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Abstract: Rust fungi cause epidemics that threaten the production of important plant species, such as
wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candi-
date effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome
and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing
14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299
deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as
FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We fur-
ther observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line,
with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and
up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated
patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family
deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity
and function. This supports that effector functional investigation in the context of their virulence
activity and effect on plant susceptibility requires the investigation of the individual effector and
precludes generalization based on sequence similarity.

Keywords: transcriptome; metabolome; plant-microbe interactions; rust fungi; effector biology;
Melampsora larici-populina

1. Introduction

Plants must defend themselves against different types of pathogens. Their first line
of defense consists of passive barriers, such as the cuticle and cell wall, which prevent
pathogens from entering the plant tissue and its cells. Upon successful entry of a pathogen,
conserved pathogenic motifs, called Microbe-Associated Molecular Patterns (MAMPs),
may be detected and activate the Pattern-Triggered Immunity (PTI) [1]. PTI includes the
transient accumulation of reactive oxygen species (ROS), callose deposition, alteration
of hormone networks and activation of defense genes [2,3]. Finally, microorganisms
secrete effectors into their host to modulate the host metabolism in favor of the pathogen.
If detected, these effectors will activate the Effector-Triggered Immunity (ETI), leading to
plant cell death in order to avoid the pathogen spreading to surrounding cells [4].

Rust fungi are the largest group of fungal plant pathogens, infecting ferns,
gymnosperms and angiosperms and causing important losses in food production [5,6].
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They are obligate biotrophs, produce two to five types of spores and infect one or two
unrelated plant species to complete their life cycle [6]. To guard themselves against the
defense mechanism of two different host species and to be able to feed on them, rust fungi
deploy a large arsenal of effectors. To better comprehend the interaction between these
pathogens and their hosts, and to provide new mechanisms to target in order to improve
plant immunity, it is imperative that we understand how these effectors are secreted
into host cells, how they evolve and how they act to promote pathogen growth [7,8].
While the precise number of bona fide effectors carried by each rust fungi species is unknown,
Duplessis and colleagues [9] established that the poplar rust (Melampsora larici-populina)
genome encodes 1184 small secreted proteins (SSPs) whereas the wheat stripe rust (Puc-
cinia graminis f. sp. tritici) genome encodes 1106 SSPs [9], which are considered candidate
effectors (CEs). These CEs are grouped within families based on sequence homologies [10,11].
Furthermore, effectors in the same family have been shown to interact with homologous R-
proteins [12], however the virulence function of these effectors has seldom been investigated.

Previous studies have proposed different criteria to screen the genome of plant
pathogenic fungi for high-priority CEs, including having less than 300 amino acids,
high cysteine content, being expressed in infection structures during host infection or
being detected in the host tissue during infection [10,13,14]. Once identified, putative
effectors must be functionally characterized. In pathogens that are not obligate biotrophs,
this can be achieved by silencing or overexpressing the gene encoding the CEs and an-
alyzing the outcome of an infection [15,16]. For rust fungi and other obligate biotrophs,
which are not amenable to genetic transformation, this direct investigative approach is
not possible. The alternative solution proposed by different research groups is to use
heterologous systems, either by transforming model plants to express the CE-encoding
gene or by infecting model plants with pathogens able to express these genes [17,18]. This
way, it is possible to evaluate if immunity is compromised, as it was shown that effectors
expressed in heterologous systems conserve their capacity to alter the plant’s susceptibility
to pathogens [19–24]. The stable and transient expression of CEs from M. larici-populina in
Arabidopsis thaliana and Nicotiana benthamiana, from Phakopsora pachirhyzi in N. benthamiana
and from Hyaloperonospora arabidopsidis in A. thaliana allowed the study of their subcellular
localization in planta, their impact on the growth of different pathogens and the search for
host proteins potentially targeted by the CEs [22,25–27].

Still, the impact of CEs in the plant may not be easy to detect or the isolated effect
of a single CE may be too subtle to affect pathogen growth. In the study of Germain and
colleagues, 14 CEs impacted the growth of H. arabidopsidis or Pseudomonas syringae pv
tomato [22]. Eleven of the analyzed CEs displayed nucleocytoplasmic localization in planta,
providing very limited information on possible host targets or helpers of these proteins [22].
Petre and colleagues found seven CEs of wheat yellow rust fungus (out of 16) with a specific
accumulation pattern in plant cells (other than nucleocytoplasmic) and discovered specific
plant protein interactors for six CEs [28]. Only three of the 16 CEs studied had both the
specific accumulation pattern in N. benthamiana cells and specific plant protein interactors.
Although the pathogen growth readout is informative regarding the impairment of the
immune pathway, it is opaque with regard to which pathway has been tampered with
or which metabolites are off-balance. Transcriptomic and metabolomic studies of stable
transgenic plants expressing CEs have been useful in these cases, since they allow the
detection of more subtle changes, unlikely to have a quantifiable impact on pathogen
growth on their own [24,29,30].

Here, we studied the transcriptome and metabolome of 14 transgenic Arabidopsis plant
lines expressing Mlp CEs known to cause effector-triggered susceptibility in Arabidopsis.
We identified 2299 deregulated genes using this approach, including PTI-related genes,
such as FRK1, PR1, RBOHD and WRKY33, as well as several AUX/IAA genes and genes
involved in specialized metabolism. Four lines expressing CEs from different families
showed correlated patterns of gene deregulation, demonstrating that the current grouping
based on sequence homology does not reflect the virulence function of these CEs. We also
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found important down-regulation of highly unsaturated and phenolic compounds and
up-regulation of peptides in almost all CE-overexpressing lines. Overall, our results show
a lack of correlation between the sequence similarity of the studied CEs and their overall
deregulation of genes and metabolites. Taken together, our results demonstrate that CEs
that have completely different sequences can alter the expression of the same gene sets,
while CEs of the same family can target completely different gene sets. Therefore, it is
not possible to estimate the function of a CE, its impact on the transcriptome or on the
metabolome of the plant, based solely on its sequence or its similarity to another CE.

2. Materials and Methods
2.1. Plant Growth conditions

Arabidopsis thaliana transgenic plants in Columbia-0 background expressing GFP alone
(control) or fused to a candidate effector of the fungus Melampsora larici-populina (Mlp37347,
Mlp72983, Mlp102036, Mlp106078, Mlp123218, Mlp123227, Mlp123531, Mlp124256,
Mlp124266, Mlp124357, Mlp124466, Mlp124497, Mlp124499, Mlp124518) previously obtained
in our laboratory [22,30], were grown at 22 ◦C at 12 h/12 h light/dark cycles. The transgenes
were constitutively expressed under Cauliflower Mosaic Virus 35S promoter [31].

2.2. RNA Extraction and Transcriptome Analysis

RNA was extracted from pooled aerial tissue of 2-week-old soil-grown plants, us-
ing three replicates per genotype, with the Plant Total RNA Mini Kit (Geneaid) using
RB buffer following manufacturer’s protocol. The samples were treated with DNAse,
then RNA quality was assessed using agarose gel electrophoresis. QC was performed
using a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) and only samples with an RNA
Integrity Number higher than 7 were kept for library preparation. Libraries were gener-
ated with the NeoPrep Library Prep System (Illumina, Vancouver, BC, Canada) using the
TruSeq Stranded mRNA Library Prep kit (Illumina) and 100 ng of total RNA as per the
manufacturer’s recommendations. The libraries were then sequenced with an Illumina
HiSeq 4000 Sequencer with paired end reads of 100 nt at the Genome Quebec Innovation
Centre (McGill University, Montreal, QC, Canada).

The bioinformatic analyses were done with Compute Canada servers; the parameters
used are presented in Table S1. We trimmed the reads using Trimmomatic [32] and we
aligned the surviving paired reads to the genome of A. thaliana assembly TAIR10 with
HISAT2 [33]. Unmapped reads were aligned to the sequences of the CEs, without signal
peptide, attached to eGFP. We counted the reads assigned to each transcript with the R v4.0
packages Rsamtools v2.2.3 [34], GenomicAlignments and GenomicFeatures [35]. The gen-
eral information of the sequencing results and mapping data is presented in Table S2.
Before comparing the samples, we used the CustomSelection package [36] to select as
reference genes the top 0.5% genes with lowest coefficient of variation of TPM among
the 45 samples [37]. We assessed the variation between the replicates and the similar-
ity of the samples with principal component analysis (Figure S1), using the result of the
“varianceStabilizingTransformation” function as input to the function “plotPCA” of the
DeSeq2 package [38] (with “ntop” equal to the total number of genes in the experiment).
Differential expression analysis was performed with DeSeq2 [38], using the un-normalized
counts as input. DeSeq2 uses normalization factors (calculated with the reference genes
selected above) to normalize the counts and then estimates the dispersion of each gene.
The differential expression is computed by fitting the negative binomial model and testing
the hypothesis with the Wald test. We considered as deregulated the genes with |log2
Fold change| ≥ 2 (p-Value ≤ 0.01), when comparing each CE-expressing line to the con-
trol line. We used clusterProfiler [39] for GO term enrichment analysis and KEGGprofile
v1.24.0 [40] for KEGG enrichment analysis. Sets of deregulated genes were computed
using WGCNA [41]. We calculated the similarity of gene deregulation of different trans-
genic lines with the R package pvclust v2.2-0 [42], using Pearson’s correlation and 5000
bootstrap replications.
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2.3. Metabolite Extraction and Metabolomics Analysis

Metabolites were extracted from pooled aerial tissue of 2-week-old soil-grown plants,
with four replicates per genotype. After pulverizing the tissues with a TissueLyser (30 cycles
per second for 45 s repeated 3 times), we added 300 µL of distilled water to it. From the
mix of tissue and water, we used 100 µL of tissue slurry for an extraction with 1 mL
of 20% methanol and a separate 100 µL for an extraction with 1 mL of 80% methanol.
After agitation with the solvent, we pooled the samples of the same genotype and extraction
together and filtered them using glass microfiber filters (Whatman GF/F CAT No. 1825-
025). We evaporated the extracts with a speed vacuum at room temperature and chamber
vacuum of 7.4 torrs and resolubilized them in 2 mL of distilled water. Then, we solid phase
extracted 50 µg of dissolved organic carbon (DOC) of each sample, using Agilent PPL
cartridges, and eluted it in 1 mL of 100% methanol.

The mass spectrometry was performed in an Orbitrap LTQ-Velos calibrated and tuned
to maximize the peak at 369.1 in Suwannee River Fulvic Acid (SRFA) reference material.
The extracts were analyzed by direct injection in negative mode at a resolution setting of
100,000, with accumulation time set to a maximum of 500 ms and a target of 1 × 106 ions.
Peaks were only considered for formula assignment if their intensity was higher than
10× the median noise baseline. We assigned formulas to masses using an in-house MATLAB
script [43] and we allowed assignments with mass error <2 ppm. Briefly, formulas were con-
sidered over the ranges C4-50H4-100O2-40N0-2 under the conditions O ≤ C; 0.3C ≤ H ≤ 2.2C.
For each sample, the intensity of the peaks was normalized so that the sum of the intensities
equaled 10,000. The following analyses were performed using R software v4.0. We used the
molecular formulas to calculate the modified aromaticity index (AImod) of each metabo-
lite [44] and the compound categories were defined as: condensed aromatic (AImod > 0.66),
polyphenolic (0.66 ≥ AImod > 0.5), highly unsaturated and phenolic (AImod < 0.5 and
H/C < 1.5), aliphatic (2 ≥ H/C ≥ 1.5, N = 0), peptide (2 ≥ H/C ≥ 1.5, N > 0) or sugar
(O/C > 0.9) [45].

The results of the two extractions, with 20% and 80% methanol, were combined and
the fold changes (FC) were calculated as: log2((0.5 + Mx

y)/(0.5 + Mc
y)), where Mx

y is
the relative abundance of the metabolite y in the CE-sample x and Mc

y is the relative
abundance of the metabolite y in the control. For each sample, only metabolites with
|FC| > 2 were considered to have relative abundance different to that of the control.
Categories enriched among up- and down-regulated genes were found by applying Fisher’s
test. We calculated the similarity of metabolite deregulation of different transgenic lines
with the R package pvclust v2.2-0 [42], using Pearson’s correlation and 5000 bootstrap
replications. Pairwise correlation of metabolite deregulation between specific transgenic
lines was calculated with the function cor from the R package stats, using the method
“pearson”. We were not able to analyze the extraction with 80% methanol of the transgenic
line Mlp123218, thus the results presented for this line are only of the extraction with
20% methanol and they are compared to the results of the Control for the same extraction
for consistency.

We searched the molecular formulas, obtained with the in-house script, in KEGG
database using the R package KEGGREST 1.24.0 for identification of the metabolites
detected. We also used Pathos [46] to search for metabolites with the same m/z (settings:
negative mode, all organisms, H+ as adduct and mass error at 3 ppm).

2.4. Sequence Analysis and Integration

Multiple sequence alignment of CE amino acid sequences without signal peptides was
performed with the software MEGA X [47] using Muscle [48] default settings. Evolutionary his-
tory was inferred using the UPGMA method and 1000 bootstrap replicates. Comparisons of
dendrograms from CE sequence alignment, gene and metabolite deregulation correlation were
done with the R package dendextend [49] by calculating the cophenetic correlation between
two dendrograms. We performed pairwise sequence alignment of the 14 CEs using Needle [48],
with default parameters.
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3. Results
3.1. In Planta Expression of Candidate Fungal Effectors Results in Important Deregulation at the
Transcriptome Level

Melampsora larici-populina CEs have been previously studied in heterologous systems
for functional characterization [22,24,27,30,50]. In Table 1, we present features of the 14
CEs studied here. They were selected from the set of small secreted proteins from M. larici-
populina, characterized for their small size (less than 300 amino acids), the presence of a sig-
nal peptide, the absence of a transmembrane domain and no sequence similarity to proteins
outside the Pucciniales order [9]. Two families of CEs studied here, CPG5464 (Mlp124256
and Mlp124266, homologous to M. lini AvrP4) and CPGH1 (Mlp124497, Mlp124499 and
Mlp124518), show evidence of positive selection. In addition, the genes encoding the 14
CEs selected for this study are up-regulated during poplar infection [51]. Mlp37347 is
a homolog of the well-studied AvrL567 group from M. lini [52,53] and accumulates at
the plasmodesmata in Arabidopsis. Mlp72983 accumulates in the chloroplast [22] and
Mlp124357 is found in the tonoplast and was shown to interact with Arabidopsis and poplar
Protein Disulfide Isomerase [30]. The other 11 CEs selected here have nucleocytosolic
accumulation, the same as the marker protein GFP. Although information about these CEs
is scarce, all of them impacted Arabidopsis susceptibility to either Pseudomonas syringae or to
Hyaloperonospora arabidopsidis [22].

Table 1. Features of the CEs investigated in this study.

CE Length
(Cysteine) Family (Members) Subcellular

Localization a U, P, B, L b,c

Mlp37347 151 (2) - Plasmodesmata E, HE, E, E
Mlp72983 220 (8) CPG332-CPG333(13) Chloroplast E, HE, E, HE

Mlp102036 107 (0) CPG2528(5) Nucleocytosolic E, HE, E, E
Mlp106078 137 (10) - Nucleocytosolic E, HE, E, E
Mlp123218 209 (6) CPG543(7) Nucleocytosolic E, HE, E, E
Mlp123227 124 (3) CPG1059(2) Nucleocytosolic E, HE, E, HE
Mlp123531 102 (8) CPG4557(3) Nucleocytosolic E, HE, E, E
Mlp124256 89 (6) CPG5464(13) Nucleocytosolic N, N, E, E
Mlp124266 92 (7) CPG5464(13) Nucleocytosolic N, N, E, E
Mlp124357 98 (6) CPG4890 Tonoplast N, N, E, E
Mlp124466 76 (0) - Nucleocytosolic -
Mlp124497 77 (4) CPGH1(33) Nucleocytosolic N, N, N, N
Mlp124499 72 (3) CPGH1(33) Nucleocytosolic N, N, E, HE
Mlp124518 76 (3) CPGH1(33) Nucleocytosolic N, N, E, E

a Subcellular localization was evaluated in Arabidopsis [22]. b,c U, P, B, L refer to expression on: (U) urediniospores,
(P) poplar leaves, (B) basidiospores or (L) larch needles [54], where E, HE, and N indicate that the CE is expressed,
highly expressed, or was not detected, respectively, and indicates no data are available.

To better understand the mechanism through which these 14 CEs impact plants,
we studied the transcriptome and the metabolome of transgenic Arabidopsis plants consti-
tutively expressing them. In total, we found 2299 differentially expressed genes (DEGs)
across the experiment. However, the number of DEGs in each line was variable, from 84
in Mlp106078 to 898 in Mlp123531 (Figure 1), indicating each CE affects the plant tran-
scriptome to a different degree. The list of deregulated genes in each transgenic line is
available in Table S3. We further assessed if the level of transgene expression could ex-
plain the number of DEGs in each sample and plotted the number of deregulated genes
per transgenic line against expression level (in transcript per million) of the CE: GFP fu-
sion transcripts. Linear regression shows a poor relation between the two (R2 = 0.1016,
Figure S2) suggesting that the number of deregulated genes per line depends more on the
identity of the expressed CE than on the strength of its expression
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Figure 1. In planta expression of a candidate fungal effector results in important deregulation at
the transcriptome level. Blue and red bars indicate the number of down- and up-regulated genes,
respectively, in each CE-expressing transgenic line compared to the control line. The underlying data
for this figure can be found in dos Santos et al. [37].

3.2. Hierarchical Clustering Based on Gene Expression Groups Effectors Independently of Amino
Acid Sequence Homology

CEs are typically grouped into families based on their amino acid sequences [10] and
it has been shown that R-protein recognize related effectors [12]. Nevertheless, the viru-
lence activity of effectors from the same family has rarely been studied. To search for gene
deregulation patterns of related and unrelated CEs, we used WGCNA to cluster the co-
expressed DEGs and Pearson’s correlation coefficient to cluster the transgenic lines (Figure 2).
We found in total 208 GO terms enriched in the gene sets from WGCNA. A summary is
presented in Table 2, and the full list of enriched terms is available in dos Santos et al. [37].
Set 0 clusters 714 genes deregulated across the 14 transgenic lines, 63.17% of which were
down-regulated. Functions enriched in this gene set are related to defense, specialized
metabolism, stress, and signaling pathways. Set 1 is composed of down-regulated genes
enriched in GO terms related to defense responses, and all transgenic lines have down-
regulated genes in this set. Of the 379 genes in Set 2, 76.5% were down-regulated and
this set has enriched GO terms related to specialized metabolite biosynthesis. In the
case of Set 3, 81.8% of the genes were down-regulated, but we did not find enriched GO
terms in this gene set. Interestingly, this set is composed of genes with the same pattern
of deregulation in four transgenic lines expressing effectors without sequence similarity
(Mlp72983, Mlp102036, Mlp123218, and Mlp123531, Table S4) which accumulate in two
separate cell compartments (Table 1). Set 4 is related to metabolism and abiotic stress and
77.6% of its genes were down-regulated. Sets 5, 6, and 7 are composed almost exclusively
of up-regulated genes (Figure 2). Set 5 genes are deregulated in most transgenic lines and
are related to abiotic stress and development. Set 6 is comprised of up-regulated genes
almost exclusively found in the transgenic line Mlp124466 and related to transcription,
vascular histogenesis, and response to different types of stress. Finally, Set 7 is made of
genes related to photosynthesis and deregulated in the lines Mlp124256 and Mlp124518.
In the cases of the Sets 0, 2, 3 and 4, there is mix of genes up and down-regulated, thus the
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enriched GO terms may be either up or down-regulated, or both. Interestingly, the den-
drogram at the top of Figure 2. shows that CEs belonging to the same family (Mlp124497,
Mlp124499 and Mlp124518; Mlp124256 and Mlp124266) fall in separate clusters despite
their similarity at the amino acid level (Table S4).

Figure 2. Heatmap of genes deregulated in each CE-expressing transgenic line. Up and down-
regulated genes are shown in red and blue, respectively. Transgenic lines are displayed as columns
and deregulated genes as lines. Sets of co-expressed genes (Sets 0 to 7) were calculated with WGCNA.
Transgenic lines were grouped by correlation of gene deregulation using Pearson’s correlation
coefficient. The underlying data for this figure can be found at dos Santos et al. [37].
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Table 2. Summary of “biological process” GO terms enriched in the WGCNA gene sets.

Set Genes in the Set Up-Regulated a Down-Regulated a Enriched GO Terms

Set 0 714 262 451

Response to water deprivation
Cold acclimation; Leaf senescence

Response to fungus, to chitin, to ROS
Response to salt stress and to hypoxia

Defense response to fungus
Response to toxic substance

Response to nitrogen compound and to ET
Isoprenoid, triterpenoid and terpenoid

biosynthesis
Plant-type cell wall loosening

Phosphorelay signal transduction system

Set 1 624 10 615

Response to drug, nitrogen, ROS and ozone
Response to SA, JA and karrikin

Response to wounding, to herbivore and insect
Cellular response to light stimulus and hypoxia

Cellular response to acid chemical
Defense response (incompatible interaction)

Defense response by callose deposition in cell
wall

Defense response by cell wall thickening
SAR and ISR

Camalexin, indole phytoalexin and SA
biosynthesis

Sulfur compound biosynthesis
Toxin and phenol-containing compound

biosynthesis

Set 2 379 89 290

Response to karrikin, to nutrient levels and to
copper ion

S-glycoside and unsaturated fatty acid
biosynthesis

Chlorophyll biosynthesis
Tetraterpenoid, terpenoid and carotenoid

biosynthesis
Isoprenoid, glycosyl and xanthophyll metabolism

Sulfur compound, cofactor and leucine
biosynthesis

Defense response to insect
De-etiolation; Chloroplast organization

Set 3 253 47 207 No GO term enriched

Set 4 140 32 109

Response to water deprivation
Response to salt stress and to starvation

Cellular amino acid catabolism/metabolism
ET-activated signaling pathway

Indole-containing compound metabolism

Set 5 116 113 4

Circadian rhythm; Starch catabolism
Response to cold

Regulation of reproductive process
Regulation of post-embryonic development

Set 6 40 38 2
Response to hypoxia and to wounding

Response to drug, to chitin and to salt stress
Transcription; Phloem or xylem histogenesis

Set 7 32 32 0 Photosynthesis; Proton transmembrane transport
a Up- and down-regulated indicate the number of genes in the set that are up- or down-regulated in at least one transgenic line, thus there
may be genes that are deregulated in both directions in the set because they are deregulated in opposite directions in different samples.



Microorganisms 2021, 9, 996 9 of 21

To analyze the relation between the sequence of each effector and its influence on the
plant transcriptome, we compared the sequence alignment dendrogram to the differential
expression dendrogram. After removal of the signal peptide, we aligned the sequences
of the studied CEs and compared the resulting dendrogram with the one obtained from
the gene deregulation correlation (Figure 3). Pearson’s correlation showed that transgenic
lines expressing CEs from different families had correlated patterns of gene deregula-
tion. Only one cluster was present in both dendrograms, Mlp102036 and Mlp123218,
however this grouping is not supported in the effector sequence dendrogram (bootstrap
value 8%) while it is in the gene deregulation dendrogram (bootstrap 100%). This analysis
indicates that the sequence similarity between the CEs is not a good predictor of the impact
they have on plant gene expression.

Figure 3. Hierarchical clustering of gene deregulation groups effectors independently of amino acid sequence homology.
Comparison between dendrograms based on CE sequence similarity (left, tree computed with UPGMA from Muscle
multiple sequence alignment) and on gene deregulation (right, computed with hierarchical clustering from Pearson’s
correlation coefficient of gene fold change levels) shows only one cluster shared between the two (central lines) and an
overall lack of correlation between the dendrograms (cophenetic correlation in the bottom). Branches with bootstrap support
<70% are shown in grey. The underlying data for this figure can be found in the study by dos Santos et al. [37].
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3.3. Effectors Converge on Deregulating the Same Metabolic Pathways while Others Display
Unique Patterns

Even though the transcripts affected by related effectors are different, in theory they
could fall within the same metabolic pathway and therefore similarly alter the plant. To test
this hypothesis, we searched for KEGG pathways over-represented in the up- and down-
regulated genes in each transgenic line. “Biosynthesis of secondary metabolites” and
“Metabolic pathways” were enriched among gene sets (either up-, red, or down-regulated,
blue) of eight transgenic lines, while “MAPK signaling pathway” and “Plant–pathogen
interaction” were enriched among the down-regulated genes of six and five transgenic lines,
respectively (Figure 4). In “MAPK signaling pathway” (Figure 5A) and “Plant–pathogen in-
teraction” (Figure 5B), we observed the down-regulation of important plant defense-related
genes such as WRKY33 (by four effectors: Mlp37347, Mlp72983, Mlp123531 and Mlp124497),
PR1 (Mlp72983), PDF1.2a (by seven effectors: Mlp37347, Mlp72983, Mlp102036, Mlp123227,
Mlp124256, Mlp124266 and Mlp124466), PDF1.2b (by eight effectors: (Mlp37347, Mlp72983,
Mlp102036, Mlp123218, Mlp123531, Mlp124256, Mlp124266 and Mlp124497), PDF1.2c (by
three effectors: Mlp37347, Mlp72983 and Mlp102036), MPK3 (Mlp123531), RBOHD (by two
effectors: Mlp72983 and Mlp124266), as well as several calmodulin-like protein-encoding
genes. Heatmaps of the genes deregulated in each transgenic line divided by KEGG path-
ways are available in File S1. Taken together, these results suggest that several of these
fungal effectors converge on altering the expression of genes whose role is already well
established in plant immunity, and with very few exceptions, the effectors downregulated
those defense genes.

Figure 4. Effectors converge on deregulating the same metabolic pathways while others display
unique patterns. KEGG pathways over-represented among the sets of down- (blue) and up- (red)
regulated genes in each transgenic line (columns) were calculated with KEGGprofile. Transgenic lines
are ordered according to dendrogram of sequence similarity calculated with Muscle and UPGMA.
The underlying data for this figure can be found in the study by dos Santos et al. [37].
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Figure 5. Heatmaps of genes belonging to (A) MAPK signaling pathway and (B) Plant–pathogen interaction deregulated
in this experiment. Up- and down-regulated genes are shown in red and blue, respectively. Transgenic lines are ordered
according to dendrogram of sequence similarity calculated with Muscle and UPGMA. The underlying data for this figure
can be found at dos Santos et al. [37].

We also found that “Starch and sucrose metabolism” (File S1 Figure S35) was down-
regulated in the transgenic lines Mlp123227 and Mlp124266 (several beta-amylase and
beta-glucanase encoding genes as well as Cell-wall invertase 6 and Sucrose-phosphate
synthase 4 were down-regulated in both transgenic lines), but up-regulated in the lines
Mlp123218 and Mlp124497 (common up-regulation of isoamylase 3, disproportionating
enzyme 1 and alpha-glucan phosphorylase 2), whereas several transgenic lines showed
impact on specialized metabolism, such as carotenoid biosynthesis (File S1 Figure S6) and
glucosinolate metabolism (File S1 Figure S13). This was also visible in the enriched GO
terms found on the WGCNA gene sets (Table 2) and dos Santos et al. [37]). The circadian
rhythm pathway, although it was only found to be enriched among the down-regulated
genes of the lines Mlp124499, Mlp37347 and Mlp123531 and up-regulated genes in the
Mlp124357 transgenic line, has genes deregulated in all the transgenic lines studied, with ex-
ception of Mlp124466 (File S1 Figure S7). Namely, pseudo-response regulator 3 and 5 were
up-regulated while elongated hypocotyl 5 homolog and late elongated hypocotyl were
down-regulated in almost all our transgenic lines. The plant–hormone signal transduction
pathway is enriched among the down-regulated genes in the transgenic lines Mlp37347,
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Mlp123531, and Mlp124497. In these lines, we found several (17, 23, and 17, respectively)
down-regulated genes related to auxin response. These results show that the CEs studied
here can impact a wide range of plant mechanisms, deregulating genes in different path-
ways. They also show that CEs with similar sequences not only deregulate different genes
but also alter different pathways.

3.4. Similar to the Transcriptome, the Metabolome Is Deregulated by Several Effectors

As both primary and specialized metabolisms were affected at the transcriptomic level,
and as they can have an important role in the outcome of an infection, we proceeded with
an untargeted analysis of the metabolome of these plants. We extracted metabolites with
aqueous solutions containing 20% and 80% methanol and used ultra-high resolution mass
spectrometry in negative mode. A total of 5192 masses were assigned across the experiment,
ranging from 2679 (Mlp123227) to 3151 (Mlp124357) masses in each transgenic line (Table S5,
Figure S3A). When separated in biochemical categories, assigned formula belonged mostly
to the highly unsaturated and phenolic and the aliphatic categories, while peptides, sugars,
condensed aromatics and polyphenolics were less important both in number of formulas and
in relative abundance (Figures S3A and S3B, respectively). Compared to the control, we found
680 assigned molecular formulas with a | log2-transformed Fold change| > 2 (Figure 6A),
ranging from 69 metabolites in the line Mlp124466 (1.95% of the masses detected in this
sample and/or in the control) to 353 in the line Mlp123227 (9.68% of the masses detected in
this line and/or in the control, Table S5). In almost all transgenic lines, with the exception
of Mlp72983 and Mlp124256, there was an over-representation of highly unsaturated and
phenolic compounds among the down-regulated metabolites (accumulation level lower
than in the control line) whereas up-regulated metabolites (accumulation level higher than
in the control line) were enriched in peptides in almost all samples, except Mlp72983,
Mlp106078 and Mlp124466 (Figure 6A, Table S6). As done with the transcriptomic data,
we assessed whether the variation in the number of metabolites deregulated in each trans-
genic line could be explained by the level of expression of the transgene. For this, we plotted
the number of deregulated metabolites per transgenic line (left Y-axis, blue, Figure S4)
against the average expression level of the CEs in each transgenic line (X-axis, Figure S4).
As the number of metabolites detected in each transgenic line varied (Figure S3A),
we also plotted the ratio of deregulated metabolites:identified (detected either in the control
or in the corresponding sample) metabolites in the right Y-axis (red, Figure S4). We found
that the variation in transgene expression could explain neither the number (R2 = 0.0063,
p-Value = 0.7872) nor the ratio of deregulated metabolites (R2 = 0.0033, p-Value = 0.8444),
suggesting that the magnitude of the impact on the metabolome depends on the identity of
the CE expressed in the plant rather than the strength of the CE expression.
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Figure 6. (A) Metabolites down-regulated (left) are enriched in highly unsaturated and phenolic compounds while peptides
are over-represented among those up-regulated (right). Samples were analyzed in negative mode and relative abundance
of metabolites in samples was compared to that in the control plants. Estimated molecular formulas were separated
in six categories: highly unsaturated and phenolic (green), aliphatic (purple), peptide (orange), polyphenolic (yellow),
condensed aromatic (blue), and sugar (pink). (B) Transgenic lines expressing candidate effectors with no similarity in amino
acid sequence have correlated patterns of metabolite deregulation. Both metabolites and transgenic lines were clustered
using Pearson’s correlation. * indicates transgenic lines with CEs from the CPG5464 family; # indicates transgenic lines with
CEs from the CPGH1 family. The underlying data for this figure can be found in the study by dos Santos et al. [37].

In order to find shared patterns of metabolite deregulation across the transgenic lines
studied, we used Pearson’s correlation to group metabolites with correlated deregulation
across the experiment and transgenic lines which deregulated the same metabolites. As ob-
served with the gene deregulation, we found that transgenic lines expressing non sequence
similar CEs have correlated patterns of metabolite deregulation (Figure 6B). Within the
CPGH1 family (CEs Mlp12497, Mlp124499, Mlp124518), lines Mlp124499 and Mlp124518
are correlated at 0.77 (Pearson’s correlation), but their correlation with the line Mlp124497
is less strong (Mlp12497-Mlp124499: 0.59; Mlp124497-Mlp124518: 0.64). The two AvrP4
homologues, Mlp124256 and Mlp124266, have 46.3% amino acid sequence similarity [35],
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but the correlation in metabolites deregulation patterns of the transgenic lines expressing
these CEs is 0.32. On the other hand, although Mlp124266 and Mlp124357 have 21.2%
amino acid sequence similarity (Table S4), multiple sequence alignment groups the AvrP4
homologues with the CE Mlp124357 (Figure 7) and the metabolite deregulation correlation
between Mlp124266 and Mlp124357 lines is 0.69.

Figure 7. Pearson’s correlation of transgenic lines based on metabolite deregulation groups effectors independently
of amino acid sequence homology, and gene deregulation patterns are not correlated to metabolite deregulation pat-
terns in CE-expressing lines. The comparison between the dendrogram obtained from CE sequence alignment (multiple
sequence alignment with Muscle of CEs without signal peptide and a tree computed with UPGMA, left) and the dendro-
gram of transgenic lines based on metabolite deregulation (middle) shows low correlation (correlation value on the left).
Similarly, comparison between the dendrogram of transgenic lines based on metabolite deregulation and the one based on
gene deregulation (right) shows a lack of correlation (correlation value on the right). Dendrograms based on correlation of
metabolite deregulation or gene deregulation were calculated with Pearson’s correlation coefficient of fold Change levels
and bootstrap values were obtained with pvclust. Branches with bootstrap support < 70% are shown in grey. The underlying
data for this figure can be found in the study by dos Santos et al. [37].

Remarkably, there was no correlation between the gene and metabolite deregulation
dendrograms (cophenetic correlation of 0.1046, Figure 7). When considering the number of
genes and metabolites deregulated in each sample, the correlation was also low (Pearson’s
correlation = −0.1182). These results suggest these two omics approaches are needed to
understand the magnitude of the impact of the CEs in the plant. Nevertheless, the possibil-
ity that the metabolic pathways deregulated at the metabolite level are the same as those
deregulated in the gene level cannot be discarded.

To associate the metabolomic results with metabolic pathways, we tried to identify
the molecular formula assigned in each sample. To do so, we searched for compounds
with matching molecular formula or m/z values in the KEGG database. From the 5192 m/z
detected across the experiment, 437 (8.41%) had a single match in KEGG database, while an-
other 548 corresponded to multiple metabolites, and the rest were unmatched. When only
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considering the 680 deregulated metabolites, 54 (7.07%) matched a single metabolite and 82
(12.06%) matched multiple metabolites [55], leaving 544 unmatched. Taken together these
results demonstrate that assigning metabolites identities to m/z values remains difficult
even for a model plant such as Arabidopsis, for these reasons drawing correlation between
deregulated transcriptome and deregulated metabolites or pathways cannot be performed
with a high level of confidence.

4. Discussion

Effector biologists have tackled both the identification and the functional characteriza-
tion of candidate effectors (CEs) [13,56], as this is a key step towards a better understanding
of plant–microbe interactions. In rust fungi, different approaches are used in the func-
tional characterization of these proteins, including analysis of subcellular localization
in planta [22,27,28,30,50], infection assays in true host or in a model plant, and induc-
tion/repression of plant cell death [22,30,57,58]. The transcriptome or metabolome of the
host in responses to the pathogen are frequently evaluated [59–64], but the assessment
of the role of individual CEs in these processes is not easily measured and seldom ana-
lyzed [24,65]. Here, we investigated 14 CEs from Melampsora larici-populina by evaluating
their individual impact on the transcriptome and metabolome of stable transgenic Ara-
bidopsis plants. By studying the impact of several individual CEs, we were able to compare
patterns of gene and metabolite deregulation. Unexpectedly, we found that transgenic lines
expressing CEs belonging to the same family did not have comparable patterns of gene or
metabolite deregulation.

Previous studies in M. larici-populina have shown that genes encoding fungal effectors
are expressed in waves in the telial host [51] and that members of the same family may be
expressed during the infection of different hosts [54]. This reflects the functional diversifica-
tion of effectors, indicating that the fungus uses different sets of effectors for each stage of
the infection, and suggesting that effector families can have different functions and may tar-
get different host proteins or the same host protein that diverged in different hosts. The con-
current study of individual M. larici-populina CEs allows the comparison of their individual
impact in the plant [22]. We found variability in the magnitude of the impact of each CE on
the transcriptome (from 84 to 898 DEGs) and the metabolome (from 69 to 363 metabolites
deregulated) of the transgenic plants (Figures 1 and 6A), a variability which is not related
to the level of expression of the transgenes (Figures S2 and S4). This suggests that the
identities of the CEs are orienting the deregulations. By comparing the correlation of gene
and metabolite deregulation patterns with the CEs sequence similarity (Figures 3 and 7),
we show that CEs belonging to the same family do not deregulate the transcriptome or the
metabolome in a same way nor do they deregulate the same metabolic pathways (Figure 4).
These results corroborate the infection assays from Germain and colleagues [22]. In their
study, Arabidopsis plants constitutively expressing Mlp CEs were infected with P. syringae
DC3000 or H. arabidopsidis Noco2. Mlp124497, Mlp124499 and Mlp124518 (family CPGH1)
and Mlp124256 and Mlp124266 (family CPG5464) [66]; all increased Arabidopsis suscep-
tibility to H. arabidopsidis. However, only Mlp124266, Mlp124497 and Mlp124499 made
Arabidopsis more susceptible to P. syringae.

It has been suggested that proteins with higher sequence similarity have higher proba-
bility of having the same function [67], thus small secreted proteins from many fungal and
oomycete plant pathogens [9,10,68–70] have been grouped in protein families to guide func-
tional annotation and to help understand effector evolution. Nevertheless, recent studies
have hypothesized that effectors from the same family may have different functions in the
same host. This is the case for HopAF1 effectors from P. savastanoi [71] and GALA effectors
from Ralstonia solanacearum [72], which impact the plant defense differently. It is also the
case for XopD effectors from plant pathogenic bacteria, which show different levels of
SUMO protease activity and have different impacts in Nicotiana leaves [73]. This hypothesis
is also supported by the evolution of the Tin2 effector in Ustilaginaceae. Tin2 from Ustilago
maydis interacts with Zea mays TTK1 protein to stabilize it, leading to accumulation of
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anthocyanin. However, Tin2 from Sporosorium reiliannum interacts with Zea mays TTK2 and
TTK3, inhibiting their activity [74].

The CEs studied here deregulate diverse biochemical pathways in the plant (Figure 4).
In relation to primary metabolism, genes in the “starch and sucrose metabolism” pathway
(File S1 Figure S35) were over-represented among up-regulated genes in the transgenic
lines expressing the CEs Mlp123218 and Mlp124497, comparable to what is observed
in susceptible wheat infected with Puccinia triticina [63]. On the other hand, the plants
expressing Mlp123227 and Mlp124266 showed an enrichment of this pathway among
down-regulated genes and the transgenic lines Mlp72983 and Mlp124266 had several genes
down-regulated in this pathway as well (File S1 Figure S35), a pattern seen in resistant
wheat infected with P. triticina [63]. This difference in the direction of gene deregulation
within the same pathway by different CEs may be an indication that deregulated genes
have different functions. It can also suggest that these CEs are used in different stages of
the infection.

When considering genes related to defense, there is down-regulation of PTI-related
genes (FRK1, MPK3, PR1, RBOHD, and WRKY33) and ETI-related genes (ERF1 and
PDF1.2A, B and C) in several transgenic lines, especially Mlp37347 (AvrL567 homolog),
Mlp72983, and Mlp123531 (Figure 5). Interestingly, of these three lines only Mlp37347
impacted plant susceptibility to bacterial infection, leading to less growth of P. syringae [22].
However, the three transgenic lines showed increased susceptibility to the oomycete
H. arabidopsidis [22], which might be linked to the down-regulation of PTI. On the other
hand, Mlp37347, Mlp123531 and Mlp124497 down-regulated several AUX/IAA genes
(File S1 Figure S28), which repress auxin responses [75]. Since auxin represses SA-mediated
defense responses [76], this could explain the increased susceptibility of these plants to
H. arabidopsidis and of Mlp124497 to P. syringae [22].

For three pathways, the transcriptomic deregulations found in this study differ
from previous reports of susceptible plants infected by rust fungi. While genes encod-
ing Glutathione-S-transferase are down-regulated in at least one of 12 transgenic lines
studied here (File S1 Figure S14), these genes are up-regulated in apple leaves infected
with Gymnosporangium yamadae [62]. Moreover, Tremblay and colleagues [61] reported
up-regulation of genes in the “photosystem” and “nitrogen metabolism” pathways in
susceptible Glycine max infected with P. pachyrhizi, whereas genes from these pathways
(File S1 Figures S27 and S20, respectively) were down-regulated in our transgenic lines.
There are several possible explanations for these differences between previous studies and
our own. First, our results may be due to the long-term exposure of our plants to CEs,
as they are stable transgenic lines, whereas during the infection rust fungi secrete effectors
in waves [51] so these proteins are not constitutively present in the host. It is also possible
that results from Tao and colleagues [62] and Tremblay and colleagues [61] included the
activation of PTI as well as the combinatory effect of multiple effectors, as they investigated
plant response to the fungal infection, not to individual CEs. Our approach was to express
CEs from M. larici-populina in a plant that cannot be infected by this fungus, and thus
should not recognize these proteins nor mount active defense responses against them (ETI).
Finally, although there are limitations of the use of heterologous systems, they allow
faster functional characterization of CEs [17,77] and they may be indispensable for high-
throughput studies of CEs of obligate biotrophic pathogens or other microorganisms not
amenable to genetic manipulation [78,79].

Taken together, our results reinforce the hypothesis that the CEs studied here
and functionally characterized by Germain and colleagues [22] are bona fide effectors.
Nevertheless, future studies interested in CEs evaluated here should analyze more inde-
pendent transgenic lines. In addition, since our methodology for the metabolomic analysis
is semi-quantitative and does not allow the distinction of metabolites with the same m/z,
follow up studies should use chromatography in tandem with mass spectrometry and
should analyze more replicates for the mass spectrometry. Our study also questions the
validity of grouping CEs by sequence similarity. The importance of this approach for un-
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derstanding the evolution of effectors is obvious [9] but basing functional characterization
on sequence similarity may be misleading [71,72,74].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/microorganisms9050996/s1, Figure S1. Principal component analysis of the replicates of 14
transgenic lines expressing candidate effectors from Melampsora larici-populina attached to GFP
and a control line expressing only GFP (black dots). Replicates of the same transgenic lines are close
together, indicating the homogeneity of the sample, with the exception of one replicate of each of
the following transgenic lines: Mlp102036 (yellow), Mlp106078 (red), Mlp124256 (sky blue) and
Mlp124357 (dark green). The underlying data for this figure can be found at dos Santos et al. [37].
Figure S2. Magnitude of impact of CE on the plant’s transcriptome is independent of its level of
expression. Reads not mapped to Arabidopsis genome were aligned to the transgene sequences (CE:
GFP fusion) and average expression (in transcripts per million) across replicates of each transgenic
line was calculated. Linear regression was performed using the number of genes deregulated in each
transgenic line as the dependent variable and the average expression of the CE as the independent
variable. The underlying data for this figure can be found in the study by dos Santos et al. [37].
Figure S3. Metabolic composition of samples in number of formulas (A) and relative abundance of
compounds (B). Samples were analyzed in negative mode and estimated molecular formulas were
separated into six categories: highly unsaturated and phenolic (green), aliphatic (purple), peptide (or-
ange), polyphenolic (yellow), condensed aromatic (blue), and sugar (pink). The underlying data
for this figure can be found in the study by dos Santos et al. [37]. Figure S4. Magnitude of impact
of CE on the plant’s metabolome is independent of its level of expression, considering either the
absolute number of deregulated metabolites (triangles, linear regression results in blue) or the ratio
of metabolites deregulated by those identified (circles, linear regression results in red). Reads not
mapped to Arabidopsis genome were aligned to the transgene sequences (CE: GFP fusion) and
average expression (in transcripts per million) across replicates of each transgenic line was calculated.
Two separate linear regressions were performed using the number of metabolites deregulated and
the ratio between metabolites deregulated by those detected in each transgenic line as the dependent
variables and the average expression of the CE as the independent variable in both cases. The un-
derlying data for this figure can be found in the study by dos Santos et al. [37]. File S1. Heatmaps
of deregulated genes separated by KEGG pathway. Pathways with at least 5 genes deregulated
across the experiment were selected for display of genes deregulated in each transgenic line. Figure S1.
Alanine, aspartate and glutamate metabolism. Figure S2. Alpha-Linolenic acid metabolism.
Figure S3. Amino sugar and nucleotide sugar metabolism. Figure S4. Ascorbate and aldarate
metabolism. Figure S5. Carbon fixation in photosynthetic organisms. Figure S6. Carotenoid
biosynthesis. Figure S7. Circadian rhythm. Figure S8. Cutin, suberin and wax biosynthesis.
Figure S9. Cyanoamino acid metabolism. Figure S10. Cysteine and methionine metabolism.
Figure S11. Diterpenoid biosynthesis. Figure S12. Endocytosis. Figure S13. Glucosinolate biosyn-
thesis. Figure S14. Glutathione metabolism. Figure S15. Glycerolipid metabolism. Figure S16.
Glycerophospholipid metabolism. Figure S17. Glycine, serine and threonine metabolism. Figure S18.
Glycolysis/Gluconeogenesis. Figure S19. Glyoxylate and dicarboxylate metabolism. Figure S20.
Nitrogen metabolism. Figure S21. Oxidative phosphorylation. Figure S22. Pentose and glucuronate
interconversions. Figure S23. Peroxisome. Figure S24. Phenylalanine metabolism. Figure S25.
Phenylalanine, tyrosine and tryptophan biosynthesis. Figure S26. Phenylpropanoid biosynthesis.
Figure S27. Photosynthesis. Figure S28. Plant hormone signal transduction. Figure S29. Porphyrin
and chlorophyll metabolism. Figure S30. Protein processing in endoplasmic reticulum. Figure S31.
Purine metabolism. Figure S32. Ribosome. Figure S33. Sesquiterpenoid and triterpenoid biosynthesis.
Figure S34. Spliceosome. Figure S35. Starch and sucrose metabolism. Figure S36. Tropane, piperidine
and pyridine alkaloid biosynthesis. Figure S37. Tryptophan metabolism. Figure S38. Tyrosine
metabolism. Figure S39. Ubiquinone and other terpenoid-quinone biosynthesis. Figure S40. Ubiqui-
tin mediated proteolysis. Figure S41. Valine, leucine and isoleucine degradation. Figure S42. Zeatin
biosynthesis. The underlying data for this file can be found in the study by dos Santos et al. [37].
Table S1. Parameters used for bioinformatic analyses. Table S2. Sequencing results and alignment
summary. Table S3. List of deregulated genes across the experiment with log2-transformed fold
changes (FC) and false discovery rates (FDR) for each transgenic line. Table S4. Percentage of identity
and similarity, presented as “ID (SIM)”, calculated with pairwise sequence alignment of CEs using
Needle. Table S5. Summary of metabolomic analysis in negative mode of extractions with 20% and
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80% methanol combined. Assigned, CHO, CHON and Mean mass refer exclusively to the sample in
question, while the number of deregulated formulas considers those m/z detected in the sample or
in the Control. Table S6. Metabolites assigned and deregulated in each sample separated by category.
Identified metabolites are m/z detected either in the sample or in the control. The percentages were
calculated by dividing the number of formulas assigned or deregulated in the sample in each category
by the number of formulas identified in that sample and multiplying by 100.
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