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Abstract
Purpose To investigate whether Parkinson’s disease (PD) can be differentiated from healthy controls and to identify neural
circuit disorders in PD by applying a deep learning technique to parameter-weighted and number of streamlines (NOS)–based
structural connectome matrices calculated from diffusion-weighted MRI.
Methods In this prospective study, 115 PD patients and 115 healthy controls were enrolled. NOS-based and parameter-weighted
connectome matrices were calculated from MRI images obtained with a 3-T MRI unit. With 5-fold cross-validation, diagnostic
performance of convolutional neural network (CNN)models using those connectomematrices in differentiating patients with PD
from healthy controls was evaluated. To identify the important brain connections for diagnosing PD, gradient-weighted class
activation mapping (Grad-CAM) was applied to the trained CNN models.
Results CNN models based on some parameter-weighted structural matrices (diffusion kurtosis imaging (DKI)–weighted,
neurite orientation dispersion and density imaging (NODDI)–weighted, and g-ratio-weighted connectome matrices) showed
moderate performance (areas under the receiver operating characteristic curve (AUCs) = 0.895, 0.801, and 0.836, respectively)
in discriminating PD patients from healthy controls. The DKI-weighted connectome matrix performed significantly better than
the conventional NOS-based matrix (AUC = 0.761) (DeLong’s test, p < 0.0001). Alterations of neural connections between the
basal ganglia and cerebellum were indicated by applying Grad-CAM to the NODDI- and g-ratio-weighted matrices.
Conclusion Patients with PD can be differentiated from healthy controls by applying the deep learning technique to the
parameter-weighted connectome matrices, and neural circuit disorders including those between the basal ganglia on one side
and the cerebellum on the contralateral side were visualized.

Keywords Parkinson disease . Connectome .Magnetic resonance imaging . Deep learning . Artificial intelligence

Introduction

Parkinson’s disease (PD) is a progressive disease that is char-
acterized by degeneration of mesencephalic dopamine

neurons. The prevalence of PD is increasing. The number of
patients with PD has more than doubled globally from 1990 to
2015 [1], and worldwide in 2016, 6.1 million individuals had
PD [2]. Although MRI is used for the diagnosis of many
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neurological disorders, PD does not show abnormal findings
on conventional MRI. Patients with PD show extrapyramidal
symptoms such as resting tremor, bradykinesia, rigidity, and
postural reflex disturbance, and diagnosis of PD ismade based
on the clinical time course, symptoms, and physical findings.

Advancements in diffusion MRI techniques have allowed
researchers to capture imaging findings of PD [3] by using
diffusion tensor imaging (DTI) [4], diffusion kurtosis imaging
(DKI) [5], and neurite orientation dispersion and density im-
aging (NODDI) [6]. Parameters derived from g-ratio analysis
[7] may also capture microstructural changes in PD [8]. The
structural connectome matrix, or number of streamlines
(NOS)-based connectome matrix, is calculated from
diffusion-weighted MRI, represents neural connections of
the whole brain [9], and also has potential to reveal abnormal-
ities in neural connections in some neurological and psycho-
logical disorders [10] including PD [11]. While NOS-based
matrices represent only microstructural fiber counts, elements
of the connectome matrix can also be weighted using param-
eters derived from advanced diffusion MRI techniques. Such
parameter-weighted matrices have a potential to represent tis-
sue properties and to have higher sensitivity to capture the
characteristics of neurological diseases. For example, the use-
fulness of the g-ratio-weighted connectome matrix over the
NOS-based matrix was reported in the diagnosis of multiple
sclerosis [12]. Use of a parameter-weighted connectome ma-
trix from DTI, DKI, NODDI, and g-ratio analyses has the
potential to diagnose PD better than the conventional NOS-
based matrix; however, to the best of our knowledge, no in-
vestigations have used such parameter-weighted connectome
matrices to evaluate PD.

Deep learning, which is an artificial intelligence approach,
allows automated analyses of large-volume data such as im-
ages without explicitly teaching knowledge to computers [13].
Convolutional neural network (CNN), a deep learning strate-
gy, has shown high performance in image recognition tasks
[14]. Therefore, application of CNN to radiological imaging
diagnosis has been gaining wide attention [15–17], and re-
searchers have successfully applied this technique to several
imaging diagnosis tasks with radiography [18, 19], CT [20,
21], and MRI [22, 23]. Deep learning would also have a po-
tential to handle connectome matrix which has a large data
volume comprising thousands of independent elements. One
of the weaknesses of deep learning is how it makes decisions
has been difficult to interpret for us [15]. However, visualiza-
tion of regions of images where deep learning models focus
has become possible with gradient-weighted class activation
mapping (Grad-CAM) [24]. This technique may allow visu-
alizing alterations of neural circuits in PD patients when it is
applied to CNNs which is trained with connectome matrices
to diagnose PD.

The aim of this study was to investigate whether patients
with PD can be differentiated from healthy controls by

applying a deep learning technique to a parameter-weighted
connectome matrix with higher performance than a NOS-
based structural connectome matrix calculated from MRI ob-
tained with a 3-Tesla MRI unit and to find neural circuit dis-
orders associated with PD by using Grad-CAM techniques.

Methods

In this prospective study, which was approved by our institu-
tional review board, MRI data of patients with PD and healthy
controls were analyzed. There is subject overlap (64 out of
230) with previous studies [25, 26], which used different an-
alyzing methods (tract-of-interest, tract-based spatial statistics,
and gray matter-based spatial statistics analyses) from the cur-
rent study. Those studies did not use deep learning technique
or connectome matrices in the evaluations of PD. Written
informed consent was obtained from each participant.

Participants

Patients with PD and healthy controls who visited Juntendo
University Hospital (blinded for the review process) between
February 2017 and October 2018 were enrolled in this study.
Specialized neurologists made the diagnosis of PD according
to clinical diagnostic criteria for PD of the Movement
Disorder Society [27]. Patients showed parkinsonism and
responded to antiparkinsonian therapy. Patients with apparent
signs of other diseases which shows parkinsonism were not
included. Disease duration from onset to MRI examination,
disease severity, and dominant side are shown in Table 1.
Healthy controls had no history of neurological diseases.
Participants with a brain infarction or incomplete MRI exam-
ination were excluded. Age- and gender-matched participants
in the PD and healthy control groups were selected before the
deep learning and main analyses.

MRI data acquisition

MRI examinations were performed with a 3-T MRI unit
(MAGNETOM Prisma; Siemens Healthcare) using a 64-
channel head coil. Multi-shell diffusion-weighted MRI, mag-
netization transfer saturation images, and T1-weighted images
were obtained.

Multi-shell diffusion-weighted MRIs were obtained with
b-values of 0, 1000, and 2000 s/mm2 along 64 uniformly
distributed directions for each shell with spin-echo echo-pla-
nar imaging. We also acquired standard and reverse phase-
encoded blipped images with no diffusion weighting (blip
up and blip down) to correct for the magnetic susceptibility-
induced distortions related to the echo-planar imaging acqui-
sitions [28]. The data were corrected for eddy currents,
susceptibility-induced geometric distortions, and inter-
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volume motion using the EDDY and TOPUP toolboxes [28].
Acquisition parameters for the multi-shell diffusion-weighted
MRIs were the following: repetition time (TR) of 3300 ms,
echo time (TE) of 70 ms, field of view (FOV) of 229 ×
229 mm, voxel size of 1.8 × 1.8 × 1.8 mm3, matrix of 130 ×
130, 65 slices, number of excitations of 1, and acquisition time
of 7.29 min.

To calculate the magnetization transfer (MT) saturation
index, dual excitation three-dimensional multi-echo fast low-
angle shot sequences were performed with predominant T1,
proton density, and MT weighting. The excitation of MT-
weighted images was preceded by an off-resonance
Gaussian-shaped radiofrequency pulse under the following
conditions: frequency offset from water resonance, 1.2 kHz;
pulse duration, 9.984 ms; and nominal flip angle, 500°. Other
acquisition parameters for MT saturation imaging were as
follows: MT-off and MT-on scanning (TR/TE = 24/2.53 ms,
flip angle = 5°) and T1-weighted imaging (TR/TE = 10/
2.53 ms, flip angle = 13°); parallel imaging using a general-
ized auto-calibrating partially parallel acquisition factor in the
phase-encoding direction, 2; 7/8 partial Fourier acquisition in
the partition direction; bandwidth, 260 Hz/pixel; slice thick-
ness, 1.8 mm; number of slices, 104; FOV, 224 × 224 mm,
and matrix, 128 × 128. The total acquisition time was
6.25 min.

As structural data, three-dimensional T1-weighted images
using magnetization-prepared 180° radiofrequency pulses and
rapid gradient-echo sequences were also acquired.
Acquisition parameters for the T1-weighted images were the
following: TR/TE = 15/3.54 ms, inversion time = 1100 ms,
voxel size of 0.86 × 0.86 × 0.86 mm3, and acquisition time,
5.14 min.

Diffusion analyses (DTI, DKI, NODDI, and g-ratio
analyses)

An ordinary least square was applied to the diffusion-
weighted MRI data with b = 0 and 1000 s/mm2 to produce

FA, mean diffusivity, axial diffusivity, and radial diffusivity
based on standard formulae [4].

The diffusional kurtosis estimator [29] was implemented in
MATLAB (Math-Works, Natick, MA, USA) to generate AK,
MK, and RK maps.

The resulting diffusion-weighted MRIs were fitted to the
NODDImodel [6] using the NODDIMatlab Toolbox5 (http://
www.nitrc.org/projects/noddi_toolbox) and Accelerated
Microstructure Imaging via Convex Optimization [30].
Maps of the ICVF, orientation dispersion index, and
isotropic volume fraction were generated.

Using an in-house MATLAB script, MT saturation data
were analyzed to calculate the myelin volume fraction
(MVF). To estimate MVF maps, a calibration factor of 0.1
was subsequently used to obtain a g-ratio of 0.7 in the corpus
callosum as previously suggested [31]. The AVF was calcu-
lated based on parameters of the NODDI model (ICVF and
isotropic volume fraction) and MT saturation (myelin volume
fraction), as follows [7]:

AVF ¼ 1−MVFð Þ 1−ISOVFð ÞICVF
where ISOVF denotes isotropic volume fraction. Finally, the
g-ratio was calculated using the myelin volume fraction and
AVF for each voxel using the following equation [7]:

g−ratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AVF

MVFþ AVFð Þ

s

Connectome pre-processing and construction

By using the functional MRI of the Brain Software Library,
Version 5.0.9 [32], pre-processing (registration, removing
non-brain tissue from three-dimensional T1-weighted images,
segmentation [estimation of partial volume fractions of white
matter/cortical graymatter/deep graymatter/cerebrospinal flu-
id], and obtaining gray matter-white matter interface mask)
was performed. Then, nodes were obtained according to

Table 1 Patient demographics data

PD Healthy controls Comparison (p value)

Number of participants 115 115 N/A

Men/women 52/63 61/54 0.291

Mean age (years) 68.9±6.9 69.8±3.0 0.194

Mean disease duration from onset to MRI examination (years) 10.4±5.7 N/A N/A

Median Unified Parkinson’s Disease Rating Scale-III motor subscale score 22 (13.5–32) N/A N/A

Hoehn-Yahr stage (1/2/3/4/5) 7/33/54/20/1 N/A N/A

Dominant side (left/right/none) 52/60/3 N/A N/A

Note: Data are shown as the mean ± standard deviation or median (interquartile range), where applicable. For comparisons of age and gender, the Student
t test and chi-square test, respectively were performed

N/A, not applicable
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Desikan-Killiany cortical atlas segmentation [33]. With the
MRtrix software package (Brain Research Institute, http://
www.brain.org.au/software/), whole-brain tractograms were
generated using probabilistic multi-shell, multi-tissue
constrained spherical deconvolution tracking from multi-
shell diffusion-weighted MRI data. For fiber tracking, data
with b-values of 1000 and 2000 s/mm2 were used, and 5 ×
107 streamlines were seeded from the white matter fiber ori-
entation distribution function.

To map the NOS-based connectome for each individual,
the total NOS interconnecting each pair of regions was enu-
merated and stored in a connectivity matrix. Then, the NOS
interconnecting each pair of nodes was enumerated, resulting
in a connectome matrix with 84 × 84 components (Fig. 1a).
Furthermore, DTI-, DKI-, NODDI-, and g-ratio-weighted
connectome matrices were obtained by multiplying the NOS
by the tract-averaged values of each parameter [12].
Therefore, from each patient, a total of 14 connectome matri-
ces (one NOS-based, four DTI parameter-weighted [fractional
anisotropy (FA), mean diffusivity, axial diffusivity, and radial
diffusivity], three DKI parameter-weighted [mean kurtosis
(MK), axial kurtosis (AK), and radial kurtosis (RK)], three

NODDI parameter-weighted [intracellular volume fraction
(ICVF), orientation dispersion index, isotropic volume frac-
tion], and three g-ratio parameter-weighted [axon volume
fraction (AVF), myelin volume fraction, and g-ratio] matrices)
were generated.

Training of the CNN

Deep learning was performed with a computer equipped with
the graphical processing unit of Quadro P5000 (NVIDIA), 64-
GB random access memory, and a Core i9-9900K (Intel). To
perform deep learning, the programming language, Python
3.6.4, and the deep learning framework, Chainer 4.0.0, were
used.

Input data were preprocessed. To reduce the dimension of
input data, the connectome matrices were preprocessed. From
the original connectome matrix (84 × 84 elements) (Fig. 1a),
diagonal elements that represent self-connection were exclud-
ed (84 × 84–84 elements) (Fig. 1b).We also extracted only the
independent 3486 elements ((84 × 84–84)/2 = 3486). After
adding 114 zeros (3486 + 114 = 3600), the data were trans-
formed to 60 × 60 matrix data (Fig. 1c). This 60 × 60 matrix
was used as input data for deep learning with CNN. The input
data were normalized by dividing by the maximum value
within the matrix.

As teaching data, two-element vector data (PD [0, 1] vs.
healthy control [1, 0]) were used. The structure of the CNN is
illustrated in Fig. 2. Errors between output data and teacher
data (PD vs. healthy control) were calculated with softmax
cross-entropy. The CNN was updated with a minibatch size
of 15 and with an optimizer of AdaGrad [34] so that the error
became small. The number of epochs for the training was 20.
In the training phase, data augmentation was performed by
adding Gaussian noise with a mean of 0 and a standard devi-
ation of 0.002, 0.004, 0.006, 0.008, and 0.010 to the input
data. Therefore, data were augmented 6-fold in the training
phase of the CNN. The hyperparameters were determined
before the main analyses by using NOS-based matrices of
PD patients and healthy controls who were excluded from
the study due to age and gender matching.

Evaluating performance of the trained models

To evaluate the performance of the model, 5-fold cross-val-
idation was performed. Data of patients with PD and healthy
controls were randomly divided into five groups. Training
and validation were repeated 10 times (trials) in each fold.
The performance of the model that showed the best among
the 10 trials was recorded for each fold. Then, by pooling the
data across 5-fold, the performance of the model was
evaluated.

Fig. 1 a NOS-based connectome matrix, which is presented as a color
map, of a 68-year-old woman with PD. b Preparation of the input data for
deep learning with the convolutional neural network (CNN). Numbers of
elements are shown in parentheses. c Input data presented as a color map
for the CNN of the same patient as in a. Red and blue colors indicate
higher and lower values, respectively
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Grad-CAM

To visualize the regions where the developed CNN focused in
diagnosing PD, the Grad-CAM technique [24] was applied to
the connectome matrices of patients with PD who were diag-
nosed correctly in the validation. The target layer was set at the
4th convolutional layer. The data for each patient with PD were
normalized and then pooled. To assess whether the relations
between the dominant side and the neural circuit alteration,
subanalyses were also performed by separately pooling the data
for patients according to the dominant side (left or right).

Statistics

Statistical analyses were performed with EZR version 1.37
(http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/
statmedEN.html), which is a graphical user interface of R 2.4.
0 (https://www.r-project.org/). Continuous and binominal
data were compared with the Student t test and chi-square test,
respectively. The performance of the CNN model for differ-
entiating patients with PD from healthy controls was evaluat-
ed with receiver operating characteristic analyses. Areas under
the receiver operating characteristic curve (AUCs) of the mod-
el that showed the best performance among each evaluation
category (NOS, DTI, DKI, NODDI, g-ratio) were compared
across categories with DeLong’s test. Because of multiple
comparisons across five categories, a p value less than 0.005
(= 0.05/10, Bonferroni correction) was considered to indicate
statistical significance. Sensitivity, specificity, and accuracy in
diagnosing PD were calculated using CNN’s output value of
0.5 as a cut-off.

Results

Background of study participants

In this study, 115 patients with PD (mean age with standard
deviation, 68.9 ± 6.9 years, 52 men and 63 women) and 115

healthy controls (mean age with standard deviation, 69.8 ±
3.0 years, 61 men and 54 women) were enrolled. Other back-
ground information is summarized in Table 1.

Performance of models for diagnosing PD

The diagnostic performance of the trained CNN models for
differentiating patients with PD from healthy controls is sum-
marized in Table 2. AK-weighted,MK-weighted, RK-weight-
ed, ICVF-weighted, and AVF-weighted matrices were found
to showAUCs of over 0.800 in diagnosing PD (AUC = 0.891,
0.878, 0.895, 0.801, and 0.836, respectively), while NOS-
based matrix showed AUC of 0.761. Among the DTI, DKI,
NODDI, and g-ratio parameters, FA, RK, ICVF, and AVF
performed the best, respectively (AUCs = 0.733, 0.895,
0.801, and 0.836, respectively) (Fig. 3). We compared the
AUCs of the model that showed the best performance among
each evaluation category (NOS, DTI, DKI, NODDI, g-ratio)
(Table 3). The RK-weighted connectome matrix (best among
DKI) showed significantly better performance compared with
ICVF-weighted (best among NODDI), NOS-based, and FA-
weighted (best among DTI) matrices (p = 0.0004, p < 0.0001,
and p < 0.0001, respectively). AVF-weighted connectome
matrix (best among g-ratio) performed significantly better
than the FA-weighted connectome matrix (best among DTI)
for diagnosing PD (p = 0.0022).

Sensitivity, specificity, and accuracy of models that
showed the best performance in each category are shown in
Table 4.

Grad-CAM results

Regions in which the trained CNN focused, which were re-
vealed with Grad-CAM, are shown in Fig. 4. Generally, Grad-
CAM result images are blurred due to the use of kernel size of
more than 1 in convolutional layers and due to the use of max-
pooling layers. In this study, the customized structure of our
CNN (Fig. 2) allowed pin-point visualization in Grad-CAM
analysis. The trained CNN model focused on many

Fig. 2 The CNN comprised four convolutional layers with channels of 8,
16, 16, and 32. Because the distance between two elements within the
connectome matrix does not represent spatial distance as in general
images, we customized the structure of the CNN: a a filter size of 1
was used for all convolutional layers and b max-pooling layers were

omitted from the CNN. The processed data were further processed at
three fully connected layers with the number of units of 4096, 4096,
and 2. Conv, convolutional layer; FC, fully connected layer; ker, numbers
of kernels of the convolutional layer; out, numbers of output values of the
fully connected layer
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connections on the RK-weighted connectome matrix (Fig. 4c)
and no specific trend in areas of focus for neural connections
was found. On the contrary, ICVF-weighted and AVF-
weighted connectome matrices focused on some specific neu-
ral connections, which are indicated as reddish color dots in
Fig. 4d, e. These neural connections are summarized in Fig. 5
and Table 5. For these two matrices, connections between the

basal ganglia and the cerebellum played important roles in
discriminating patients with PD from healthy controls.

Discussion

In this study, by applying the deep learning technique to DKI-,
NODDI-, and g-ratio-weighted structural connectome matri-
ces obtained with a 3-T MRI unit, we found that PD could be
diagnosed with moderate performance. Deep learning models
that were trained with the DKI-weighted connectome matrix
performed significantly better than those trained with the
NOS-based connectome matrix. By using the Grad-CAM
technique, we found that the trained CNN focused on connec-
tions between the basal ganglia and the cerebellum for ICVF-
and AVF-weighted connectome matrices, whereas no specific
trend was found in the areas of focus for neural connections
for the RK-weighted connectome matrix for differentiating
patients with PD from healthy controls.

Parameter-weighted connectome matrix has been gaining
attention recently in the evaluations of neurological diseases
[12]. While NOS-based connectome matrix represents only
the strength of the connectivity between brain regions, the
parameter-weighted matrix can represent other tissue proper-
ties. In the current study, DKI parameters-weighted, ICVF-
weighted, and AVF-weighted matrices were found to show
AUCs of over 0.800 in diagnosing PD, while NOS-based

Table 2 Areas under the receiver operating characteristic curve for diagnosing Parkinson’s disease with the convolutional neural network

Metrics Cross-validation Pooled

1 2 3 4 5

NOS 0.688 0.767 0.764 0.887 0.843 0.761 (0.698–0.823)

DTI

Axial diffusivity 0.747 0.722 0.713 0.664 0.864 0.715 (0.649–0.781)

Mean diffusivity 0.726 0.656 0.713 0.618 0.783 0.672 (0.602–0.741)

Radial diffusivity 0.667 0.633 0.703 0.684 0.871 0.698 (0.631–0.766)

Fractional anisotropy 0.703 0.724 0.775 0.665 0.853 0.733 (0.669–0.798)

DKI

Axial kurtosis 0.839 0.941 0.972 0.911 0.957 0.891 (0.848–0.934)

Mean kurtosis 0.864 0.845 0.868 0.860 0.989 0.878 (0.833–0.923)

Radial kurtosis 0.847 0.879 0.913 0.854 0.987 0.895 (0.853–0.937)

NODDI

Intracellular volume fraction 0.784 0.847 0.798 0.747 0.896 0.801 (0.744–0.858)

Isotropic volume fraction 0.688 0.798 0.745 0.730 0.868 0.749 (0.686–0.811)

Orientation dispersion 0.561 0.760 0.743 0.662 0.817 0.691 (0.623–0.759)

g-ratio

Axon volume fraction 0.749 0.871 0.837 0.926 0.915 0.836 (0.784–0.888)

Myelin volume fraction 0.681 0.773 0.790 0.788 0.834 0.763 (0.701–0.824)

g-ratio 0.665 0.760 0.830 0.786 0.866 0.767 (0.706–0.827)

Note: The 95% confidence interval is shown in parentheses

Table 3 Comparisons of the pooled areas under the receiver operating
characteristic curve for diagnosing Parkinson’s disease with the
convolutional neural network

Metrics AUC Comparisons (p value)

AVF ICVF NOS FA

RK 0.895 0.0263 0.0004* <0.0001* <0.0001*

AVF 0.836 N/A 0.0259 0.0295 0.0022*

ICVF 0.801 N/A N/A 0.2740 0.0367

NOS 0.761 N/A N/A N/A 0.4720

FA 0.733 N/A N/A N/A N/A

Note: For comparisons, DeLong’s test was performed. Because of the
multiple comparisons, Bonferroni correction was applied, and
p < 0.0050 (=0.05/10) was considered statistically significant

AUC, area under the receiver operating characteristic curve; AVF, axon
volume fraction; FA, fractional anisotropy; ICVF, intracellular volume
fraction; N/A, not applicable; NOS, number of streamlines; RK, radial
kurtosis

*Statistically significant difference
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matrix showed AUC of 0.761. The RK-weighted connectome
matrix (best among DKI) was significantly superior to the
NOS-based connectome matrix. This means that parameter-
weighted connectome matrix would be superior to conven-
tional NOS-based matrix in diagnosing PD.

The RK-weighted connectome matrix (best among DKI)
was also significantly superior to the FA-weighted (best
among DTI) connectome matrices. This finding matches a
previous study that reported that parameters derived from
DKI analyses were significantly better than those from DTI
analyses in diagnosing PD [35]. NODDI parameters represent
the density and direction of neurites (axons and dendrites),

Fig. 3 Receiver operating
characteristic curves to
differentiate PD from healthy
controls with a NOS-based, b
FA-weighted, c RK-weighted, d
ICVF-weighted, and e AVF-
weighted connectome matrices

Table 4 Sensitivity, specificity, and accuracy of the models (pooled
across 5-fold) for diagnosing Parkinson’s disease

Metrics Sensitivity (%) Specificity (%) Accuracy (%)

RK 77 (89/115) 85 (98/115) 81 (187/230)
AVF 77 (89/115) 76 (87/115) 77 (176/230)
ICVF 79 (91/115) 69 (79/115) 74 (170/230)
NOS 75 (86/115) 65 (75/115) 70 (161/230)
FA 67 (77/115) 67 (77/115) 67 (154/230)

Note: Sensitivity, specificity, and accuracy were calculated using a cut-off
value of 0.5 for output from the convolutional neural network

AVF, axon volume fraction; FA, fractional anisotropy; ICVF, intracellular
volume fraction; NOS, number of streamlines; RK, radial kurtosis
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and they are more specific markers of brain tissue microstruc-
ture [6]. There is a previous study which reported that both the
DKI and NODDI parameters were useful for diagnosing PD
[36]. However, the DKI parameter-weighted matrix per-
formed significantly better than the NODDI parameter-
weighted matrix in our study. The differencemight have come
from the difference in the evaluating methods; in that previous
study regions of interest were placed on gray matter in mea-
suring these values. In our study, the trained CNN based on
RK-weighted matrix took into consideration many of the neu-
ral circuits comprehensively, which was indicated by the
Grad-CAM result. According to Braak et al., as the disease
progresses from stage 1 to stage 6 in PD patients, the deposi-
tion of Lewy bodies is thought to be spread to the upper
brainstem and forebrain [37]. Because the PD patients includ-
ed in this study had relatively long clinical course, we assume
that such pathological conditions were present widely in the
brain in many PD patients. DKI model, which quantifies non-
Gaussian water diffusion [5], might be better to capture such
pathological changes of PD than NODDI model when param-
eters derived from these models are used toweigh connectome
matrix.

Little is known regarding g-ratio analysis for diagnosing
PD. With g-ratio analysis, AVF, myelin volume fraction,
and the ratio of the inner to outer myelinated axon diameter
(g-ratio) can be derived [7]. AVF is an indicator of altered

axons like ICVF in NODDI model [6, 7]. In this study, only
ICVF and AVF showed performance with AUC of over 0.80
among the NODDI and g-ratio analysis, respectively. This
does not conflict with a previous study [25], which reported
reduction of ICVF in white matter indicating axonal degener-
ation in PD.

Traditionally, PD is characterized by degeneration of mes-
encephalic dopamine neurons. However, it has become
known that several other brain regions and connections are
known to be affected in PD [3]. A connection between basal
ganglia and cerebellum is one of these connections in PD
patients [38]. In previous studies, by using functional MRI
in patients with PD, alterations in connectivity strength be-
tween basal ganglia and cerebellum have been suggested
[39, 40]. In the current study, we found that neural connec-
tions between the basal ganglia and the cerebellum were fo-
cused on by ICVF and AVF-weighted connectome matrices
with the Grad-CAM technique. The alterations of axons along
those neural circuits might possibly be associated with alter-
ations of function.

In this study, we customized the structure of the CNN,
because we thought that the connectome matrix is different
from general images in that distances between elements of
matrices do not represent spatial distances. We used a filter
size of 1 in all the convolutional layers. In addition, we
avoided implementing max-pooling layers, which extract
max values within H ×H pixels (H = 2 or more). The custom-
ized CNNwas found to be applicable to the imaging diagnosis
with connectome matrices. While Grad-CAM result images
are blurred generally [24], the customized structure of the
CNN enabled pin-point visualization in Grad-CAM as shown
in Fig. 4. The developed method would have a potential to
identify neural circuit disorders in other neurological and psy-
chiatric diseases.

This study has some limitations. First, although the
Grad-CAM results indicated abnormalities in some of
the neural circuits, the abnormalities were not proven his-
topathologically. Future analyses are required to consoli-
date the Grad-CAM findings obtained in this study.
Second, because data from a large number of patients
with PD were required to manage the overfitting problem
associated with deep learning, patients with PD with var-
iable disease durations (mean disease duration was over
10 years) were included in this study. Therefore, early
diagnosis of PD is not possible with our models. It would
also be possible that midbrain atrophy, which can be seen
in some late-stage cases of PD, might have affected the
performance of the model. Third, the model’s perfor-
mance was not externally validated. Our study indicates
that once the model is developed, it can be used to diag-
nose PD in the same institution. However, the model’s
performance may not be as high as we reported when
the method is applied to data obtained in other

Table 5 Neural circuit alterations indicated by Grad-CAM analysis in
AVF-weighted and ICVF-weighted matrices

Metrics Order Neural circuit

AVF 1 Left cerebellar cortex Right pallidum

2 Left putamen Right cerebellar cortex

3 Left pallidum Right cerebellar cortex

4 Left cerebellar cortex Right cerebellar cortex

5 Left cerebellar cortex Right putamen

6 Left cerebellar cortex Right hippocampus

7 Left cerebellar cortex Left pallidum

8 Left caudate Right cerebellar cortex

9 Right hippocampus Right cerebellar cortex

10 Left pallidum Left accumbens area

ICVF 1 Left cerebellar cortex Right pallidum

2 Left pallidum Right cerebellar cortex

3 Right pallidum Right cerebellar cortex

4 Left cerebellar cortex Left pallidum

5 Left cerebellar cortex Left amygdala

6 Left caudate Right cerebellar cortex

7 Left cerebellar cortex Right hippocampus

8 Left putamen Right cerebellar cortex

9 Left cerebellar cortex Left caudate

10 Left cerebellar cortex Right putamen

AVF, axon volume fraction; ICVF, intracellular volume fraction
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institutions. Fourth, connectome matrix can be construct-
ed by using other data, such as functional MRI. However,
we focused on analyzing connectome matrices based on
diffusion MRI in this study. Application of this technique
to connectome matrix based on functional MRI of PD
patients’ needs to be investigated in the future. And final-
ly, because we aimed to investigate the abnormalities in
the neural circuits of PD compared with healthy controls,
other diseases that show parkinsonism were not included
in this study. Therefore, differentiation of PD from such

diseases is not possible with our models. Diseases which
show parkinsonism still needs to be differentiated by in-
tegrating clinical information and some test findings [41].

In conclusion, PD can be diagnosed by applying deep
learning to DKI-, NODDI-, and g-ratio-weighted connectome
matrices with moderate performance. Deep learning models
trained with the DKI-weighted connectome matrix performed
significantly better than those trained with the NOS-based
connectome matrix. Alterations in neural connections be-
tween the basal ganglia on one side and the cerebellum on

Fig. 4 Results of Grad-CAM,
which was reorganized to 84 ×
84, for a NOS-based, b FA-
weighted, c RK-weighted, d
ICVF-weighted, and e AVF-
weighted connectome matrices
are shown. Left/top and right/
bottom halves of the matrix indi-
cate left and right brain regions,
respectively. Red and blue colors
indicate higher and lower values,
respectively, obtained from Grad-
CAM analysis
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the contralateral side in PD patients were indicated by apply-
ing Grad-CAM technique to g-ratio-weighted and NODDI-
weighted matrices.
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