrogen, endonucleases were purchased

from New England Biolabs, and all PCR reactions were

performed with TurboPfu DNA polymerase (Stratagene). The

gene encoding lipoamidase from E. faecalis strain V583 was

amplified by PCR from plasmid pYFJ62 (a kind gift from John

Cronan) [9] using the Lpa primers. The PCR product was

digested with BamHI and SalI followed by ligation into the pLZ

expression vector [10] (MalE gene of pMAL_cHT [11] replaced

with the amino acids MRGS) to generate plasmid pMS007.

Constructs expressed in the pLZ vector are produced with an N-

terminal hexa-histidine tag composed of the amino acids

MRGSHHHHHHEFGS. Active site and truncation mutants of

Lpa were generated by site-directed mutagenesis with the

QuickChange mutagenesis kit (Stratagene) using the manufactur-

er’s directions. For the active site mutants, plasmid pMS007 was

used with the primers K159A, S235A, and S259A to produce

pMS012, pMS029, and pMS008, respectively. For the truncation

mutants, the primers t471 and t521 were used to generate

constructs that replaced amino acids 471 and 521 with stop

codons, resulting in plasmids pMS009 and pMS010, respectively.

The PCR products from all mutagenesis reactions were digested

with DpnI and transformed into TOP10 cells (Invitrogen).

Plasmids isolated from individual colonies were sequenced to

confirm all lipoamidase mutations.

Western blotting
Proteins were separated on 4–12% sodium-dodecyl sulfate

polyacrylamide gels (SDS-PAGE) (Invitrogen) and transferred to

nitrocellulose membranes. Membranes were probed with an

antibody that specifically recognizes MRGSHis6 and is conjugated

to horseradish peroxididase (HRP) (1:1000, Qiagen), rabbit

antiserum specific for lipoylated proteins (1:10,000, Calbiochem),

streptavidin-HRP (1:1000, Calbiochem), or rabbit antiserum

specific for E. coli HSP70 (1:20,000, a gift from Roger McMacken).

When necessary, HRP conjugated donkey anti-rabbit serum

(1:5000, GE healthcare) was used as a secondary probe. HRP-

conjugated probes were detected with the Supersignal West Pico

chemiluminescence kit (Pierce). Blots that were subject to more

than one western blot experiment were stripped with 4%

trichloroacetic acid twice for 15 minutes between analyses.

Densitometry analyses were conducted in ImageJ, and lipoylation

and biotinylation levels were determined by normalizing signals

for these cofactors to anti-HSP70 signal. Relative lipoylation levels

were obtained by dividing the normalized signal for Lpa samples

by the normalized signal for samples expressing vector alone.

Error bars represent the standard error of the mean between three

or more independent western blots.

Uptake and incorporation of 35S-lipoic acid in cells
expressing Lpa and Lpa S259A

The plasmids pMS007 and pMS008 were transformed into

KER176 E. coli (lipA::TN1000dkan) [12]. The KER176 strain (a

gift from John Cronan) does not contain a functional lipoate

synthase, and is thus a lipoate auxotroph. E. coli KER176

harboring the plasmid pMS007 or pMS008 were cultured

overnight in LB media supplemented with 25 ng/ml lipoic acid,

100 mg/ml carbenicillin, and 50 mg/ml kanamycin. Cells were

diluted 1:10,000 in a modified E minimal media [13] supple-

Table 1. Primer sequences.

Primer Sequence (59-39)

Lpa F GGTGGTGGATCCATGTTGGCACAAGAAAGTATACTAG

Lpa R GGTGGTGTCGACTTATCATTTTCTAGTTTTCCTTATATAAATC

K159A 1 GGTGTGCCGCTCTTACTAGCAGGGTTAGGACAATCCTTG

K159A 2 CAAGGATTGTCCTAACCCTGCTAGTAAGAGCGGCACACC

S235A 1 TGGAATCCTAACCATTATTCAGGTGGTGCTTCAGGCGGAGCGCCGG

S235A 2 CCGGCGCTCCGCCTGAAGCACCACCTGAATAATGGTTAGGATTCCA

S259A 1 GAAGTGATGCTGGTGGCGCTATCCGCATCCCTGC

S259A 2 GCAGGGATGCGGATAGCGCCACCAGCATCACTTC

t471 1 TTACTAAAACCAGAACATGCAGCATGATCTAGAAAAATTGATCAATTGTCACCAGCAG

t471 2 CTGCTGGTGACAATTGATCAATTTTTCTAGATCATGCTGCATGTTCTGGTTTTAGTAA

t521 1 AAAGTGTACCAACTTACGTTTCAAAATAGTCTAGACCTTTGGGGATTCAATTTAATAGTG

t521 2 CACTATTAAATTGAATCCCCAAAGGTCTAGACTATTTTGAAACGTAAGTTGGTACACTTT

doi:10.1371/journal.pone.0007392.t001
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mented with 0.4% glucose, 1 mg/ml vitamin-free casein hydro-

lysate, 2 mg/ml thiamine, 7.5 mg/ml ferrous sulfate, 50 mg/ml

kanamycin, and 100 mg/ml carbenicillin. Diluted cells were added

1:50 to 0.5 ml of supplemented minimal media containing 35S-

lipoic acid (10 ng with a specific activity of 34.2 Ci/mmol) [10]

and cultured at 37uC. At OD600 = 0.6 protein expression was

induced with 0.4 mM IPTG and the cells were cultured for an

additional 10 hours at 20uC. After induction, the cultures were

normalized based on optical density at 600 nm (OD600) and

harvested by centrifugation. Cell pellets were lysed in 1x SDS-

PAGE sample buffer by three cycles of heating for 5 minutes at

95uC followed by 30 seconds of vortexing. Lipoic acid uptake and

retention was measured by scintillation counting of cell lysates.

Lipoic acid incorporation was assessed by separating the cell

lysates on a 4–12% gradient SDS-PAGE gel followed by transfer

to nitrocellulose membrane and analysis by autoradiography.

Differences in levels of lipoic acid incorporation into the PDH,

KDH, and H-protein in cells expressing Lpa compared to cells

expressing Lpa S259A were determined by densitometry analysis

performed with ImageJ.

Assay of Lpa expression and its effect on growth,
lipoylation, and biotinylation

Several growth, lipoylation, and biotinylation experiments were

conducted using BL21-Star(DE3) E. coli (Invitrogen) containing

the pRIL plasmid isolated from BL21-CodonPlus(DE3) cells

(Stratagene). These cells were transformed with the empty

expression vector pLZ, or with pLZ encoding wild type

lipoamidase (pMS007), active site point mutants (pMS008,

pMS012, and pMS029), or the truncation mutants (pMS009

and pMS010). As additional controls, cells were also prepared with

two plasmids (pSP010 and pMS002) encoding unrelated genes

(malonyl-CoA:ACP acyltransferase (MCAT) [14] and ketoacyl-

ACP synthase II (KASII) [15] from Plasmodium falciparum) in the

pMALcHT expression vector [11]. This vector expresses MBP

(Maltose Binding Protein) fusion proteins, but otherwise has an

identical plasmid backbone to that of pLZ. Transformed BL21-

Star(DE3) cells were grown at 37uC and selected on LB-agar plates

containing 100 mg/ml carbenicillin and 35 mg/ml chloramphen-

icol. Colonies were selected in triplicate for each construct and

cultures were grown overnight at 37uC with shaking in LB media

containing 100 mg/ml carbenicillin and 35 mg/ml chloramphen-

icol. The cultures were then diluted to OD600 = 0.1 in fresh LB

medium with antibiotics and grown for one hour at 37uC. Protein

expression was induced by the addition of 0.4 mM IPTG followed

by 10 hours growth at 37uC or 20uC. The OD600 of the cultures

was measured at 0, 2, 4, 6, and 10 hours post-induction. For each

triplicate set of cultures, the culture with median growth at

10 hours was selected for analysis of protein lipoylation and

biotinylation by western blot (described above). The volume of

cells harvested for analysis was normalized to 400 ml of the culture

with the lowest OD600. The cell pellets were resuspended in 100 ml

of 1X SDS-PAGE sample buffer and lysed as previously described.

The cell lysate was then diluted 1:10 in sample buffer and the

equivalent of 1 ml of culture was run per lane.

Comparison of 35S-lipoic acid incorporation in cells
expressing Lpa active site mutants

Plasmids encoding mutant lipoamidase (pMS008, pMS012, and

pMS029) were transformed into KER176 E. coli to determine

whether any of these mutants display detectable lipoamidase activity.

As controls, empty expression vector pLZ and pSP010 encoding

P. falciparum MCAT (described above) were also transformed into

KER176. Transformed cells were grown overnight in LB medium

supplemented with 10 ng/ml lipoic acid, 100 mg/ml carbenicillin,

and 50 mg/ml kanamycin. Cells were diluted 1:500 in a modified E

minimal media [13] supplemented with 0.4% glucose, 1 mg/ml

vitamin-free casein hydrolysate, 2 mg/ml thiamine, 7.5 mg/ml

ferrous sulfate, 50 mg/ml kanamycin, and 100 mg/ml carbenicillin.

Diluted cells were added 1:50 to 0.5 ml of supplemented minimal

media containing 35S-lipoic acid (7 ng with a specific activity of

34 Ci/mmol) [10] and cultured at 37uC. At OD600 = 0.4–0.6

protein expression was induced with 0.4 mM IPTG and the cells

were cultured for an additional 6 hours at 20uC. After induction, the

cultures were normalized based on optical density at 600 nm

(OD600) and harvested by centrifugation. Cell pellets were lysed in 1x

SDS-PAGE sample buffer by three cycles of heating for 5 minutes at

95uC followed by 30 seconds of vortexing. Lipoic acid incorporation

was assessed by separating the cell lysates on a 4–12% gradient SDS-

PAGE gel followed by transfer to nitrocellulose membrane and

analysis by autoradiography. The incorporation of 35S-lipoic acid

into the E. coli PDH, KDH, and H-protein was determined by

densitometry analysis performed with ImageJ.

Lpa expression in TM136 strain E. coli
Plasmids encoding wild type (pMS007) and active site mutant

(pMS029 and pMS008) Lpa were transformed into lipoylation

deficient TM136 strain E. coli [16]. Colonies were selected on LB-

agar plates supplemented with 2% glucose, 5 mM sodium acetate,

5 mM sodium succinate, 1 g/L vitamin-free casein hydrolysate and

antibiotics (50 mg/ml kanamycin, 7.5 mg/ml tetracycline, and

100 mg/ml carbenicillin). Three colonies were chosen from each

plate and grown to mid-log phase at 37uC in TM136 medium (LB

supplemented with 2% glucose, 5 mM sodium acetate, 5 mM

sodium succinate, 1 g/L vitamin-free casein hydrolysate, 50 mg/ml

kanamycin, 7.5 mg/ml tetracycline, and 100 mg/ml carbenicillin).

These cultures were diluted in the same medium to an OD600 of

0.05 and were each divided into four replicate cultures. These were

allowed to grow at 37uC for 45 minutes after which the four

replicates were used to initiate the growth experiment. Two

replicates were maintained at 37uC and IPTG was added to one

at a final concentration of 0.4 mM. The other two replicates were

maintained at 20uC (with and without IPTG). Optical density

measurements were made at this time point (t = 0) and every two

hours thereafter to track the growth of these cultures.

Assay of lipoamidase solubility
The expression and solubility of wild type Lpa and the

truncation mutants Lpat471 and Lpat521 were assessed in BL21-

Star(DE3) cells containing the plasmid pRIL (described above).

Cultures harboring each construct were grown to an OD600 of 0.6

at 37uC in 100 ml of LB medium containing 100 mg/ml

carbenicillin and 35 mg/ml chloramphenicol. At this point, protein

expression was induced with 0.4 mM IPTG and each culture was

split with 50 ml maintained at 37uC for four hours, and 50 ml

maintained at 20uC for 10 hours. At the end of the induction

period, 10 ml was removed from the culture with the lowest

OD600 and harvested by centrifugation. Equivalent amounts

(based on optical density) were harvested from the other cultures,

and the cell pellets were lysed by incubation in 1 ml of Bug Buster

reagent (Novagen) containing 1 mg/ml lysozme and 10 mg/ml

DNaseI for 10 minutes at room temperature. The insoluble

fraction was isolated by centrifugation of whole cell lysate at

16,000 g for 10 minutes and resolubilized in 1 ml of 6 M urea.

Protein samples containing 0.5 ml of the soluble or insoluble

fraction were separated by SDS-PAGE and analyzed by anti-

MRGSHis6 western blot, as described above.

Lipoamidase, an In Vivo Probe
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Analysis of lipoylation and biotinylation sites
The amino acid sequences of lipoylated and biotinylated

proteins in E. coli, Saccharomyces cerevisiae, Homo sapiens, and P.

falciparum were obtained from the NCBI database. The bacterial

genome resource J. Craig Venter Institute was then used to

identify lipoylated proteins in E. faecalis through BLAST homology

searches with the E. coli and S. cerevisiae lipoylated proteins. Amino

acid sequences were aligned using CLUSTAL W [17].

Results

Lpa expression in vivo
We cloned the V583 lipoamidase gene into a derivative of the

pMAL vector that produces His6-Lpa and expressed the enzyme

in BL21-Star(DE3) cells. We observed that transformed cells were

viable when grown at 37uC but not after overnight storage at 4uC,

perhaps due to increased sensitivity of cells to leaky expression of

the toxic lpa gene at low temperature. To determine if Lpa

expressed in vivo is active at the physiologic temperature 37uC and

to compare the effects of lipoamidase expression at physiological

and sub-physiological temperatures, cell growth and lipoamidase

levels were tracked over the course of ten-hour inductions at 37uC
and 20uC. E. coli expressing Lpa at 37uC exhibited slow growth

during the first four hours of induction but attained a cell density

similar to that of the control culture by the end of the induction

period (Figure 1A). In contrast, cultures maintained at 20uC
exhibited a severe growth defect over the course of the ten hour

induction period (Figure 1A). Western blot analysis of whole cell

lysate shows that Lpa production is sustained throughout the 20uC
induction and peaks at ten hours. At 37uC, production peaks at

four hours, and the decline in Lpa production after this time point

coincides with an increase in cell growth (Figure 1B). Thus, Lpa

is expressed in active form at both 37uC and 20uC, and its activity

at a range of temperatures suggests that it could be used as a probe

of in vivo lipoyl protein inactivation in organisms other than E. coli.

Because the accumulation of Lpa over a ten hour induction period

at 20uC results in an extended period of slow E. coli growth, in

subsequent assays we expressed Lpa at 20uC to take advantage of

the longer window of observation at this temperature.

Activity of Lpa in vivo
The biological role of Lpa in E. faecalis may rely on its ability to

recognize exogenous lipoylated peptides or proteins. We tested the

activity of Lpa against the three lipoylated proteins found in E. coli

(the H-protein of the glycine cleavage complex and the E2

subunits of pyruvate dehydrogenase and alpha-ketoglutarate

dehydrogenase) to determine whether the enzyme has a broad

specificity for lipoylated proteins. The lipoate auxotroph strain

KER176 was transformed with plasmids encoding wild type Lpa

(Lpa) or the active site nucleophile mutant Lpa S259A and grown

in a minimal media containing 35S-lipoate as the sole source of

lipoate, resulting in the incorporation of radiolabeled lipoate in the

three E. coli proteins. At an OD600 of 0.6, expression of Lpa and

Lpa S259A was induced with IPTG. After the induction period,

cell lysates were separated by SDS-PAGE and analyzed by

autoradiography. Incorporation of radiolabeled lipoate into the

three lipoylated enzymes in E. coli was greatly reduced in cells

expressing Lpa compared to cells expressing Lpa S259A

(Figure 2A). Analysis of the autoradiograph by densitometry

shows that lipoylation of the PDH E2, KDH E2, and H-protein in

cells expressing Lpa is reduced to 2%, 1%, and less than 1%,

respectively, of lipoylation in cells expressing Lpa S259A.

Figure 1. Lpa expression at 20 and 37uC. (A) Growth assay of E. coli
cells expressing lipoamidase at 20uC (open triangles) and 37uC (closed
triangles) relative to cells containing vector alone at 20uC (open circles)
and 37uC (closed circles). The OD600 of cultures was measured at the
time of induction with IPTG and then 2, 4, 6, and 10 hours post-
induction. Error bars represent the standard deviation of three
replicates. (B) Anti-His western blot of cells expressing Lpa at 20uC
and 37uC. Samples were taken from cultures at the time of induction
and at 2, 4, 6, and 10 hours post-induction.
doi:10.1371/journal.pone.0007392.g001

Figure 2. Uptake and incorporation of 35S-lipoic acid in the
presence of Lpa. (A) KER176 cells that are auxotrophic for lipoic acid
were transformed with plasmids encoding wild type Lpa (Lpa) or the
active site nucleophile mutant Lpa S259A and were grown in minimal
medium supplemented with 35S-lipoic acid. After a 10 hour induction at
20uC, cell samples were normalized by OD600 and protein extracts were
separated by SDS-PAGE and analyzed by autoradiography. The
assignment of the labeled species to the three lipoylated proteins in
E. coli, the PDH, KDH, and H-protein, is indicated. (B) Scintillation
counting was used to quantify 35S-lipoic acid taken up by the KER176
cultures shown in Figure 2A. Counts per minute (CPM) correspond to
the uptake of cells from 5 ml of culture with an OD600 of 1.1.
doi:10.1371/journal.pone.0007392.g002
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Fate of cleaved lipoic acid
Prior evidence suggests that E. coli does not maintain large

intracellular stores of free lipoate. Herbert and Guest measured

PDH and KDH activities in E. coli extracts and found that these

enzymatic activities correlated well with the total cellular content of

lipoic acid, even when an excess of lipoic acid was added to the

growth medium [18]. These results suggest that either E. coli limits

the uptake of lipoic acid, or that the bacterium fails to retain excess

lipoic acid that is not needed to activate the two ketoacid

dehydrogenases. By densitometry analysis of the western blot in

Figure 2A, we determined that the total incorporation of lipoate

into proteins in cells expressing Lpa is 1% of that in cells expressing

Lpa S259A. We also measured 35S-lipoate in the lysates of KER176

cells expressing either Lpa or Lpa S259A, and found that cells

expressing the active enzyme contained 87% less 35S-lipoate than

cells expressing the inactive enzyme (Figure 2B). Together, these

results indicate that as Lpa cleaves lipoate from lipoylated proteins,

the free acid fails to accumulate in the cell.

Effect of Lpa on biotinylation
The broad substrate specificity of Lpa raises the possibility that

it could also cleave the amide bond linking biotin to the biotin-

carboxyl-carrier protein (BCCP) subunit of the acetyl-CoA

carboxylase (ACCase) found in E. faecalis and E. coli. In a bioassay,

Lpa was observed to cleave biotin from biotinyl-lysine [9];

therefore, we sought to determine whether Lpa also cleaves biotin

from proteins in vivo. The biotinylation status of the E. coli BCCP

(the sole biotinylated protein in E. coli) was monitored with

streptavidin-HRP. Cells expressing both Lpa and Lpa S259A

appeared to contain similar levels of biotinylated BCCP; however,

this level was markedly less than in cells expressing empty vector

(Figure 3A). Analysis of western blots by densitometry shows that

biotinylation of the BCCP in cells expressing Lpa and those

expressing Lpa S259A is approximately half the level of cells

expressing the empty vector, but that there is no significant

difference in biotinylation levels between cells expressing active

and inactive lipoamidase (Figure 3B). Expression of the BCCP in

E. coli is dependent on the cellular growth rate [19]; therefore, the

apparent difference in levels of biotinyl-BCCP is likely derived

from lower BCCP expression in cells expressing Lpa compared to

cells expressing the small peptide produced by the empty vector. In

general, the metabolic burden of protein over-expression typically

results in a significantly decreased replication rate. To confirm that

the decreased biotinylation of the BCCP was derived from protein

over-expression and was not Lpa-specific, we evaluated BCCP

biotin levels after the expression of two proteins: P. falciparum

malonyl-CoA:ACP acyltransferase (MCAT) and P. falciparum

ketoacyl-ACP synthase II (KASII). In both cases, we observed a

reduction in biotin levels similar to that observed in the cells

expressing Lpa (Figure 3C). Thus, it appears that decreased

biotinylation of BCCP is an artifact of protein over-expression and

that lipoamidase does not have significant biotinidase activity

against proteins in vivo.

Effect of Lpa and active site mutants on growth,
lipoylation, and biotinylation in vivo

Jiang and Cronan used a bioassay with the small molecule

substrate lipoyl-lysine to determine the activity of Lpa when

individual residues of the catalytic triad were mutated to alanine

[9]. Mutation of either of the two active site serines was found to

block lipoamidase activity, while mutation of the active site lysine

produced a partially active mutant. The effect of these mutations

on biotinyl-lysine cleavage was not determined. We compared the

effects of Lpa and the three active site mutants, the inactive Lpa

S235A and Lpa S259A and the partially active mutant Lpa

K159A, on growth, lipoylation, and biotinylation in E. coli. The

growth of cells expressing Lpa was severely compromised

compared to cells expressing the empty vector or the three active

site mutants (Figure 4A). Cells expressing the mutants did not

grow to the same OD600 as cells expressing vector alone, an

anticipated effect of protein over-expression. Interestingly, the

growth of cells expressing Lpa K159A did not significantly differ

from that of the two inactive serine mutants.

The dramatic growth defect observed with Lpa expression is

correlated with a severe decrease in lipoylation of the PDH and KDH

as observed by anti-lipoate western blot (Figure 4B). Consistent with

our previous observations, no difference in biotinylation was observed

between cells expressing Lpa and any of the active site mutants

(Figure 4B). The E. coli PDH contains three lipoyl domains, in

contrast to the E. coli KDH, which contains a single lipoyl domain

and thus appears lighter than the PDH band [1]. The third lipoylated

protein in E. coli, the H-protein, is not detected by anti-lipoate western

blot. Expression of wild type Lpa reduced the lipoylation of the PDH

and KDH to 15% and 1%, respectively, of the levels in cells

expressing empty vector (Figure 4B and C). Expression of the

partially active mutant Lpa K159A produced a similar pattern of

lipoylation to that observed in the other two active site mutants. This

result is consistent with the similar growth rates observed in

Figure 4A and indicates that Lpa K159A enzymatic activity is not

significant enough to affect lipoylation in vivo.

Figure 3. Effect of protein expression on biotinylation. (A)
Affinity blot analysis of biotinylation in E. coli BL21 cells expressing Lpa
and Lpa S259A. Samples were normalized by OD600 and the protein
extracts from whole cell lysate were separated by SDS-PAGE and
blotted onto nitrocellulose. The biotinylation status of the BCCP, the
sole biotinylated protein in E. coli, was analyzed by streptavidin-HRP
western blot. (B) Densitometry analysis of the biotinylation level in cells
expressing Lpa and Lpa S259A. Streptavidin-HRP signal was normalized
to the HSP70 loading control signal for each sample. Within each blot,
the fraction of biotinylation relative to cells expressing vector alone was
determined. Error bars represent the SEM for fraction of biotinylation
for three independent western blots. (C) Affinity blot analysis of
biotinylation in E. coli BL21 cells expressing Lpa and the unrelated
proteins MBP-MCAT and MBP-KASII. Samples were analyzed by the
methods described in part A of this figure.
doi:10.1371/journal.pone.0007392.g003
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Cells expressing the active site mutants had an approximately

10% reduction in lipoyl-PDH and 25% reduction in lipoyl-KDH

compared to cells expressing empty vector (Figure 4C). This

could be attributable to either residual activity in all of the

mutants, or to lowered kdh and pdh expression in response to

metabolic stress from the over-expression of Lpa constructs. In E.

coli, pdh expression is repressed in response to the accumulation of

metabolites such as acetyl-CoA and NADH [20]. We examined

the activity of the Lpa active site mutants in a 35S-lipoic acid

incorporation assay that allowed us to observe lipoylation of the H-

protein as well as the PDH and KDH E2 subunits. The

incorporation of radiolabel into the E. coli PDH and KDH was

similar between the three active site mutants, while incorporation

of radiolabel into the H-protein was difficult to assess due to its low

signal (Figure 4D). Importantly, 35S-lipoic acid incorporation in

cells expressing the active site mutants was similar to that in cells

expressing the unrelated protein MBP-MCAT. Quantitative

analysis of three independent experiments shows that lipoylation

Figure 4. Growth, lipoylation, and biotinylation of cells expressing Lpa and Lpa active site mutants. (A) Growth assay of E. coli BL21 cells
expressing Lpa (open triangles) compared to vector alone (open circles) and the three active site mutants: Lpa K159A (open squares), Lpa S235A
(closed circles), and Lpa S259A (closed triangles). The OD600 of cultures was measured at the time of induction with IPTG and at 2, 4, 6, and 10 hours
post-induction. Error bars represent the standard deviation of three replicates from a representative growth assay. (B) Anti-lipoic acid and
streptavidin affinity blots to determine levels of PDH and KDH lipoylation and BCCP biotinylation in E. coli expressing empty vector, Lpa, and Lpa
active site mutants. (C) Densitometry analysis of PDH and KDH lipoylation in cells expressing Lpa and Lpa active site mutants. To determine the level
of KDH and PDH lipoylation, the anti-lipoic acid signal was normalized to the anti-HSP70 loading control signal. The fraction of lipoylation in cells
expressing Lpa or the Lpa active site mutants relative to cells expressing vector alone was then determined. Error bars represent the SEM for the
fraction of lipoylation for three independent western blots. (D) Autoradiograph of KER176 cells expressing vector alone, the Lpa active site mutants,
and MBP-MCAT grown in minimal medium supplemented with 35S-lipoic acid. After a 6 hour induction at 20uC, cell samples were normalized by
OD600 and protein extracts were separated by SDS-PAGE and analyzed by autoradiography. Equal sample loading was assessed by anti-HSP70
western blot.
doi:10.1371/journal.pone.0007392.g004
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of the PDH, KDH, and H-protein does not significantly differ

among cells expressing the three active site mutants or between

cells expressing the mutants compared to cells expressing MBP-

MCAT (data not shown). These results confirm that the three Lpa

active site mutants do not have detectable lipoamidase activity,

and that lower lipoylation levels observed in cells expressing these

mutants are the result of metabolic stress associated with protein

induction.

Lpa toxicity in TM136 strain E. coli
The genes encoding the lipoate ligase (lplA) and the transferase

(lipB) are disrupted in TM136 strain E.coli, preventing protein

lipoylation [16]. Expression of Lpa in these cells will limit growth if

Lpa interferes with any important metabolic pathways other than

lipoylation. Expression of wild type Lpa in TM136 cells was

compared to the active site mutants Lpa S235A and Lpa S259A.

Triplicate cultures were initiated from an OD600 of 0.05 and

maintained in four different conditions: 37uC with and without

IPTG induction, and 20uC with and without IPTG induction.

Cultures maintained at 20uC (Figure 5, open symbols) grew more

slowly than their counterparts at 37uC (Figure 5, closed symbols),

however, there was no significant difference between cells

containing the Lpa plasmid versus those containing the active site

mutants. Induction of protein expression with 0.4 mM IPTG

slowed the growth of the cultures at both temperatures (Figure 5,

red symbols), but there was still no significant difference in growth

rate between cells expressing Lpa compared to those expressing

the mutants. These data demonstrate that Lpa is only toxic to E.

coli growth due to its lipoamidase activity, and that Lpa does not

interfere with other important metabolic pathways in E. coli.

Function and specificity of the amidase domain
Lpa is a two-domain protein, consisting of an amidase domain

and a domain of unknown function. The second domain is of low

complexity, and we explored whether the amidase domain alone

had aminohydrolase activity. Two truncation mutants were made

by introducing stop codons at codons 471 (Lpat471) and 521

(Lpat521) of the lpa gene. The Lpat471 mutant contains the

predicted amidase domain, whereas the Lpat521 mutant contains

an additional 50 residues of the second domain. When these

constructs were expressed in E. coli, the Lpat521 mutant did not

inhibit bacterial growth, whereas the Lpat471 mutant caused a

moderate growth defect less pronounced than that of wild type

Lpa (Figure 6A). Consistent with these effects on growth,

quantitative western blot analysis shows that the PDH and

KDH in cells expressing Lpat521 are lipoylated at 95% and 78% of

the empty vector level; these levels are similar to those observed in

cells expressing the active site mutants (Figure 4C). In contrast,

lipoylation in cells expressing Lpat471 dropped to 72% (PDH) and

24% (KDH) of empty vector levels, indicating that Lpat471 retains

some aminohydrolase activity (Figure 6B and C). Cells

expressing Lpat471 contain about three times the amount of

lipoylated PDH and KDH found in those expressing wild type

Lpa. The differences in lipoamidase activity between Lpa, Lpat471,

and Lpat521 are not attributable to differences in expression or

solubility. At 20uC, there appears to be a significant pool of soluble

Lpat521 despite the lack of apparent activity for this construct

(Figure 6D). The Lpat471 construct is soluble and well expressed

at both 20uC and 37uC, suggesting that this truncated form of Lpa

could be an improved tool over wild type Lpa for probing a-

ketoacid dehydrogenase inactivation in vivo. Biotinylation levels in

cells expressing Lpa, Lpat471, and Lpat521 were similar, indicating

that truncation of Lpa does not affect protein biotinylation

(Figure 6B).

Discussion

E. faecalis extracts containing lipoamidase have been used for

several decades as a tool to probe the role of lipoic acid in a-

ketoacid dehydrogenase enzymes [21–25]. Recently, Jiang and

Cronan identified the enzyme responsible for lipoamidase activity

and characterized the properties of this enzyme in vitro [9]. Cloning

of the lpa gene made it possible to use lipoamidase as a tool to

inactivate lipoylated enzymes in heterologous systems in vivo. In

order to evaluate the effects of Lpa in vivo, we cloned the lpa gene

into an E. coli expression vector which appends a hexa-histidine tag

to the amino-terminus of Lpa. When expressed at 20uC, Lpa

inhibits bacterial growth over the course of the 10 hour induction

period (Figure 1). At 37uC, Lpa production peaked approxi-

mately four hours after induction, and normal bacterial growth

resumed shortly thereafter. While the amount of Lpa at six and ten

hours is diminished from the peak at four hours, a significant

amount of Lpa protein persists but does not adversely affect

bacterial growth. One possible explanation is that the lpa gene

accumulates loss of function mutations similar to those previously

observed [9], however, plasmids recovered from these experiments

did not contain mutations. A more likely explanation is that the

overall half-life of soluble, active Lpa is fairly short, and that the

sustained presence of protein after peak induction at 37uC is due to

the accumulation of insoluble and/or inactive protein. Indeed,

Figure 6D shows that relatively more insoluble Lpa has

accumulated after 4 hours at 37uC than after 10 hours at 20uC.

Activity at physiologic temperatures, as demonstrated here, is

crucial for the use of Lpa as an in vivo probe. In addition, the

relatively short window of lipoamidase activity at 37uC is an

attractive property since the activity of the probe could then be

more tightly controlled in a conditional expression system.

The usefulness of Lpa as an in vivo probe of a-ketoacid

dehydrogenase inactivation requires that the enzyme recognizes a

broad range of lipoylated proteins. We show that Lpa cleaves

radiolabeled lipoic acid from all three lipoylated proteins present

in E. coli (Figure 2). Two of these proteins, the PDH E2 and the

KDH E2, form very large multienzyme complexes that are several

million Daltons in size [26]. The third protein, the H-protein, is

approximately 14,000 Daltons, and does not form a stable

complex with all other GCV components [27]. Thus, Lpa activity

Figure 5. Growth of lipoylation deficient E. coli expressing Lpa
and Lpa active site mutants. Growth assay of TM136 strain cells [16]
expressing Lpa (squares), Lpa S235A (upward triangles), and Lpa S259A
(circles). Growth curves at 37uC (solid symbols) and 20uC (open symbols
are shown with cultures induced with 0.4 mM IPTG highlighted in red.
In each condition, the growth curve corresponding to cells expressing
wild type Lpa is shown with a thickened line.
doi:10.1371/journal.pone.0007392.g005
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does not appear to depend on the overall architecture of the

multienzyme complex, but rather on the recognition of the

lipoylation domain shared by all lipoylated proteins.

The specificity of Lpa for lipoylated proteins versus other lysine

modifications was examined in early work using partially purified

E. faecalis extracts and small molecule moieties containing

functional groups or cofactors attached to lysine through an

amide bond [8]. These in vitro experiments showed that Lpa had a

strong specificity for lipoylated proteins and small molecules.

However, Lpa did hydrolyze e-N-biotinyl-L-lysine (biotinyl-lysine),

albeit at 2.5% the rate of e-N-lipoyl-L-lysine hydrolysis [9]. In vivo,

we did not detect hydrolysis of biotin from biotinylated proteins by

affinity blot (Figure 3). This result demonstrates that Lpa does not

have significant biotinidase activity in vivo, however, Lpa could

catalyze this reaction at a rate much lower than the rate of biotin

ligation. The opposite occurs for lipoylated proteins – Lpa cleaves

lipoate more rapidly than the rate at which the cell is able to

lipoylate proteins.

In a previous study, mutation of the Lpa active site residue

K159 to alanine was found to result in partial activity, while the

S235A and S259A mutants were found to be inactive [9]. We did

not observe a difference in the growth of E. coli cells expressing

these three Lpa active site mutations (Figure 4). Similarly, we did

not detect significant differences in the lipoylation of PDH or

Figure 6. Growth and lipoylation of Lpa constructs containing only the amidase domain. (A) Growth assay of E. coli cells expressing
Lpat471 (closed triangles) and Lpat521 (open squares) compared to expression of Lpa (open triangles) and vector alone (open circles). The OD600 of
cultures was measured at the time of induction with IPTG and at 2, 4, 6, and 10 hours post-induction. Error bars represent the standard deviation of
three replicates from a representative growth assay. (B) Anti-lipoic acid and streptavidin affinity blots to determine levels of lipoylation and
biotinylation in E. coli expressing empty vector, Lpa, and Lpa truncation mutants. (C) Densitometry analysis of PDH and KDH lipoylation in cells
expressing Lpa and Lpa truncation mutants. The fraction of lipoylation in cells expressing Lpa or the Lpa active site mutants relative to cells
expressing vector alone was determined as described in Figure 4C. Error bars represent the SEM for the fraction of lipoylation for three independent
western blots. (D) Solubility of Lpa and Lpa truncation mutants expressed at 20uC and 37uC. After induction of protein expression, cells were grown at
20uC for 10 hours or 37uC for four hours. Lpa in the insoluble (I) and soluble (S) fractions was analyzed by anti-His western blot.
doi:10.1371/journal.pone.0007392.g006
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KDH (as determined by western blot and autoradiography) or in

the lipoylation of the H-protein (as determined by autoradiogra-

phy). These results indicate that the three active site mutations

have equivalent lipoamidase activity in our in vivo assays. Although

unlikely, it is possible that the three mutants have an equivalent

low level of lipoamidase activity. Indeed, this appears to be the

case based on the observation that cells harboring the empty

expression vector grow more rapidly and contain higher levels of

lipoylated proteins than cells harboring any of the three active site

mutants (Figure 4). This effect, however, is triggered by the

metabolic stress associated with protein expression, which is

largely absent from cells expressing only the empty vector. When

an unrelated protein (MCAT) was expressed, lipoylation was

indistinguishable from that observed with the three Lpa active site

mutants. Taken together, these results show that three Lpa active

site mutants do not have detectable activity in our in vivo assays.

Lipoamidase interferes with the lipoylation of all three lipoate

dependent proteins in E. coli, and it could also interfere with other

important metabolic pathways. To address this question, we assessed

the growth inhibition associated with expressing Lpa in an E. coli

strain which lacks lipoate metabolism. In strain TM136 E. coli, the

genes encoding lipoate ligase (lplA) and the lipoyl(ocantoyl)-acyl

carrier protein:protein transferase (lipB) are disrupted through

transposon mutagenesis (lipB::Tn1000dKan lplA::Tn10) [16]. These

cells, which were a kind gift from John Cronan, do not contain

lipoylated proteins, but will grow in culture medium supplemented

with acetate and succinate to bypass the loss of lipoylated PDH and

KDH, respectively. We analyzed the growth of TM136 cells

transformed with plasmids encoding either Lpa or Lpa active site

mutants (Figure 5). The presence of Lpa did not decrease the growth

rate of these cells as compared to the active site mutants. This was

true at 37uC and at 20uC, regardless of whether protein expression

was induced with IPTG. These results prove that Lpa toxicity in E.

coli is solely manifest through interference with lipoate metabolism.

The carboxy-terminal domain of lipoamidase is not required for

activity. We generated a mutant Lpa truncated after the predicted

Figure 7. Lipoylation and biotinylation sites. (A) Amino acid sequence alignments of lipoylation and biotinylation sites in E. coli. The lysine that
is involved in lipoic acid or biotin attachment is marked in bold. Residues corresponding to conserved glycine and glutamine residues are shaded
[33]. Residues forming the biotinylation consensus site are underlined. (B) ClustalW comparison of amino acid sequences surrounding the site of
lipoate attachment for lipoylated proteins found in E. faecalis. The substitution of the Glu three residues amino-terminal to the lipoyl lysine with Gln
(underlined residues) is a common motif in the BCDH E2.
doi:10.1371/journal.pone.0007392.g007
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amidase domain at residue 471 (Lpat471). This mutant caused a

partial growth defect and retained Lpa activity as tested by anti-

lipoate western blot, however, a variant extending to residue 521

(Lpat521) did not interfere with growth or lipoylation (Figure 6).

This construct is expressed at levels similar to those observed with

Lpat471 and it is only slightly less soluble. Perhaps the additional 50

amino acids in the Lpat521 construct interfere with substrate

binding, limiting its activity in vivo. Growth assays and western blot

analysis show that Lpat471 is less active than wild type Lpa;

however, its activity is sufficient to cause a growth defect and

measurable decrease in lipoylation, making Lpat471 a potentially

useful probe in other organisms. Importantly, truncation of the

carboxy-terminal domain does not affect protein biotinylation,

suggesting that the second domain is not essential for activity or

specificity. The smaller size of Lpat471 may make it more amenable

to expression in heterologous systems.

Two factors may allow Lpa to discriminate between lipoylated

proteins and biotinylated proteins despite the fact that the

cofactors are similar in structure and the proteins that they are

attached to share the same protein fold. NMR structures of the E.

coli BCCP show that the biotin cofactor is sequestered by a thumb-

like region [28], making the biotin-amide bond less accessible to

Lpa than on biotinyl-lysine. Also, the residues immediately

surrounding the biotinylation site are well conserved among

biotinylated proteins, and distinct from those found in analogous

positions in lipoylated proteins (Figure 7A). These residues help

biotin ligases and lipoate ligases to discriminate between possible

substrates and may be important for lipoamidase specificity as

well. Substitution of the MKM motif found in the E. coli BCCP

with a sequence commonly found in lipoylated proteins (DKA)

resulted in partial lipoylation of the BCCP [29]. Mutation of the

residue preceding the biotinylation site in yeast pyruvate

carboxylase 1 compromises biotinylation [30]. Similarly, mutation

of the glutamate three residues before the lipoylation site to

glutamine in human PDH prevents lipoylation [31].

The role that lipoamidase plays in E. faecalis is not clear. Genes

encoding PDH, BCDH and H-protein can all be found in the E.

faecalis genome, however, lipoate is not required for anaerobic

growth when a sufficient source of fermentable material is available

[32]. Under conditions favoring aerobic growth, lipoylation of PDH

and BCDH may be important. It is interesting to note that the

residues found in the E. faecalis PDH and BCDH lipoylation

domains are distinct from those found in other organisms, while the

residues found in the E. faecalis H-protein are identical to other

organisms at the conserved amino acid sites (Figure 7B). As in E.

coli, in E. faecalis the H-protein may not be necessary for growth

under aerobic conditions, and the use of divergent lipoylation site

sequences for the PDH and BCDH may help to limit the activity of

lipoamidase against these proteins in E. faecalis.

Lipoamidase is a potentially useful tool for probing the role of

lipoylation in vivo. Lpa inactivates a broad range of lipoylated

proteins and does not seem to interfere with any other important

metabolic pathways in E. coli. The mutant K159A, which is

partially active in vitro, did not show detectable activity in vivo,

indicating that the three active site mutants, K159A, S235A, and

S259A, can be used as inactive controls in an in vivo experiment.

Lpa activity can be tightly controlled by a conditional expression

system and may be especially useful in probing lipoate metabolism

in organisms in which gene disruptions and gene knockdowns are

impractical or impossible. A major limitation of Lpa as an in vivo

probe is whether the organism of interest is able to express Lpa

because of its large size and the low complexity of the second

domain. The engineering of Lpat471 reduces the length of Lpa by

259 amino acids and increases the chance that the probe can be

expressed in active form in heterologous systems. Taken together,

these studies in E. coli demonstrate how lipoamidase can be

employed to probe lipoate metabolism in vivo.
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