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INTRODUCTION AND SUMMARY

Over the past decades, we witnessed impressive progress in our understanding of the mechanisms
behind multiple genetic diseases including many considered to be “rare.” Importantly, these
advances coupled with new technological developments have increased the potential to translate
research into tangible improvements in diagnosis and treatment. Here, we argue that to further
accelerate discovery and translational applications in the field, the classical genetic, biochemical, and
cell biological toolbox must be updated by systematic integration of rising methodologies from
different disciplines. This short opinion article aims to encourage clinicians, geneticists, biochemists,
and cell biologists to discover the impact and consider the methodical integration of each other’s
state-of-the-art disciplines in single comprehensive studies. Indeed, studies systematically integrating
such emergent powerful approaches (see below) are not frequent in the field yet, perhaps because
such strategies require investment in expanding one’s expertise/repertoire of technologies (some of
them seemingly very specialized) and in building communication bridges between disciplines
perceived as distant (Love et al., 2021). Nevertheless, we consider that these are worthy efforts
as the full use of an updated multidisciplinary methodological toolbox will assure future
breakthrough studies. These diverse approaches, commonly used at the different steps of the
scientific inquiry, are needed to formulate mechanistic hypotheses and consequently, to develop
therapeutic strategies. Further, these methodologies are also expected to be used a posteriori to
evaluate the efficacy of such therapeutic strategies. In fact, several studies using at least a subset of
powerful and complementary approaches have already yielded important observations and
conclusions, some of which are exemplified below.

CANDIDATE COMPONENTS FOR AN UPDATED
MULTIDISCIPLINARY TOOLBOX: EXAMPLES AND LESSONS
LEARNED
Although the role of proteins in specific diseases has often been studied by production of gene knock-
out (KO) cells or animals, many patients present mutated protein variants rather than complete
absence of gene product. The application of NGS technologies such as whole genome/exome
sequencing (WGS/WES) has been (Ng et al., 2009; Ng et al., 2010), and continues to be (Macken
et al., 2021; Marom et al., 2021; Usmani et al., 2021) instrumental in the identification of novel
mutations including those leading to splicing defects. Further, this mutational information can be
efficiently analyzed using advanced algorithms to predict non-tolerated/pathogenic changes (Ng and
Henikoff, 2003; Schwarz et al., 2010; Adzhubei et al., 2013; Ioannidis et al., 2016; Rentzsch et al., 2019;
Ge et al., 2021) and by molecular dynamics to infer putative structural alterations (Kellogg et al.,
2011; Adolf-Bryfogle and Dunbrack, 2013).
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Nevertheless, to understand the mechanisms underlying such
pathologies, we must establish the potential impact of specific
gene mutations on the function (or regulation of function) and/or
on the availability (from absence to altered dosage, but also by
incorrect localization) of the resulting protein. Moreover,
examples from literature indicate that mutations assumed to
be similar and affecting the same protein domains can display
phenotype heterogeneity (Arystarkhova et al., 2019;
Arystarkhova et al., 2021; Ramadesikan et al., 2021). The
necessity of firmly establishing a genotype-phenotype
relationship is one reason why the articulation of genetic/
biochemical methods with cell biological approaches in
particular, are a must.

Indeed, the use of classical functional biochemical assays
(Davies et al., 2013; Fausther et al., 2014; Guttmann et al.,
2018; Saveri et al., 2020) has been successfully complemented
with powerful functional cell biological assays. Further, the latter
provides context and physiological relevance for the functional
impact of mutations in different genes, can be used as a diagnostic
tool and for the evaluation of therapeutics (Bergamin et al., 2013;
Visentin et al., 2013; Kwiatkowska et al., 2014; Vanier and Latour,
2015; Aoki et al., 2017; Carrion et al., 2017; Saveri et al., 2020;
Wanikawa et al., 2020; Hung et al., 2021; Ramadesikan et al.,
2021; Romano et al., 2021).

Moreover, the cumulative work of several groups has provided
clues about the suitability of different disease models. On one
hand, due to adaptation and “dominant” negative effects, the
presence of a mutated variant can cause different and/or more
severe phenotypes than the absence of the protein (as modeled by
KO) (Tucker et al., 2012; Barnes et al., 2018; Lizarraga et al., 2021;
Ramadesikan et al., 2021). On the other hand, cell biologists have
long known that phenotypes observed under siRNA-mediated
knock-down conditions (i.e., acute depletion over a short period
of time) often lead tomore severe phenotype scenarios due to lack
of cell/organism adaptation. Therefore, this confirms that when
appropriate, complete lack of function scenarios can be better
modeled by gene KO or (in some cases) by stable expression of
shRNAs rather than by use of siRNAs.

Further, the CRISPR revolution has provided the means to
reproduce and study pathological protein variants within
meaningful and physiologically relevant contexts (Freedman
et al., 2015; Ponomareva et al., 2016) as well as perform
targeted rescue of disease-causing mutations in model systems
(Min et al., 2020). These developments become synergistic with
the possibility of reprogramming patient-derived induced
Pluripotent Stem Cells (iPSCs) to study cell biological behavior
of mutated variants expressed at endogenous levels in disease-
relevant cell types and organoids (Parfitt et al., 2016; Boutry et al.,
2018; Dvela-Levitt et al., 2019; Flemming et al., 2020; De Rus
Jacquet et al., 2021; Romano et al., 2021).

An important contribution of cell biology analyses to our
understanding of the impact of missense and truncation
mutations to pathological conditions relates to protein
availability. For example, mislocalization and delayed traffic
leads to lack of protein availability when and where the target
is needed causing phenotypic manifestations (Jacoby et al., 2009;
Braun and Schweizer, 2017; Dunmore et al., 2020; Ramadesikan

et al., 2021). Therefore, steady state and time-lapse microscopy
localization studies are required (Wiegerinck et al., 2014; Bono
et al., 2020; Murakami et al., 2020; Rodger et al., 2020; Mamais
et al., 2021). These methodologies also open the possibility to be
used as readouts for high throughput screens to identify affected
biochemical circuits and/or candidate therapeutic agents.

Although currently used in only a few studies, techniques such
as superresolution (Sumya et al., 2021; Zimmer et al., 2022) and
light-sheet (Adhya et al., 2021) microscopies are already showing
high value for genetic disease research. In addition, other
important technical approaches used in various disciplines
such as intravital microscopy (Frattolin et al., 2021), cell
tracking (Betjes et al., 2021), atomic force microscopy
(Dufrêne and Pelling, 2013; Sharma et al., 2018), single
molecule imaging (Liu et al., 2022) and cryoelectron
microscopy (Douguet et al., 2019) or tomography (Shoemark,
2017) are expected to increase in utilization for mechanistic
studies related to genetic diseases.

Moreover, the specific case of mutations affecting protein
sorting signals (Mukherjee et al., 2012; Aguilar, 2015) is likely
not to be detected by routine sequence analysis and standard
biochemical approaches, requiring appropriate studies and
interpretation of intracellular localization data to reveal
cellular abnormalities. Along the same lines, evaluating the
specific role of a mutated protein potentially involved in
protein traffic/sorting in a disease (e.g., coatopathies
(Dell’angelica and Bonifacino, 2019)) also requires cell
biological analysis and expertise. Indeed, proficiency in this
field and relevant approaches are needed to differentiate true
sorting defects from other effects of mutations (such as ER-
retention due to membrane-protein misfolding) that do not
impact sorting signal recognition or the functionality of the
trafficking machinery.

ADVANCES TOWARDS THE USE OF AN
INTEGRATED AND UPDATED
MULTIDISCIPLINARY TOOLBOX
The previous section enumerates some approaches and novel
developments involving the different steps required for
constructing hypotheses about the genetic disease mechanism
and framework for therapy design. Although integration of such
methods in single multidisciplinary studies constitute an ideal
scientific strategy to test overarching hypotheses, published
examples more commonly involve using only some of the
above nominated approaches. These partially integrated views
are, of course, valuable and can be composed to yield an enhanced
overview of the disease.

For example, a recent study identified mutations in VPS4A
associated with a new multisystem disorder (with the proposed
name CIMDAG: Cerebellar hypoplasia and cataracts, Intellectual
disability, Microcephaly, Dystonia and Anemia, Growth
retardation) showing striking neurodevelopmental
abnormalities (Rodger et al., 2020). VPS4A encodes an ATPase
that plays a vital role in ESCRT-III regulation and subsequent
vesicle budding into multi-vesicular bodies. Novel de novo patient
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mutations were identified using WES/WGS approaches and their
impact was analyzed using computational tools such as REVEL
(Ioannidis et al., 2016) and CADD (Rentzsch et al., 2019). A
thorough investigation of the pathogenesis mechanisms included
assessing protein stability, localization in patient fibroblasts
(Rodger et al., 2020). The authors demonstrated that while
patient mutations did not impact Vps4a stability, they induced
an increase in the fraction of enlarged endosomes (displaying
different markers) and retention of the atypical ESCRT-III
protein Ist1 (Increased Sodium Tolerance 1—involved in
membrane fission) in the early endosomal compartment.
Further, the study also characterized cellular phenotypes
(including abnormalities in cell cycle and mitotic spindles, cilia
and centrosome morphology) caused by a loss of Vps4a using
CRISPRi in iPSC cell lines and neurons differentiated from these
cell lines. These investigations provided clues into cellular and
molecular mechanisms that may explain various clinical
symptoms seen in patients. For example, numerous clinical
features seen in ciliopathies have been observed in these
patients and can be associated with defects in ciliogenesis
while abnormalities in centrosome/mitotic spindle morphology
may explain microencephaly observed in CIMDAG (Rodger
et al., 2020).

Another example is the case of research applied to the study of
Lowe syndrome (LS). This lethal genetic disease caused by
abnormal function of the lipid phosphatase Ocrl1 (Oculo-
Cerebro-Renal syndrome of Lowe) is characterized by mental
retardation, bilateral congenital cataracts, and renal dysfunction
(Recker et al., 2013).

The use of WES/WGS (Duran et al., 2016; Zheng et al., 2019)
led to the discovery of novel LS causing mutations in the OCRL1
gene, including several in non-coding regions, while molecular
dynamics predicted structural consequences of such mutations
(Ramadesikan et al., 2021). These studies were complemented by
biochemical and cell biological assays to assess the mutational
impact on protein function and availability (De Leo et al., 2016;
Ramadesikan et al., 2021). Furthermore, models were prepared by
various methods to gain mechanistic insight into LS such as KO/
morpholino zebrafish lines (Coon et al., 2012; Ramirez et al.,
2012; Gliozzi et al., 2020), humanized mouse models (Bothwell
et al., 2011), Ocrl1-deficient cells by CRISPR (Madhivanan et al.,
2020) along with stable lines expressing specific variants
(Ramadesikan et al., 2021), and patient-derived iPSCs (Barnes

et al., 2018; Hsieh et al., 2018; Liu et al., 2020; Akhtar et al., 2022).
Taken together, LS research has greatly benefitted from the
assimilation of a variety of techniques and is rapidly moving
towards understanding LS in a patient mutation-specific manner
to better guide the design novel therapeutic approaches.

FINAL REMARKS

In summary, we predict that the systematic utilization of an
updated multidisciplinary toolbox including advanced
approaches and multi-pronged strategies to study genetic
disease will make possible the next quantum leaps in the
understanding and treatment of genetic conditions.

Although we can accomplish these objectives by
expanding/diversifying our own expertise, the more likely
and efficient approach is to assemble multidisciplinary
teams. For example, our (and others’) research in Lowe
syndrome greatly benefitted from successful collaborations
with bioinformaticians, computer scientists, structural
biologists, nephrologists, and clinicians. Nevertheless, the
success of this team strategy ultimately depends on one’s
ability to face the challenge of providing proper and fair
articulation of different disciplines and different scientific
cultures (sometimes suffering serious communication issues
and “cultural shocks”).

Carefully written Collaboration plans where strategies for
communication, management, conflict prevention, self-
assessment, etc., are stated (Hall et al., 2019), along with a
clear shared view of the project can substantially contribute to
cohesiveness of the team and facilitate the pursuit of complex
scientific goals (Bennett and Gadlin, 2012; Love et al., 2021).
Indeed, collaboration plans are already being required and
evaluated by several funding agencies and are likely to become
widespread mandatory in the immediate future. Here is where the
findings of team science and its emerging strategies (Bennett and
Gadlin, 2012; Love et al., 2021) can move our research beyond the
sum of disciplines to enter the realm of synergism.
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