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Presentation of glycosphingolipid (GSL) anti-
gens via highly conserved, β2-microglobulin–
associated CD1d molecules has recently been 
shown to exert important regulatory immune 
functions in mouse and man (1, 2). These ef-
fects are mediated by invariant natural killer 
T cells (iNKT cells), a highly specialized subset 
of CD1d-restricted T lymphocytes that are 
characterized by their use of an invariant TCR 
α chain and expression of markers specifi c for 
NK cells (3).

Human and mouse CD1d molecules can 
bind a diverse range of endogenous lipid 
 ligands, including GSLs (4). An endogenous 

globoside, isoglobotrihexosylceramide (iGb3), 
has recently been shown to activate both 
 human and mouse iNKT cells (5, 6). Synthetic 
α-galactosylceramide (α-GalCer), originally 
isolated from a marine sponge, is widely used 
for in vitro and in vivo experiments of iNKT 
cell function for its ability to stimulate iNKT 
cells in a CD1d- and TCR-dependent manner. 
Studies in germ-free mice, CD1d-defi cient 
mice (CD1d−/−), and with human cord blood 
indicate that iNKT cells are positively selected 
via endogenous antigens (7, 8). For presenta-
tion to iNKT cells, these antigens are loaded in 
an apparently saposin-dependent process onto 
CD1d molecules within the late endosome/
lysosome (9, 10).

Late endocytic and lysosomal compart-
ments are the major intracellular sites of enzy-
matic GSL degradation. Inherited defi ciencies 
of lysosomal hydrolases or one of their cofactors 
give rise to human sphingolipid storage diseases, 
which are characterized by the intracellular 
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tion of selecting ligands.

CORRESPONDENCE

Vincenzo Cerundolo: 

vincenzo.cerundolo@

imm.ox.ac.uk

Abbreviations used: α-GalCer, 

α-galactosylceramide; BMDC, 

bone marrow–derived DC; 

Gal(1→2)GalCer, 

galactosyl(α1→2) galactosylce-

ramide; GSL, glycosphingolipid; 

iGb3, isoglobotrihexosylce-

ramide; iNKT cells, invariant 

natural killer T cells; LOTS, 

late-onset Tay-Sachs disease; 

NPC1, Niemann-Pick disease 

type C1.

S.D. Gadola, J.D. Silk, and A. Jeans contributed equally to 

this work.

S.D. Gadola’s current address is Clinic for Rheumatology and 

Clinical Immunology/Allergology, University Hospital of 

Bern, CH-3010 Bern, Switzerland.

F.M. Platt and A. Jeans’s current address is Dept. of Pharmacol-

ogy, University of Oxford, Oxford OX1 3QT, England, UK.

The online version of this article contains supplemental material.



2294 REDUCTION OF INKT CELLS IN GLYCOSPHINGOLIPIDOSES | Gadola et al.

 accumulation of storage lipids within lysosomes (11, 12). We 
reasoned that loading of endogenous iNKT cell ligands onto 
CD1d within late endocytic compartments could be defec-
tive in lysosomal GSL storage disease. This could arise as a 
result of the entrapment of endogenous ligands within 
membranous cytoplasmic storage bodies or as a result of 
these ligands being out-competed by storage lipids for 
binding to CD1d. To test this hypothesis, we have studied 
the frequency, function, and selection of iNKT cells in 
multiple independent mouse models of GSL storage. These 
include the GM1 gangliosidosis model (defi cient in 
β- galactosidase) and a Niemann-Pick disease type C1 
(NPC1) model. NPC1 does not result from mutations in a 
lysosomal enzyme or cofactor but from defects in the NPC1 
transmembrane protein of the late endosome/lysosome, 
which is currently of unknown function. In NPC1, there is 
a block in the egress of cholesterol and some sphingolipids 
from the late endosome (13). These diseases, therefore, 
have radically diff erent etiologies and display disease-
 specifi c patterns of GSL storage (14). In this paper we show 
that iNKT cells are defi cient in GSL storage models irre-
spective of the disease-specifi c defect, and we discuss 
 potential mechanisms.

RESULTS

Defi ciency of iNKT cells in diverse mouse models of GSL 

storage disease

Selection of iNKT cells occurs through interaction with 
CD1d molecules presenting endogenous GSLs (15). The ab-
errant accumulation of GSLs in the lysosome in storage dis-
eases therefore has the potential to negatively aff ect this 
process. We have investigated several GSL storage disease 
models that diff er in terms of their primary etiology and store 
GSLs from diff erent branches of the GSL catabolic pathway 
(Table I) (14).

We determined the percentage of iNKT cells in the 
 thymus, spleen, and liver of diff erent GSL storage mice and 
controls using CD1d tetramers loaded with the synthetic 
iNKT cell ligand α-GalCer. The organ-specifi c fl ow cytom-
etry data are summarized for all models tested in Fig. 1 and 
Fig. S1 (available at http://jem.org/cgi/content/full/jem.
20060921/DC1). In the mouse models of Sandhoff , GM1 
gangliosidosis, Fabry, late-onset Tay-Sachs disease (LOTS), 
and NPC1, there was a signifi cant reduction in the percent-

age of iNKT cells across all organs tested (ranging from a 
50 to 90% reduction, depending on the model and organ; 
Fig. 1). Tay-Sachs mice showed a reduction in liver but not 
in the spleen or thymus. This mouse model has low levels of 
GM2 and GA2 storage relative to the other models and a 
normal life expectancy (Table I). We confi rmed these results 
by examining iNKT cells as a percentage of total lympho-
cytes and the total cell number from the spleen and thymus 
from Sandhoff , GM1 gangliosidosis, NPC1, and Fabry mice. 
These data show a reduction in the iNKT cells as both a per-
centage of total lymphocytes and as absolute numbers in each 
model tested (Fig. S1). In contrast, the NPC1+/+ thymic 
iNKT cell population was larger than that of other control 
animals. The percentage of iNKT cells detected in the liver 
of NPC1 control mice (NPC1+/+), which are on a BALB/c 
background, was reduced relative to the controls of the other 
models that are on a C57BL/6 background. However, there 

Figure 1. The percentage of iNKT cells is reduced in the majority 

of mouse models of GSL storage disease tested. Splenocytes, thymo-

cytes, and purifi ed liver lymphocytes from homozygous Sandhoff, NPC1, 

Fabry, Tay-Sachs, LOTS, and GM1 gangliosidosis mice were analyzed by 

fl ow cytometry for the presence of iNKT cells. Cells were stained with CD3 

and α-GalCer/CD1d tetramer. The percentage of CD3+/tetramer+ cells 

(mean ± SE; n = 4–8 animals/group) from homozygous GSL storage dis-

ease animals were compared with those from control animals. Statistical 

signifi cance between GSL storage disease and controls (using the t test) is 

indicated. *, P ≤ 0.05. NT, not tested.

Table I. Mouse models of human GSL storage disease

Disease Lifespan Defect Major storage GSLs

Tay-Sachs  2 yr β-hexosaminidase A Minor storage of GM2 and GA2
aLOTS  2 yr β-hexosaminidase A GM2 and GA2

Sandhoff  4–5 mo β-hexosaminidase A/B GM2, GA2, and globoside

Fabry  2 yr α-galactosidase A Gb3

GM1 gangliosidosis  7–9 mo β-galactosidase GM1 and GA1
bNPC1  2.5 mo NPC1 protein GM2, GM3, GlcCer, and LacCer

aLOTS mice become symptomatic at 6–12 mo but live to 2 yr (reference 32). The Tay-Sachs mice typically remain healthy until 2 yr.
bNPC1 is a transmembrane protein of the late endosome/lysosome, not a catabolic enzyme, in contrast with the enzyme defi ciencies that characterize the other diseases.
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was no diff erence in terms of absolute iNKT cell numbers 
relative to control strains (Fig. S1). Additionally, a bias to-
ward a CD4+ phenotype was observed in intrasplenic 
iNKT cells of the genetically identical Tay-Sachs and LOTS 
mice but not in the genetic background control mice 
 (unpublished data).

Functional responses to 𝛂-GalCer are abrogated in GSL 

storage mice, whereas CD1d levels are generally unaffected

To determine whether the in vivo function of iNKT cells is 
diminished in GSL storage mice, we examined the iNKT-
dependent response to injection of α-GalCer. Injection of 
α-GalCer in mice rapidly induces secretion of several diff erent 
cytokines, including IL-4 and IFN-γ, into the serum (16). 
Although both IL-4 and IFN-γ showed normal profi les in 
control mice treated with α-GalCer, Sandhoff  and NPC1 
mice (as well as Fabry mice; unpublished data) failed to pro-
duce detectable levels of either cytokine (Fig. 2). Further-
more, in vivo cytotoxicity assays (17) demonstrated that the 
elimination of α-GalCer–pulsed and C20:2 analogue–pulsed 
wild-type targets by iNKT cells were severely reduced in the 
Sandhoff  homozygote compared with control recipients (Fig. 
3, B and C). These data are consistent with the low frequency 
of iNKT cells detected in these mouse models and indicate 
that residual iNKT cells are capable of antigen-specifi c lysis 
in vivo. Owing to surface loading of C20:2 onto CD1d (18), 
this ligand is effi  ciently presented by splenocytes, which re-
sults in an increase in killing effi  ciency observed in both wild-
type and Sandhoff  mice. Consistent with these observations, 
we demonstrated that residual iNKT cells from Sandhoff  
and GM1 gangliosidosis mice were capable of releasing 
IFN-γ in ELISPOT assays when stimulated by α-GalCer–
pulsed bone marrow–derived DCs (BMDCs) from wild-type 
mice (Fig. S2, available at http://jem.org/cgi/content/full/
jem.20060921/DC1). These data were confi rmed by ELISA 
(unpublished data). Given these data, it is unlikely that the 

Figure 2. Cytokine release in response to injection of 𝛂-GalCer is 

completely abrogated in GSL storage disease mice. Homozygous 

Sandhoff and NPC1, wild-type, and CD1d−/− control mice were injected 

i.v with 1 μg α-GalCer or vehicle. Blood samples were taken at 0, 2, 6 and 

24 h, and the serum was analyzed by capture ELISA for the presence of 

IFN-γ (A) and IL-4 (B). The data represent the mean ± SE (n = 3–4 

mice/group).

Figure 3. In vivo killing of 𝛂-GalCer–pulsed targets is reduced in 

GSL storage disease mice. (A) Schematic representation of the experi-

ment. Splenocytes from wild-type donors were pulsed with α-GalCer or 

the C20:2 analogue and labeled with CFSE. Vehicle-pulsed targets 

(CMTMR labeled) were used in each case as internal controls. Target cells 

were injected i.v. into iNKT−/−, wild-type, or Sandhoff homozygote recipi-

ents, and specifi c lysis was measured by fl ow cytometry after 48 h. Target 

cells were pulsed with 0.05 (black shaded), 0.5 (open), or 5 (gray shaded) 

μg/ml α-GalCer or C20:2 analogue. Splenocytes from wild-type donors 

were pulsed with α-GalCer (B) or the C20:2 analogue (C). The data repre-

sent the mean percent specifi c lysis (±SE; n = 3–5 mice/group) and were 

calculated by the formula described in Materials and methods.



2296 REDUCTION OF INKT CELLS IN GLYCOSPHINGOLIPIDOSES | Gadola et al.

residual iNKT cells have an inherent functional defect, but 
additional experiments need to be done to address this ques-
tion more completely.

To further investigate the possible reasons for the reduced 
iNKT cell frequencies in GSL storage mice, we measured the 
cell surface CD1d expression on thymocytes and splenic B 
cells in GSL storage models and age-matched controls. Cell 
surface expression of CD1d molecules, particularly in the 
thymus, was not substantially altered in storage disease mice 

(Fig. 4, A and B; and not depicted). The only exceptions 
were a 40% reduction in the thymus and a 20% reduction in 
the spleen of NPC1 mice, and a small increase in the thymus 
in Fabry mice (Fig. 4, A and B).

To determine whether storage disease mice had a gen-
eralized defect in APC numbers that could contribute to 
the iNKT cell defi ciency, we analyzed B cell (unpublished 
data), macrophage, and DC frequencies in these animals 
(Table II). There was a small increase in the splenic macrophage 

Figure 4. Cell surface expression of CD1d in GSL storage disease 

mice is unaffected, with the exception of NPC1 mice. Cell surface 

expression of CD1d on the surface of thymocytes and peripheral B cells 

(gating on CD19+ CD1dint splenocytes) from Sandhoff, NPC1, GM1 gan-

gliosidosis, Fabry, and control mice was assessed by fl ow cytometry. 

(A) Relative percentage expression (compared with controls) of CD1d cell 

surface level (mean ± SE; n = 3–5 mice/group) comparing homozygous and 

control mice. (B) Representative histogram overlays showing the level of 

CD1d expression on CD1d−/− (dotted line histogram), homozygote (dashed 

line histogram), and wild-type control (fi lled gray histogram) thymocytes.

Table II. Percentages of APCs within different disease models

Spleen Thymus Liver

Macrophage DC Macrophage DC Macrophage DC

C57BL/6 8.2 ± 0.5 2.5 ± 0.1 0.71 ± 0.04 0.51 ± 0.03 11.6 ± 1.9 3.1 ± 0.4

Sandhoff a11.3 ± 0.8 a1.6 ± 0.2 0.74 ± 0.1 0.6 ± 0.02 8.7 ± 1 3.6 ± 0.5

Tay-Sachs 9.2 ± 1.2 a1.7 ± 0.1 0.66 ± 0.03 a0.64 ± 0.03 8.1 ± 0.8 a1.5 ± 0.4

GM1 gangliosidosis a10.2 ± 0.4 a1.9 ± 0.1 0.95 ± 0.1 0.61 ± 0.05 9.7 ± 1 2.8 ± 0.4

Fabry a10.5 ± 0.6 2.3 ± 1.1 a0.54 ± 0.02 0.61 ± 0.05 14 ± 2.7 3.8 ± 0.5

NPC1+/+ 4.9 ± 0.2 1.01 ± 0.02 0.44 ± 0.02 0.61 ± 0.02 12.5 ± 2.02 1.8 ± 0.2

NPC1 a4 ± 0.1 1.17 ± 0.07 a0.55 ± 0.02 a1.1 ± 0.13 9.22 ± 0.24 a3.26 ± 0.005

Cell suspensions from the various tissues were stained with antibodies against CD11c and CD68 to detect DCs and macrophages, respectively.
aStatistical signifi cance between GSL storage disease and controls using the t test (P ≤ 0.05).
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population in Sandhoff , GM1 gangliosidosis, and Fabry mice, 
whereas the DCs were slightly reduced in Sandhoff  and GM1 
gangliosidosis mice. In the thymus, there were only subtle 
diff erences in APC frequencies between GSL storage models 
and controls (Table II). The percentage of cortical thymo-
cytes was generally unaff ected in younger Sandhoff , GM1 
gangliosidosis, and NPC1 mice, whereas a loss in iNKT cells 
in both Sandhoff  and NPC1 mice was already observed at 
this age (unpublished data).  Therefore, we conclude that the 
defi ciency of iNKT cells in lysosomal GSL storage diseases is 
not caused by defective CD1d expression in either the thy-
mus or periphery or a lack of CD1d+ APCs.

Peptide antigen processing and presentation by MHC 

class II molecules are not affected by GSL storage

Processing and presentation of peptides onto MHC class II 
molecules is dependent on functional late endosomes/lyso-
somes (19). Therefore, lipid storage has the potential to dis-
rupt these processes. We tested the capacity of Sandhoff  mice 
to generate functional CD4+ T cell responses to a model an-
tigen, OVA. The CD4+ T cell responses against two diff er-
ent I-Ab–binding OVA peptides, OVA265-280 (Fig. 5 A) and 
OVA323-339 (not depicted), were measured in an IFN-γ 
ELISPOT assay in Sandhoff  and control mice. Mice were 
 either 6 wk (before onset of neurological signs) or 10 wk of 
age (when the animals have a neurodegenerative phenotype). 
Strong OVA-specifi c responses of similar magnitude in Sand-
hoff  mice (6 and 10 wk of age) and age-matched controls 
were detected after prime-boost immunization with OVA. 

These data rule out any impairment of OVA processing and 
presentation via MHC class II molecules. Although both 
Fabry (Fig. 5 B) (20) and GM1 gangliosidosis mice made class 
II–restricted responses, NPC1 mice had a reduced ability to 
generate anti-OVA responses (not depicted). Furthermore, 
the proportion of thymic CD4+ T cells in Sandhoff  and con-
trol mice were similar, which was consistent with unimpaired 
H-2–dependent thymic selection (unpublished data).

GSL storage affects positive selection of iNKT cells

Diff erent maturation stages of iNKT cells have recently been 
defi ned in mice (21–23). After positive selection (24), α-
 GalCer/CD1d–specifi c thymocytes bearing the invariant 
TCR α chain (TCR Vα14-Jα18) sequentially express CD44 
and NK1.1 molecules, respectively. To investigate whether 
GSL storage aff ects thymic development of iNKT cells, we 
analyzed the populations of iNKT cells at diff erent stages of 

Figure 5. CD4+ T cell responses are unaffected in GSL storage 

disease mice. (A) Sandhoff mice and controls (6 and 10 wk old) and 

(B) Fabry mice were primed with CFA/OVA s.c. and boosted with UV-

 inactivated vaccinia virus encoding full-length OVA i.v. 1 wk after boosting, 

splenocytes were isolated, and an overnight IFN-γ ELISPOT assay was 

performed using the I-Ab binding peptide OVA265-280. Data represent the 

mean ± SE of the number of IFN-γ–producing spots per 106 cells from 

naive controls and prime-boosted mice (n = 3–5 mice/group).

Figure 6. Selection and maturation of iNKT cells is compromised 

in the thymus of Sandhoff and GM1 gangliosidosis mice. Four-color 

fl ow cytometry was performed on thymocytes from Sandhoff, GM1 gan-

gliosidosis, and age-matched control mice. Cells were stained with NK1.1 

and CD44 antibodies, a pan–TCR Vβ antibody, and an α-GalCer/CD1d 

tetramer. The maturation phenotype was analyzed by gating on CD3+/

tetramer+ cells. (A) The percentage of thymic iNKT cells of the immature 

CD44−/NK1.1−, semimature CD44+/NK1.1−, or mature CD44+/NK1.1+ phe-

notype as a percentage of α-GalCer/CD1d tetramer+/Vβ+ cells. (B) Total 

number of iNKT cells at three different stages of maturation (CD44−/

NK1.1−, CD44+/NK1.1−, and CD44+/NK1.1+) from homozygous Sandhoff 

or GM1 gangliosidosis mice and controls are shown. Data represent one 

of two independent experiments (mean ± SE; n = 3–5 mice/group).
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thymic maturation in Sandhoff  and GM1 gangliosidosis mice 
and controls (Fig. 6 A). The diff erent iNKT cell populations 
observed in age-matched control mice were similar to 
 previous reported data (25). The majority of thymic iNKT 
cells were of the “mature” CD44+/NK1.1+ phenotype, with 
 subpopulations of the “semimature”  CD44+/NK1.1− and 
“ immature” CD44−/NK1.1− cells. All three maturation 
stages could be clearly identifi ed in both strains of mice 
 (percent of gated tetramer+/TCR+ cells; Fig. 6 A). How-
ever, both Sandhoff  and GM1 gangliosidosis mice exhibited 
a striking reduction in absolute numbers of α-GalCer/CD1d–
 specifi c thymocytes at all three stages of development studied 
(Fig. 6 B), culminating in the most signifi cant reduction at the 
mature CD44+/NK1.1+ stage. These results are consistent 
with  impaired thymic-positive selection of iNKT cells caused 
by GSL storage.

To further analyze whether thymocytes, necessary for 
the positive selection of iNKT cells (15), display inappro-
priate GSL accumulation in Sandhoff  mice, we performed 
quantitative analysis of the levels of GSL storage in total 
thymus. As shown in Table III, the levels of GM2 and GA2 
were signifi cantly elevated in 10–12-d-old Sandhoff  thy-
mus compared with age-matched controls, whereas the 
level of GM3 was reduced. As expected, the levels of GM1a, 
GM1b, and GA1, not substrates for β-hexosaminidase A/B, 
were unchanged.

It is known that macrophages accumulate considerable 
levels of GSLs within late endosomes/lysosomes in Sandhoff  
disease (unpublished data). Therefore, it was possible that the 
storage of GSLs observed in the thymus (Table III) was caused 
by resident macrophages and not thymocytes. To determine 
whether GSLs are also stored in thymocytes, we examined 
the size/number of lysosomes in thymocytes using Lyso-
Tracker staining. (Table III). We found that the relative fl uo-
rescence intensity of staining was signifi cantly elevated in 
Sandhoff  thymocytes compared with wild-type controls. An 
increase in the number and/or size of lysosomes within these 
cells suggests that thymocytes are storing GSLs. Collectively, 
these data suggest that accumulation of GSLs within late 
 endosomes/lysosomes in thymocytes may impair selection of 
iNKT cells in Sandhoff  mice.

Impaired presentation of exogenous ligands by GSL 

storage APCs

To further examine the mechanism for the loss of iNKT cells 
in the diff erent GSL storage disease mice, we performed ex-
periments using α-GalCer and an analogue that requires en-
dosomal processing to stimulate iNKT cells (5, 20). This was 
done to determine whether APCs from GSL storage disease 
mice had a defect in the capacity to load CD1d with ligands 
in the lysosome.

Sandhoff , GM1 gangliosidosis, Fabry, or NPC1 spleno-
cytes or BMDCs were pulsed with α-GalCer (Fig. 7, A and 
C; and not depicted) and used to stimulate an iNKT cell hy-
bridoma (DN32-D3), or left unpulsed and used to stimulate 
a control, CD1d-restricted, noninvariant NKT cell hybrid-
oma (TCB11; Fig. 7, E and F). Splenocytes from both Sand-
hoff  and GM1 gangliosidosis mice appeared to be defective in 
presenting α-GalCer to the DN32 hybridoma compared 
with wild-type controls (Fig. 7 A). Interestingly, the defect in 
ability to present α-GalCer observed with Sandhoff  and GM1 
gangliosidosis splenocytes is not apparent when the APCs 
used were cultured BMDCs (Fig. 7 C).

We also examined the capacity of APCs from GSL stor-
age disease mice to process and present an analogue of α-
 GalCer that is strictly dependent on lysosomal processing, 
galactosyl(α1→2) galactosylceramide (Gal(1→2)GalCer) 
(5, 20). This analogue has a second galactose group linked to 
the primary galactose of α-GalCer and requires processing by 
α-galactosidase (defi cient in Fabry disease) within the lyso-
some, before recognition in the context of CD1d can occur. 
It has previously been shown that Fabry mice are unable to 
process and present Gal(1→2)GalCer (20).

These experiments were performed using splenocytes 
(Fig. 7 B) or BMDCs (Fig. 7 D) from Sandhoff  and GM1 
gangliosidosis mice, as well as NPC1 mice (unpublished 
data). The response of the DN32 hybridoma to spleno-
cytes or BMDCs from Sandhoff  and GM1 gangliosidosis 
mice pulsed with Gal(1→2)GalCer was reduced compared 
with wild-type controls but was greater than that seen 
with CD1d−/− APCs. Similarly, NPC1 mice had a dra-
matically reduced capacity to present Gal(1→2)GalCer 
(unpublished data).

Table III. Biochemical and cell biological consequences of GSL storage in the thymus of the Sandhoff disease mouse

Control Sandhoff Fold elevation

HPLC analysis of GSLs aGM1a 28.3 ± 2.9 24.8 ± 2.1 0.89
aGM1b 150.3 ± 24 133.7 ± 15.8 0.89
aGA1 121.7 ± 12.6 118.6 ± 12.8 0.97
aGM2 8.3 ± 1.5 b17.9 ± 3.8 2.15
aGA2 34 ± 4.89 b166.9 ± 24.8 4.91
aGM3 5.8 ± 1.05 b2.14 ± 0.75 0.36

Flow cytometry cLysoTracker 100 ± 5.3 b211.3 ± 21.3 2.11

aLevels of GSL species in total thymic extract from 10–12-day-old Sandhoff and control mice (pg/mg protein), as determined by HPLC (reference 41).
bStatistical signifi cance using the t test (P ≤ 0.05).
cA relative measure of the total acidic late endosomal/lysosomal compartment was made using LysoTracker staining. Flow cytometry was used to analyze LysoTracker-stained 

thymocytes (relative fl uorescence intensity), gating on the lymphoid population using forward and side scatter parameters.



JEM VOL. 203, October 2, 2006 2299

ARTICLE

DISCUSSION

In this study, we investigated a broad range of GSL storage 
disease models, including the NPC1 mouse, which, in con-
trast to the other diseases, has no defect in the catabolic en-
zymes of the lysosome. Specifi cally, we have studied mouse 
models of GM2 gangliosidosis (Tay-Sachs, LOTS, and 
Sandhoff ), GM1 gangliosidosis, Fabry, and NPC1. The ma-
jor storage lipids for each of these models are listed in Table I. 
The only common feature shared by these diseases is the 
 accumulation of GSLs in the late endosome/lysosome.

Characterization of iNKT cell frequencies in GSL storage 

disease mice

We have found that iNKT cells are present at reduced per-
centages and frequencies in all mouse models tested, 
irrespective of the specifi c GSLs stored, and in all organs 
studied (Fig. 1 and Fig. S1). The only exception was the Tay-
Sachs mouse, in which iNKT cells were reduced in the liver 
but normal in the thymus and spleen. This mouse stores only 
modest levels of GM2/GA2 (in contrast with the LOTS and 

Sandhoff  mice) because of a compensatory pathway and does 
not typically develop clinical neurological signs within its 
normal life span (14). It is interesting to note that GSL storage 
is not detectable in thymus or spleen of Tay-Sachs mice, 
whereas there is a fi vefold elevation of GA2 in the liver 
(Priestman, D., personal communication), implying that GA2 
storage alters the liver microenvironment, aff ecting iNKT cell 
homeostasis. Disease-dependent variations in organ-specifi c 
GSL profi les may explain subtle diff erences in iNKT cell fre-
quencies in the diff erent models. Furthermore, the lack of 
GSL storage and normal iNKT cell frequency observed in the 
Tay-Sachs mouse indicates that a threshold level of thymic 
storage may be required to impair iNKT cell development.

Functional characterization of residual iNKT cells

In view of the fact that iNKT cells were not completely ab-
sent, it raised the issue as to whether the residual cells were 
functional. In Sandhoff  and NPC1 mice there was undetect-
able cytokine release in response to α-GalCer injection, rela-
tive to controls (Fig. 2). These results are consistent with 

Figure 7. Reduced capacity to process and present a lysosome-

dependent analogue of 𝛂-GalCer by GSL storage APCs. Splenocytes 

(A, B, and E) and TNF-α–matured BMDCs (C, D, and F) from control, GM1 

gangliosidosis, Sandhoff, or CD1dKO mice were pulsed for 6 h with either 

α-GalCer (A and C) or Gal(1→2)GalCer (B and D) and used to stimulate 

the DN32-D3 invariant NKT cell hybridoma (A, B, C, and D). Unpulsed 

splenocytes (E) and BMDCs (F) were used to stimulate the CD1d-

 restricted, noninvariant hybridoma TCB11 for 24 h in vitro. Supernatants 

were analyzed using an IL-2 ELISA. Data represent one of two indepen-

dent experiments (mean ± SE; n = 2–3 mice/group).
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previously published papers (5, 26) demonstrating a reduc-
tion in iNKT cell frequencies in Sandhoff  and NPC1 mice. 
The complete absence of a cytokine response in the storage 
disease mice suggests that if the residual iNKT cells are func-
tional, the levels of cytokines released are below the detec-
tion limit of the assays. Alternatively, they may be defective 
and incapable of responding. In addition, GSL storage disease 
APCs may ineffi  ciently present α-GalCer. To investigate the 
functional capacity of the residual iNKT cells, in vivo killing 
of wild-type α-GalCer–pulsed and C20:2 analogue–pulsed 
(18) targets was assessed in Sandhoff  mice (Fig. 3, B and C). 
As predicted, the specifi c lysis was reduced (as a result of the 
reduction in iNKT cells). However, there was detectable 
killing (Fig. 3 C) and IFN-γ production (Fig. S2), suggesting 
that the residual iNKT cells are capable of responding to 
 antigen-pulsed wild-type targets. To address the function of 
residual iNKT cells, it would be useful to use intracellular 
 cytokine staining on individual cells. However, in our hands 
this technique was insuffi  ciently sensitive for this purpose 
(unpublished data). Whether residual iNKT cells in Sandhoff  
or GM1 gangliosidosis mice are defective—compared with 
controls—on a per cell basis remains thus unclear.

The role of CD1d expression

In agreement with published studies of the Sandhoff  and pro-
saposin knockout mouse models (5, 27), levels of cell surface 
CD1d were generally unchanged in GSL storage disease mice 
(Fig. 4). Of note, the level of CD1d was reduced on thymo-
cytes and B cells in the NPC1 mouse (Fig. 4). These data 
suggest that the complex pattern of storage lipids in NPC1 
and/or the block in traffi  cking from the late endosome that 
occurs in this disease partially suppresses cell surface CD1d 
expression. However, as all other mouse models tested did 
not exhibit reduced CD1d expression, it is unlikely that the 
decreased CD1d levels in NPC1 mice are entirely responsible 
for the reduction in iNKT cells.

Processing and presentation within the lysosome

Although presentation of peptides by MHC class II molecules 
is unaff ected in the diff erent disease mouse models (with the 
exception of NPC1 ; Fig. 5), processing and presentation of 
endogenous or exogenous GSL antigens may be aff ected by 
GSL storage. To test whether presentation of exogenous 
GSLs was compromised, we used APCs from Sandhoff , GM1 
gangliosidosis, NPC1, and control mice—loaded with either 
α-GalCer or an analogue, Gal(1→2)GalCer (20)—to stimu-
late a Vα14+ iNKT cell hybridoma (27). In these experi-
ments, CD1d presentation of both α-GalCer (partially 
dependent on lysosomal loading) and Gal(1→2)GalCer 
(strictly dependent on lysosomal processing and loading) (20) 
was impaired in splenocytes from Sandhoff , GM1 gangliosi-
dosis (Fig. 7, A and B), and NPC1 mice (not depicted). The 
response of the TCB11 control hybridoma was similar be-
tween mouse strains (Fig. 7, E and F).

Experiments performed using Sandhoff - and GM1 gan-
gliosidosis–cultured BMDCs confi rmed reduced presentation 

of Gal(1→2)GalCer, as compared with presentation by con-
trol BMDCs (Fig. 7 D). In contrast with splenocytes, BM-
DCs from Sandhoff  and GM1 gangliosidosis mice were 
capable of effi  ciently presenting α-GalCer (Fig. 7, A and C). 
Collectively, these data suggest that the accumulation of GSL 
in the lysosome can impair lysosomal processing and/or load-
ing of CD1d ligands for presentation to iNKT cells. In addi-
tion, the defect in sphingolipid traffi  cking observed in all 
models (28) may contribute to the reduction in exogenous 
ligand presentation. GSL storage by diff erent GSL storage 
disease model BMDCs was confi rmed by their elevation in 
LysoTracker staining (unpublished data).

The diff erence observed between splenocytes and 
 BMDCs in their capacity to present exogenous α-GalCer 
could be explained by several factors. For example, it may 
refl ect increased glycolipid antigen uptake/processing by an 
enriched population of DCs compared with splenocytes, 
which contains CD1d-positive macrophages and B cells as 
well as DCs. TNF-α–induced maturation of BMDCs could 
further enhance uptake and presentation of glycolipids. Alter-
natively, cultured BMDCs and splenocytes may diff er with 
 regard to the degree of GSL accumulation within lysosomes.

Interestingly, previously published data (5) did not 
fi nd any such defect in the capacity to process and present 
Gal(1→2)GalCer by Sandhoff  APCs. It is possible that tech-
nical diff erences in the experiments—such as the age of the 
mice and, consequently, the degree of GSL accumulation—
may aff ect the results obtained. A more detailed analysis of 
the eff ects of age and degree of accumulation on the ability to 
present Gal(1→2)GalCer is currently being undertaken.

Impaired iNKT cell thymic selection in GSL storage mice

Processing and presentation of endogenous iNKT cell select-
ing ligands may also be aff ected by GSL storage. The reduc-
tion of iNKT cells in GSL storage mice might therefore be 
caused by a reduced capacity to positively select iNKT cells 
during thymic development. A reduction of iNKT cells at 
all developmental stages was observed in the thymus of young 
adult Sandhoff  and GM1 gangliosidosis mice (Fig. 6). Inter-
estingly, we found a signifi cant reduction in the frequency of 
iNKT cells in Sandhoff  mice at postnatal day 12 (unpublished 
data), when appreciable levels of GSL storage are already de-
tected (Table III), suggesting that accumulation of GSLs in 
thymocytes may lead to a decreased capacity to positively 
 select iNKT cells.

Loss of iNKT cells in mouse models characterized by 
 lysosomal GSL accumulation has previously been described. 
One report (20) proposed that the loss of iNKT cells in Fabry 
mice was indicative of a requirement for α-galactosidase 
(the enzyme defi cient in Fabry disease) for the generation 
of glycolipid ligands recognized by iNKT cells. Another 
group observed a reduction in iNKT cells in Sandhoff  mice 
and concluded that there was an essential requirement for 
β- hexosaminidase A/B (the enzymes defi cient in Sandhoff  
mice) to generate the endogenous lipid necessary for selec-
tion of iNKT cells (5). Of the candidate substrates tested, 
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iGb3 was proposed to be the selecting ligand based upon its 
activity in vitro. Likewise, recent studies with prosaposin-
 defi cient mice revealed a similar reduction in iNKT cell fre-
quencies, suggesting an essential role for saposins in the 
loading of CD1d (27). Interestingly, a paper was recently 
published supporting our observations of a reduction of 
iNKT cells in NPC1 mice (26).

Alternative hypothesis and potential mechanisms

Our data obtained from a range of diff erent GSL storage 
models, including GM1 gangliosidosis and NPC1, support 
the hypothesis that lysosomal lipid storage has an indepen-
dent, nonspecifi c negative eff ect on iNKT cell selection. In 
NPC1 mice, reduced iNKT cell frequencies may be caused 
by a combined eff ect of GSL storage, impaired GSL traffi  ck-
ing, and decreased CD1d expression (26). This hypothesis 
could also explain the fi nding that iNKT cells are reduced in 
Fabry mice, where the defi ciency in α-galactosidase A should 
lead to lysosomal accumulation of iGb3, the recently identi-
fi ed candidate endogenous ligand for iNKT cells.

We propose an alternative model to explain iNKT cell 
loss in the disparate mouse models investigated in this study 
and others (5, 20, 26, 27). The storage of any GSL above a 
certain threshold in the late endosome/lysosome, irrespective 
of its structure, could impair iNKT cell development. It is the 
storage per se rather than a specifi c enzyme defect that results 
in iNKT cell defi ciency. This model is also consistent with 
the iNKT cell reduction observed in the saposin-null mice 
because GSLs accumulate as a result of the saposin defi ciency. 
In addition, lack of lipid solubilization (29) mediated by sa-
posins may further impair the loading of CD1d with endoge-
nous iNKT cell selecting ligands. Therefore, saposin-defi cient 
mice suff er from the combined eff ects of GSL storage and 
 reduced GSL loading. This may also explain why residual 
iNKT cells are detectable in the Fabry, Sandhoff , GM1 gan-
gliosidosis, and NPC1 mice (GSL storage), whereas they are 
undetectable in the saposin-defi cient animals (GSL storage 
and loading defect).

There are several potential mechanisms to envision for 
how GSL storage aff ects CD1d loading. The fi rst would be 
that endogenous GSLs normally presented by CD1d become 
trapped within the storage bodies in the diseased cells and 
consequently are not loaded onto CD1d. A second hypothe-
sis would be that the high levels of storage GSLs outnumber 
natural ligands within the late endosome/lysosome and, 
therefore, out-compete the endogenous lipids for binding to 
CD1d. Both of these models are consistent with a threshold 
level of storage being required to disrupt iNKT cell develop-
ment. This is supported by the intermediate iNKT cell loss 
exhibited by the Tay-Sachs mouse (Fig. 1) that has subpatho-
logical levels of GSL storage (Table I). Alternatively, GSL 
storage may indirectly infl uence iNKT cell selection. The 
defect in sphingolipid traffi  cking (27) observed in all GSL 
storage disease models may disrupt the cellular distribution of 
the selecting ligands, reducing their presentation by CD1d 
and iNKT cell selection. The proposed mechanisms by which 

GSL storage disrupts iNKT cell selection are not mutually 
exclusive and, therefore, we cannot rule out that this also 
plays a role.

It will be interesting to determine whether comparable 
iNKT cell defi ciencies occur in patients with glycosphingo-
lipidoses. Although these studies are currently in progress, a 
recent report has described that Gaucher patients (who pos-
sess a defect in the lysosomal enzyme glucocerebrosidase) 
treated with enzyme replacement therapy showed a modest 
increase in the proportion of Vα24+ cells in the peripheral 
CD4+ and CD8+ T cell pool (30). Should the fi ndings of our 
study translate to the human disorders, iNKT cell defi ciency 
may be a contributing factor to the clinical heterogeneity 
characteristic of these diseases. It is possible that this may have 
consequences for host immune responses by reducing the 
 effi  cacy of presentation of bacterial or endogenous GSLs.

In summary, storage of multiple GSLs with disparate 
structures, resulting from unique etiologies, causes defective 
iNKT cell selection. Our data suggest general mechanisms by 
which lysosomal storage of GSLs, irrespective of the underly-
ing gene defect, can disrupt the presentation of endogenous 
ligands by CD1d.

MATERIALS AND METHODS
Animals. The following mouse models of GSL storage (C57BL/6 back-

ground) were maintained and genotyped according to published methods: 

Tay-Sachs hexa−/− (31); LOTS hexa−/− (32); Sandhoff  hexb−/− (33); Fabry 

α-galA−/− (34); and GM1 gangliosidosis bgal−/− (35). Each mouse strain had 

been backcrossed at least eight times before use. LOTS mice are female 

Tay-Sachs mice that have been repeatedly bred before 6 mo of age (32). 

Tay-Sachs (nonbred) mice are asymptomatic because of the presence of a 

bypass pathway (the combined eff ects of sialidase and hexosaminidase B). 

Pregnancy induces down-regulation of components of the bypass pathway, 

causing higher levels of storage relative to the Tay-Sachs mouse and clinical 

presentation in 100% of LOTS mice. NPC1 mice (13) are on a BALB/c 

background. Also used were mice lacking the Jα18 TCR gene segment (36), 

which were devoid of Vα14 iNKT cells while having other lymphoid cell 

lineages intact (iNKT−/− mice), and CD1d knockout mice (CD1d−/−) (37), 

which were also devoid of Vα14 iNKT cells. Heterozygote littermates and 

age-matched C57BL/6 or NPC1+/+ mice, as appropriate, were used as con-

trols. All mice were maintained in the Biological Services Unit, Department 

of Biochemistry, University of Oxford and used according to established 

University of Oxford institutional guidelines under the authority of a UK 

Home Offi  ce project license.

Cell preparations. Intrahepatic mononuclear cells were separated from 

mouse livers according to the following protocol: livers were cut into small 

pieces using a scalpel, passed through a 100-mm metal mesh fi lter, washed 

twice with PBS, layered over Ficoll-Hypaque gradients, and centrifuged at 

2,000 rpm at room temperature for 20 min. An analogous procedure was 

used to separate splenic and thymic mononuclear cells. Before staining for 

FACS, both intrahepatic and splenic mononuclear cells were incubated for 

10 min at room temperature with 20 μg of unconjugated anti-FcR antibody 

(BD Biosciences). For all FACS staining experiments, three to fi ve animals 

per group were used.

Flow cytometry. Cell suspensions were stained according to published 

methods (38). In brief, 106 cells in 50 μl FACS buff er (PBS containing 1% 

bovine serum albumin and 0.02 M sodium azide) were incubated on ice for 

30 min with monoclonal antibodies (all from BD Biosciences) or α-GalCer/

CD1d tetramer (39), followed by two washes in FACS buff er. The anti-

bodies used were R-phycoerythrin (RPE)–conjugated rat anti–mouse CD1d 
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(CD1.1, Ly-38), FITC-conjugated rat anti–mouse CD19 (1D3), hamster 

anti–mouse CD11c (HL3), and CD68. Allophycocyanin-conjugated strep-

tavidin (Phykolink) and RPE-conjugated Extraavidin (Sigma-Aldrich) were 

used for the generation of CD1d tetramers. CD1d tetramers were generated 

as previously described (39). Propidium iodide was used to gate out dead 

cells. Quantitation of binding sites was performed using fl uorescent micro-

bead standards according to published methods (38). To analyze the matura-

tion phenotype of iNKT thymocytes, cells were stained with CD1d/α-GalCer 

tetramer–PE, NK1.1-PerCP, pan Vβ–FITC, and CD44-allophycocyanin 

(BD Biosciences). To analyze lysosomes, 106 cells from 10–12-d-old Sand-

hoff  and control thymi were stained in 200 μl 200 nM LysoTracker-Green 

(Invitrogen) for 10 min at room temperature. After washing, the cells were 

analyzed by fl ow cytometry gating on thymocytes by forward and side scat-

ter. Percentages of APCs were analyzed by staining cells from diff erent tis-

sues with CD11c and CD68 antibodies.

Cytokine assays. Animals were injected i.v. with 1 μg α-GalCer (dissolved 

in a vehicle solution of 0.5% Tween 20/PBS) or vehicle diluted in PBS. 

Blood samples were collected at the time points indicated in the fi gures, and 

serum levels of IL-4 and IFN-γ were determined using cytokine-specifi c 

capture ELISAs. Antibodies used for ELISAs were obtained from eBiosci-

ence and Pierce Chemical Co.

In vivo cytotoxicity assay. Target splenocytes were pulsed with 5, 0.5, 

and 0.05 μg/ml α-GalCer or C20:2 analogue for 2 h at 37°C and labeled 

with diff erent concentrations (1.65, 0.3, and 0.07 nM) of CFSE (Invitrogen), 

as previously described (17). A control vehicle-pulsed population was labeled 

with 10 μM chloromethyl-benzoyl-aminotetramethyl-rhodamine (CMTMR; 

Invitrogen). An equal mixture of the four populations of splenocytes was in-

jected i.v. at 107 cells/mouse into Sandhoff  homozygote mice, age-matched 

littermate controls, and iNKT−/− mice (n = 3–5 mice/group). 48 h after in-

jection, blood samples were examined for the presence of fl uorescent cells by 

fl ow cytometry (FACSCalibur; BD Biosciences). Data are expressed as per-

cent survival of α-GalCer– or analogue-pulsed splenocytes compared with 

unpulsed controls. Mean percent specifi c lysis (±SEM) of α-GalCer–pulsed 

splenocytes compared with unpulsed controls was calculated by the follow-

ing formula: 100 − ([pulsed/unpulsed] × 100).

Monitoring MHC class II–restricted T cell responses. Sandhoff  ho-

mozygotes (6 and 10 wk of age) or other GSL storage mice and age-matched 

controls were immunized s.c. with 100 μg chicken OVA protein (Sigma-

Aldrich) in CFA (Sigma-Aldrich). 11 d later, the mice were injected i.v. 

with 2 × 106 PFU/mouse UV-inactivated recombinant vaccinia virus en-

coding full-length chicken OVA. After 7 d, immune responses were assessed 

by performing ELISPOT using a mouse IFN-γ ELISPOT kit (Mabtech) and 

10 μM of two diff erent I-Ab–restricted OVA peptides (synthesized in house), 

OVA265-280 (T E W T S S N V M E E R K I K V ) and OVA323-339 (I S Q A V H A A H A E-

I N E A G R ), according to the manufacturer’s protocol.

Analysis of GSL storage. Thymi from 10–12-d-old Sandhoff  mice and 

controls were homogenized in 0.5 ml distilled water, and GSLs were ex-

tracted using the Svernnerholm method (40). The equivalent of 200 μg 

protein was treated with ceramide glycanase (Calbiochem-Novabiochem). 

Released glycans were labeled with anthranillic acid (Sigma-Aldrich) and 

analyzed by HPLC as described previously (41).

Processing and presentation of 𝛂-GalCer and analogues by GSL 

storage disease APCs. APCs used were either BMDCs, cultured for 7 d 

in the presence of 20 ng/ml GM-CSF/IL-4 (PeproTech) and matured from 

day 6 of culture with 10 ng/ml TNF-α (PeproTech) or splenocytes. APCs 

were pulsed with α-GalCer, Gal(1→2)GalCer, or vehicle for 6 h, washed, 

and 5 × 105 splenocytes or 5 × 104 BMDCs were added to 96-well fl atbot-

tom plates. The DN32-D3 iNKT cell hybridoma or the control, CD1d-

 restricted, non–iNKT cell hybridoma (TCB11) from A. Bendelac (University 

of Chicago, Chicago, IL) and S. Porcelli (Albert Einstein School of Medicine, 

New York, NY) were added (5 × 104) to each well. Cells were cultured 

for 18–24 h at 37°C, and the supernatant was analyzed for the presence of 

IL-2 by ELISA (antibodies used were anti–mouse IL-2 JES6-1A12 and 

 biotinylated JES6-5H4; eBioscience).

Online supplemental material. In Fig. S1, lymphocyte preparations 

from the spleen and thymus were generated, and cells were counted. Lym-

phocytes were stained for iNKT cells as described in Flow cytometry, and 

samples were analyzed. The cell number and frequency of iNKT cells as a 

percentage of total lymphocytes were then used to calculate the number of 

tissue iNKT cells.

In Fig. S2, the ability of iNKT cells from storage disorder mice to 

mount a cytokine response was assayed by performing an overnight IFN-γ 

ELISPOT using T cell–enriched splenocytes incubated with BMDCs loaded 

with α-GalCer. Splenocyte cell preparations were enriched for T cells by in-

cubating for 1 h at 37°C, adhering out the macrophages. BMDCs derived 

from wild-type mice were pulsed for 3 h with 5 μg/ml α-GalCer. Online 

supplemental material is available at http://www.jem.org/cgi/content/full/

jem.20060921/DC1.
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