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SUMMARY

Patients with human epidermal growth factor receptor 2-positive (HER2+/ERBB2) breast cancer 

often present with brain metastasis. HER2-targeted therapies have not been successful to treat 

brain metastases in part due to poor blood-brain barrier (BBB) penetrance and emergence of 

resistance. Here, we report that Abelson (ABL) kinase allosteric inhibitors improve overall 

survival and impair HER2+ brain metastatic outgrowth in vivo. Mechanistically, ABL kinases 

phosphorylate the RNA-binding protein Y-box-binding protein 1 (YB-1). ABL kinase inhibition 

disrupts binding of YB-1 to the ERBB2 mRNA and impairs translation, leading to a profound 

decrease in HER2 protein levels. ABL-dependent tyrosine phosphorylation of YB-1 promotes 

HER2 translation. Notably, loss of YB-1 inhibits brain metastatic outgrowth and impairs 

expression of a subset of ABL-dependent brain metastatic targets. These data support a role for 

ABL kinases in the translational regulation of brain metastatic targets through YB-1 and offer a 

therapeutic target for HER2+ brain metastasis patients.

In brief

HER2 is upregulated in brain metastases and promotes outgrowth in the brain parenchyma. Here, 

McKernan et al. identify an ABL-YB-1 signaling axis that regulates translation of ERBB2 and 
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other metastatic targets and reveal that inhibition of this pathway decreases colonization and 

improves overall survival in mouse models of brain metastasis.

Graphical Abstract

INTRODUCTION

Brain metastasis is a devastating complication among patients with late-stage breast 

cancer with a median survival of 8.7 months from the time of diagnosis and limited 

therapeutic options (Niikura et al., 2014). Patients with breast cancer brain metastasis 

(BCBM) experience cognitive impairment, seizures, and cranial neuropathies, leading to 

an overall decrease in quality of life (Rostami et al., 2016). Human epidermal growth 

factor receptor 2-positive (HER2+/ERBB2) breast cancer accounts for 20%–30% of all 

patients with breast cancer, and approximately 45% of these patients present with BCBM 

(Pauletti et al., 1996; Rostami et al., 2016; Shen et al., 2015). Despite the increased use 

of HER2-targeted therapies for the treatment of primary tumors and extracranial disease, 

HER2-targeted therapies have not been successful in the context of brain metastases in 

part due to poor blood-brain barrier (BBB) penetrance and emergence of resistance to 

HER2-targeted therapies (Lin et al., 2004, 2013; Pestalozzi and Brignoli, 2000; Stemmler et 

al., 2007). Because the brain serves as a unique sanctuary for HER2+ residual disease, brain 

metastases are increasingly observed in patients with HER2+ breast cancer, threatening to 
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counteract the progress made in patient survival by HER2-targeted therapies (Aversa et al., 

2014).

Interestingly, it has been reported that approximately 15%–20% of patients with HER2– 

primary tumors become HER2+ upon colonization of the brain, suggesting a causal link 

between expression of this oncogene and the outgrowth of brain metastases (Hulsbergen et 

al., 2020; Priedigkeit et al., 2017). In triple-negative breast cancer mouse models, HER2 

expression has been shown to promote breast cancer metastatic outgrowth in the brain 

(Palmieri et al., 2007). In patient samples, ERBB2 mRNA was increased up to 5-fold 

in the brain metastases compared with HER2+ primary tumors (Palmieri et al., 2007). 

HER2 expression and activity is upregulated in solid tumors through multiple mechanisms 

including gene amplification, enhanced transcription, and genetic mutations (Andrulis et al., 

1998; Kraus et al., 1987; Petrelli et al., 2017). However, the contribution of these and other 

mechanisms to the acquisition of brain metastatic competence remains to be defined.

The Abelson (ABL) family, ABL1 and ABL2, are non-receptor tyrosine kinases that 

potentiate signaling downstream of a diverse range of cellular stimuli, including cell-surface 

receptors such as epidermal growth factor receptor (EGFR) and HER2 (Plattner et al., 1999; 

Srinivasan et al., 2009; Wang and Pendergast, 2015). HER2 was reported to bind to ABL 

kinases, leading to their activation (Kurmi et al., 2018; Srinivasan et al., 2009). Conversely, 

ABL kinases have been shown to regulate the stability of the HER2 family member EGFR 

by decreasing EGFR endocytosis and subsequent degradation (Tanos and Pendergast, 2006). 

Recently, ABL kinases have been shown to play critical roles in solid tumor metastasis (Gu 

et al., 2016; Hoj et al., 2019; Wang et al., 2016). Inhibition of the ABL kinases impairs 

breast cancer metastasis to the bone and lung adenocarcinoma metastasis to the brain by 

regulating transcriptional networks (Hoj et al., 2019; Wang et al., 2016). These studies 

implicate ABL kinases in metastasis and highlight the potential clinical utility of targeting 

this signaling axis.

Here, we report that ABL kinase inhibitors impair translation of ERBB2 by disrupting 

binding of the RNA-binding protein Y-box-binding protein 1 (YB-1) to ERBB2 mRNAs. 

YB-1 activity has been implicated in a wide variety of cancers and has been shown to 

mediate tumor cell proliferation, invasion, metastasis, and drug resistance (Johnson et al., 

2019). It has been suggested that YB-1 functions to disrupt the secondary structure of 5′ 
UTR stem loops and increase the translational efficiency of some mRNAs (Evdokimova et 

al., 2009). We found that loss of YB-1 expression in HER2+ breast cancer brain metastatic 

cells decreases HER2 protein levels and dramatically reduces cell viability in vitro. Notably, 

we show that knockdown of YB-1 significantly impairs brain metastatic outgrowth and 

improves mouse survival. We found that increased ABL kinase activity enhances tyrosine 

phosphorylation of YB-1 and that ABL-mediated YB-1 phosphorylation is required for 

HER2 translation. Our findings reveal a mechanism for translational regulation of HER2 and 

identify an ABL-YB-1 signaling axis targeting not only HER2 but also other cell-surface 

receptors implicated in brain metastasis. The discovery that cancer cells expressing HER2 

can be targeted by BBB-permeable ABL kinase allosteric inhibitors suggests that these 

drugs might be effective to treat brain metastases driven by HER2 in breast cancer and other 

solid tumors.
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RESULTS

ABL inhibition impairs tumor outgrowth in the brain and improves overall survival of mice 
with HER2+ breast cancer brain tumors

Due to the increasing prevalence of brain metastases in patients who are HER2+, the unmet 

clinical need for new therapies, and the reported HER2-induced ABL kinase activation, we 

evaluated the consequences of ABL kinase inhibition on brain colonization using a panel 

of brain metastatic HER2+ breast cancer cells. Human HER2+ brain metastatic HCC1954-

LCC1 cells (Malladi et al., 2016) labeled with luciferase-GFP were injected intracranially 

into athymic nude mice. Mice bearing intracranial tumors were treated with vehicle or the 

ABL kinase allosteric inhibitor GNF5 (Figure 1A). An ABL allosteric inhibitor ABL001 is 

FDA-approved for BCR-ABL+ leukemia and has been shown to have blood-tumor-barrier 

penetrance in vivo (Hoj et al., 2019; Wylie et al., 2017). Strikingly, treatment with GNF5 

decreased colonization of the brain parenchyma and increased overall survival in mice 

compared with vehicle (Figures 1B and 1C). Analysis of HCC1954-LCC1 brain tumor cell 

lysates showed that ABL kinase activity was decreased ~80% in the GNF5-treated mice as 

indicated by decreased phosphorylation of the ABL substrate CrkL (Figure S1A).

In vitro treatment with GNF5 and ABL001 markedly impaired cell viability in the HER2+ 

brain metastatic lines HCC1954-LCC1 and SUM190-BrM (Figures 1D and 1E) (Gril et 

al., 2018). Next, ABL kinases were genetically depleted in HCC1954-LCC1 cells using 

CRISPR-Cas9 (Figures 1F and S1E). CRISPR knockout of ABL1 and ABL2 reduced 

cell viability (Figures 1G and S1F). Further, CRISPR knockout of ABL1 and ABL2 in 

HCC1954-LCC1 cells decreased brain tumor burden and significantly improved overall 

survival following intracranial injection (Figures 1H–1J). These data support a role for ABL 

kinases in promoting outgrowth of HER2+ breast cancer brain metastatic cells.

To evaluate whether ABL kinases promote brain metastatic outgrowth in an 

immunocompetent mouse model, we employed the mouse HER2+ breast cancer brain 

metastatic cell line ErbB2-BrM2, derived from the MMTV-NeuNT mouse model (Muller 

et al., 1988; Valiente et al., 2014). ErbB2-BrM2 cells were injected intracranially into 

FVB mice, and mice were treated with vehicle or ABL001 (Figure 1K). Brain metastatic 

outgrowth was significantly impaired in mice treated with ABL001 compared with vehicle 

(Figures 1L–1M). Further, pharmacologic inhibition and genetic depletion of ABL kinase 

activity decreased ErbB2-BrM2 colony formation in vitro (Figures S1B–D). Together, these 

data demonstrate that ABL kinase allosteric inhibition impairs metastatic outgrowth and 

enhances survival of mice bearing brain metastatic HER2+ breast cancer cells.

ABL kinases regulate HER2 protein levels in HER2+ breast cancer brain metastatic cells

Unexpectedly, inhibition of ABL kinases with GNF5 or ABL001 dramatically decreased 

total HER2 protein levels, as detected by western blotting, in HCC1954-LCC1, ErbB2-

BrM2, and SUM190-BrM cells (Figures 2A, 2C, and S2C). Conversely, treatment with the 

ABL kinase allosteric activator DPH more than doubled HER2 protein levels in HCC1954-

LCC1 cells (Figure 2A) (Yang et al., 2011). To demonstrate that the effects of GNF5 and 

ABL001 on HER2 were on target, ABL kinases were depleted genetically using lentiviral 
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short hairpin RNAs (shRNAs). HCC1954-LCC1 cells were virally transduced with shRNAs 

targeting a scramble control (shScr) or both ABL1 and ABL2 (shAA). HER2 protein 

levels decreased ~60% in the shAA cells compared with the shScr control (Figure 2B). 

Immunofluorescence staining of HCC1954-LCC1 tumors following treatment with vehicle 

or GNF5 revealed decreased HER2 protein in the GNF5-treated mice (Figures S2A and 

S2B). Because HER2 signaling occurs predominantly at the plasma membrane, HER2 cell 

surface levels were quantified in DMSO or GNF5-treated ErbB2-BrM2 and SUM190-BrM 

cells by fluorescence-activated cell sorting (FACS) analysis. The cell surface expression of 

HER2 was reduced upon treatment with GNF5 in both ErbB2-BrM2 and SUM190-BrM 

cells (Figures 2D and S2D). The changes in HER2 protein were observed even when cell 

viability and apoptosis were not significantly altered, implying that loss of HER2 is not 

solely due to reduced cell viability (Figures S2E–S2H). These findings suggest that ABL 

kinases regulate HER2 protein levels in HER2+ brain metastatic breast cancer cells.

ABL kinases promote translation of HER2 in breast cancer brain metastatic cells

To investigate the mechanisms whereby ABL kinases regulate HER2 protein levels, we 

tested whether ABL kinase inhibition altered ERBB2 transcription, protein stability, and/or 

translation. Pharmacologic and genetic inhibition of ABL kinases resulted in little to no 

change in ERBB2 mRNA levels, suggesting that transcriptional regulation of ERBB2 
is unlikely to be the principal contributor for the profound decrease in HER2 protein 

expression (Figures 3A–3C). Further, we found that ABL kinase inhibition profoundly 

decreases HER2 protein levels in the ErbB2-BrM2 cells (Figures 2C and 2D), which 

expresses HER2 under the MMTV promoter instead of the endogenous HER2 promoter 

(Muller et al., 1988; Valiente et al., 2014). Conversely, ABL activation with DPH slightly 

increased ERBB2 mRNA levels (Figure S3A) but did not fully account for changes observed 

at the protein level (Figure 2A). Thus, these data support the conclusion that ABL kinases do 

not affect HER2 transcription.

We next examined whether ABL kinases regulate HER2 protein stability. The half-life 

of HER2 was not significantly changed in GNF5-treated cells compared with control in 

the presence of the translation inhibitor cycloheximide (Figures S3B and S3C). Upon 

dissociation from the Hsp90 chaperone, HER2 can be degraded through the ubiquitin-

proteasomal pathway (Mimnaugh et al., 1996). To assess whether ABL kinase inhibition 

promotes HER2 proteasomal degradation, GNF5-treated cells were cultured in the presence 

of the proteasomal inhibitor MG132. MG132 did not rescue HER2 protein levels in 

HCC1954-LCC1 and ErbB2-BrM2 cells treated with GNF5 (Figures 3D and 3E). Together, 

these data suggest that ABL kinases do not regulate HER2 protein stability through the 

ubiquitin-dependent proteasome pathway.

To determine the effects of ABL kinase inhibition on ERBB2 translation, polysome 

fractionation was first employed. Canonically, mRNAs that associate with polyribosomes 

(heavy fractions) are considered translationally active, while mRNAs enriched in the 

messenger ribonucleoprotein (mRNP) fractions are considered “free” or non-translated 

targets. While no changes were observed in control β-actin (ACTB) mRNA polysome 

association, ERBB2 mRNA association with heavy polyribosomes was marginally decreased 
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in GNF5-treated cells compared with DMSO-treated cells (Figures S3E and S3F). Treatment 

of ErbB2-BrM2 cells with the ABL kinase activator DPH did not alter ERBB2 mRNA 

polyribosome association (Figures S3G–S3I).

Polysome fractionation provides a measure of ribosomal occupancy on mRNA, but it 

does not assess translational activity state. To directly assay the effect of ABL kinase 

inhibition on ERBB2 mRNA translation, DMSO- and GNF5-treated HCC1954-LCC1 and 

ErbB2-BrM2 cells were pulsed with [35S]methionine/cysteine (Met/Cys) to label nascent 

proteins, and following radiolabeling, immunoprecipitation (IP) of HER2 was performed. 

We found that [35S]Met/Cys incorporation into the HER2 protein was significantly lower 

in cells treated with GNF5 (Figures 3F–3I). Similarly, genetic inhibition of ABL kinases in 

HCC1954-LCC1 cells led to a profound reduction in radiolabeled HER2 protein compared 

with the scramble control (Figures 3J and 3K). Conversely, treatment with DPH significantly 

increased [35S]Met/Cys incorporation into HER2 protein (Figures 3L–3M). These data, in 

combination with the polysome profiling, suggest that ABL kinases may regulate translation 

elongation rather than translation initiation. To measure global translation changes, total 

protein incorporation of [35S]Met/Cys was assessed. GNF5 decreased global translation 

whereas genetic inhibition of the ABL kinases only slightly reduced global translation 

(Figures S3J–S3M). Additionally, DPH treatment decreased global translation, opposite of 

the changes observed in ERBB2 mRNA translation (Figures S3L and S3M). Together, 

these data show that ABL kinase inhibition or ABL knockdown impairs ERBB2 mRNA 

translation, which leads to a decrease in HER2 protein levels in brain metastatic cells. 

However, these changes are not likely due to a decrease in global translation.

ABL kinase inhibition does not affect RISC-mediated silencing of HER2

There are several mechanisms by which ABL kinases could regulate ERBB2 mRNA 

translation. ABL kinases could (1) affect ERBB2 mRNA stability, (2) regulate microRNAs 

(miRNAs) targeting ERBB2, and/or (3) target a subset of RNA-binding proteins that interact 

with ERBB2 to modulate its translation. First, ERBB2 mRNA stability was measured 

in ErbB2-BrM2 and HCC1954-LCC1 cells by treating with DMSO or GNF5 and the 

transcription inhibitor actinomycin-D. ERBB2 mRNA stability was not significantly altered 

in ErbB2-BrM2 cells but was slightly increased in GNF5-treated HCC1954-LCC1 cells 

(Figures S4A and S4B). These data suggest that decreased ERBB2 mRNA translation upon 

ABL inhibition is not likely due to lower ERBB2 mRNA stability.

Multiple miRNAs have been reported to target ERBB2 (Leivonen et al., 2014). Thus, 

we evaluated whether ABL inhibition impaired HER2 protein levels in cells depleted of 

the RNA-induced silencing complex RISC, which mediates miRNA gene silencing. ErbB2-

BrM2 and HCC1954-LCC1 cells were transduced with lentiviruses expressing shRNAs 

targeting the core Argonaute proteins of the RISC complex (AGO1, AGO2, AGO3, and 

AGO4) (shAGO1–4) or a non-target control (shNTC) (Figures S4C and S4E), and these 

cells were then treated with DMSO or GNF5. Knockdown of the Argonaute proteins did not 

rescue HER2 protein levels in ABL inhibited cells (Figures S4D and S4F). While these data 

support the hypothesis that ABL kinases do not target miRNA-mediated silencing through 
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the RISC complex to regulate HER2 translation, these findings do not entirely eliminate a 

role for miRNAs in this process.

ABL kinase inhibition disrupts the interaction of RNA-binding protein with ERBB2 mRNA

RNA-binding proteins play a critical role in mRNA processing, transport, stability, and 

translation. To examine whether ABL kinase inhibition affects ERBB2 mRNA-binding 

proteins, the ERBB2 5′ UTR, 3′ UTR, and coding sequence (CDS) mRNAs were 

biotinylated, bound to streptavidin magnetic beads, and incubated with lysates from DMSO- 

or GNF5-treated HCC1954-LCC1 cells (Figure 4A). ERBB2 mRNA-binding proteins were 

eluted and separated by gel electrophoresis, and bands corresponding to altered proteins 

between DMSO- and GNF5-treated samples were excised from the silver-stained gel and 

identified by mass spectrometry (Figures 4B and S4G; Table S1). Immunoblot analysis 

revealed that ABL kinase inhibition induced a profound decrease in association of two 

RNA-binding proteins with the ERBB2 CDS: YB-1 and Lupus La protein (SSB) (Figure 

4C). Notably, RNA IP (RIP) of YB-1 followed by qRT-PCR revealed a reduced interaction 

between YB-1 and ERBB2 mRNA upon ABL kinase inhibition in HCC1954-LCC1 and 

SUM190-BrM cells (Figures 4D and 4E). To confirm YB-1 binding of the ERBB2 mRNA, 

previously generated YB-1 cross-linking IP (CLIP)-sequencing data of long RNA species 

(GEO: GSE63604) from breast cancer cells were analyzed (Goodarzi et al., 2015). Multiple 

YB-1 binding sites were identified within the ERBB2 mRNA transcript (Figure 4F). 

Together, these data suggest that YB-1 binds to the ERBB2 mRNA and loss of ABL kinase 

activity disrupts this interaction.

Loss of YB-1 decreases HER2 protein levels and ablates metastatic outgrowth in the brain

To determine whether YB-1 depletion regulates HER2 protein levels, YB-1 expression was 

reduced using multiple shRNAs. YB-1 knockdown in HCC1954-LCC1 and SUM190-BrM 

cells markedly decreased HER2 protein levels without reducing global protein expression 

or expression of selected proteins such as SOX2 and MMP9 (Figures 5A and S5A–

S5C). Importantly, overexpression of YB-1 rescued HER2 protein levels in GNF5-treated 

HCC1954-LCC1 cells (Figure 5B). Loss of YB-1 did not affect ERBB2 transcription 

(Figure S5D). Further, YB-1 predominately localizes to the cytoplasm, and its localization 

is not significantly affected by ABL kinase inhibition in HCC1954-LCC1 cells (Figures 

S5G and S5H). Because knockdown of SSB marginally decreased HER2 protein levels in 

HCC1954-LCC1 cells, but not in SUM190-BrM cells (Figures S5E and S5F), we focused on 

YB-1 due to the conserved effects of YB-1 loss on HER2 expression across multiple HER2+ 

brain metastatic cell lines. To directly assess whether YB-1 affects HER2 translation, 

HCC1954-LCC1 cells were virally transduced with YB-1 shRNAs. Cells were pulsed 

with [35S]Met/Cys, and radiolabeled HER2 protein was immunoprecipitated and quantified 

(Figures 5C, 5D, and S5I). Loss of YB-1 decreased the amount of newly synthesized HER2 

protein. These data support a role for YB-1 in regulating HER2 translation.

Next, we evaluated whether loss of YB-1 affected HER2+ breast cancer cell viability. 

HCC1954-LCC1 and SUM190-BrM cells transduced with shRNAs targeting YB-1 

(shYB-1) had markedly reduced cell viability in vitro compared with non-target control 

(shNTC) cells (Figures 5E, S5J, and S5K). The marked decrease in cell viability elicited 
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by YB-1 loss was comparable to the profound decrease in cell viability induced by HER2 

knockdown (Figures 5F and S5L). Overexpression of HER2 in YB-1-depleted cells rescued 

cell viability, suggesting that the loss of HER2 contributes to the loss in cell viability (Figure 

5G). To evaluate the effect of YB-1 knockdown on brain metastatic outgrowth in vivo, 

athymic nude mice were injected intracranially with HCC1954-LCC1 or SUM190-BrM 

cells expressing shNTC or shYB-1 shRNAs. Loss of YB-1 reduced brain tumor burden 

(Figures 5H, 5I, S5M, S5N, S5P, and S5Q). Further, mice bearing HCC1954-LCC1 shYB-1 

tumors had markedly improved overall survival compared with mice with shNTC tumors 

(Figures 5J and S5O). Notably, high expression of YBX1 correlates with decreased distant 

metastasis free survival in patients with breast cancer (Figure 5K). Mutual exclusivity 

analysis revealed that ABL1, ABL2, ERBB2, and YBX1 co-occur in human patients with 

breast cancer (Figure S5R). Together, these data show that YB-1 promotes HER2+ brain 

metastatic outgrowth and that loss of YB-1 impairs brain tumor burden and improves overall 

survival of mice. Since YB-1 has previously been shown to have many pro-oncogenic and 

pro-survival functions, we cannot rule out that these other mechanisms may underlie some 

of the observed phenotypes (Bargou et al., 1997; Evdokimova et al., 2009; Jiang et al., 2022; 

Lim et al., 2017; Shah et al., 2020).

ABL kinases phosphorylate YB-1, and tyrosine phosphorylated YB-1 is required for 
ERBB2 translation and HER2 protein expression

Next, we sought to identify how ABL kinases regulate YB-1. Since ABL kinases function 

as tyrosine kinases, we assessed tyrosine phosphorylation of YB-1 in the presence of a 

hyperactive form of ABL1 (ABL1PP). HEK-293T cells were co-transfected with a GFP-

tagged YB-1 (EGFP-YB-1) or a 3×FLAG-tagged YB-1 (3×FLAG-YB-1) and ABL1PP. 

ABL1PP increased tyrosine phosphorylation of epitope-tagged YB-1 (Figures 6A and S6A). 

EGFP-YB-1 was also tyrosine phosphorylated in the presence of a hyperactive form of 

ABL2 (ABL2PP) but to a lesser degree than that observed in cells expressing ABL1PP 

(Figure S6B). HEK-293T cells co-transfected with EGFP-YB-1 and ABL1PP were treated 

with DMSO or GNF5 (Figure 6B). GNF5 decreased the tyrosine phosphorylation of eGFP-

YB-1. These data show that ABL kinase activity promotes tyrosine phosphorylation of YB-1 

and that ABL-specific allosteric inhibitors decrease tyrosine phosphorylated YB-1.

To determine whether ABL kinases associate in the same complex as YB-1, HEK-293T cells 

were co-transfected with EGFP-YB-1 and ABL1PP or ABL2PP. Following EGFP-YB-1 IP 

with anti-GFP antibody, immunoblotting revealed coIP with ABL1PP and ABL2PP (Figures 

6C and S6C). Further, reciprocal coIP of EGFP-ABL1PP showed an association of EGFP-

ABL1PP with 3×FLAG-tagged YB-1 (Figure 6D). Next, we assessed whether activated 

ABL kinases could promote tyrosine phosphorylation of YB-1 in the human HER2+ 

brain metastatic cell lines. Transfection of HCC1954-LCC1 cells with ABL1PP markedly 

increased tyrosine phosphorylation of EGFP-YB-1 (Figure 6E). Further, in SUM190-BrM 

cells, treatment with ABL001 reduced tyrosine phosphorylation of EGFP-YB-1 (Figure 

6F). These data show ABL-dependent tyrosine phosphorylation of YB-1 in HER2+ breast 

cancer cells. To assess whether ABL1 directly phosphorylates YB-1, we performed an 

in vitro kinase assay using purified GST-tagged ABL1 and His-tagged YB-1 proteins. 
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ABL1 increased tyrosine phosphorylation of YB-1 in vitro (Figure 6G). Together, these data 

suggest that ABL kinases form a complex with YB-1 and phosphorylate YB-1.

To identify which YB-1 domain is necessary for its interaction with ABL1, the three 

main YB-1 domains (Figure 6H) were used: (1) the alanine/proline (A/P)-rich domain, 

(2) the cold-shock domain (CSD), and (3) the C-terminal domain (Wolffe, 1994; Wolffe 

et al., 1992). The CSD binds to DNA and RNA, and the C-terminal domain regulates 

protein-protein interactions. We found that ABL1PP interacts most strongly with the CSD 

and weakly with the C-terminal domain (Figure 6I). To evaluate whether RNA is essential 

for this interaction to occur, lysates were treated with RNase before coIP. Interestingly, 

RNase treatment increased the interaction between ABL1 and YB-1 domains (Figure S6D). 

These data suggest the ABL1-YB-1 interaction does not occur through RNA binding.

To determine which domain of YB-1 is tyrosine phosphorylated downstream of ABL1PP, 

we co-transfected HEK-293T cells with ABL1PP and the GFP-tagged YB-1 domains 

containing tyrosine residues. Both the CSD and the C-terminal domain had increased 

tyrosine phosphorylation, suggesting that increased ABL1 activity leads to phosphorylation 

of multiple tyrosine residues (Figure 6J). Since there are only two tyrosine residues 

in the CSD of YB-1, these residues (Y72 and Y99) were mutated individually to 

phenylalanine (Y72F and Y99F). ABL-dependent tyrosine phosphorylation was reduced 

upon Y72F and Y99F mutations (Figure S6E). These data suggest that ABL activity leads to 

phosphorylation of both tyrosine residues.

To determine the functionality of phosphorylation at Y72 and Y99, both residues were 

mutated to phenylalanine in GFP-tagged YB-1 (GFP-YB-1 Y72/99F). Notably, we found 

that in HCC1954-LCC1 breast cancer cells transduced with shYB-1 #1, expression of 

GFP-tagged YB-1 wild type partially rescues HER2 protein levels (Figure 6K). The 

partial rescue might be due to the large GFP tag on YB-1, which could interfere with its 

translational activity. Importantly, expression of the phospho-deficient GFP-YB-1 Y72/99F 

mutant profoundly decreases HER2 protein levels in these breast cancer cells (Figure 6K). 

This decrease might be explained by previous work showing that homodimerization of 

the CSD is critical for the YB-1-RNA interaction, which is mediated through Y72 and 

Y99 (Yang et al., 2019). Similarly, HER2 translation as measured by [35S]-Met/Cys was 

rescued in YB-1-depleted cells upon expression of GFP-tagged YB-1 wild type but not 

in cells expressing GFP-YB-1 Y72/99F (Figure 6L). Thus, these data show that tyrosine 

phosphorylation of the YB-1 CSD regulates HER2 protein translation.

ABL kinases regulate YB-1 binding to mRNAs encoding brain metastatic targets

Over 50 transcripts related to breast cancer metastasis were evaluated for YB-1 binding sites 

using the YB-1 CLIP-sequencing (CLIP-seq) dataset (GEO: GSE63604) (Goodarzi et al., 

2015) (Tables S2 and S3). In addition to ERBB2, AXL, L1CAM, SREBF1, HMG20B, and 

RPL13 were identified as YB-1 binding targets, and a subset of these mRNAs were shown to 

have decreased YB-1 binding to their mRNA upon GNF5 treatment (Figures S7A and S7B). 

Consistent with a functional ABL-YB-1 signaling axis, we found that knockdown of YB-1 

or GNF5 treatment markedly decreases AXL and L1CAM protein levels in HCC1954-LCC1 

breast cancer cells (Figures S7C, S7E, S7J, and S7L). Importantly, depletion of YB-1 did 

McKernan et al. Page 9

Cell Rep. Author manuscript; available in PMC 2022 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



not affect AXL and L1CAM mRNA expression (Figures S7D and S7K). Thus, these data 

support a role for ABL-dependent translational regulation of a subset of transcripts through 

YB-1 in breast cancer brain metastatic cells.

To determine whether the decrease in AXL and L1CAM contribute to the loss of 

cell viability upon YB-1 knockdown in breast cancer cells, HCC1954-LCC1 cells were 

transduced with shRNAs targeting AXL or L1CAM, and cell viability was measured. AXL 

knockdown reduced cell viability compared with a non-target control (shNTC) (Figures 

S7F–S7I). In contrast, L1CAM knockdown did not significantly affect cell viability in the 

breast cancer cells (Figures S7M and S7N). These data suggest that decreased AXL, but 

not L1CAM, protein levels may contribute in part to decreased cell viability upon YB-1 

knockdown.

ABL kinase inhibition decreases mutant HER2 protein levels in lung cancer cells

Approximately 47% of patients with mutant HER2-driven lung cancer will develop brain 

metastases (Offin et al., 2019). Currently, there are no HER2-targeted therapies for HER2-

mutant lung cancer (Zhao and Xia, 2020). We hypothesized that ABL kinase inhibition 

might also deplete mutant HER2 protein levels. To test this hypothesis, the human 

HER2-mutant lung cancer line NCI-H1781 was treated with DMSO or ABL001. ABL001 

profoundly decreased mutant HER2 protein levels (Figure 7A) and markedly reduced cell 

viability in vitro (Figure 7B). Further, RIP of YB-1 from NCI-H1781 cells treated with ABL 

kinase inhibitor revealed that ABL001 treatment disrupted YB-1 binding to mutant HER2 
mRNA (Figure 7C). Moreover, YB-1 knockdown decreased mutant HER2 protein levels and 

reduced NCI-H1781 cell viability (Figures 7D and 7E). These data support a role for an 

ABL-YB-1 axis in the regulation of mutant HER2.

DISCUSSION

While mechanistic studies have examined the regulation of HER2 overexpression in tumors 

via gene amplification and transcriptional changes, the mechanisms that drive HER2 

translation, particularly in the context of brain metastasis, are relatively unknown. Here, we 

report an ABL-YB-1 signaling axis that regulates a translational program targeting ERBB2 
and other transcripts implicated in brain metastasis. We show that ABL kinase inhibition 

decreases translation of HER2 and disrupts YB-1 binding to the ERBB2 mRNA CDS 

in breast cancer brain metastatic cells (Figure 7F). YB-1 functions primarily as an RNA-

binding protein but can also translocate to the nucleus, where it serves as a transcription 

factor. Previous studies have shown that YB-1 is elevated in most human breast cancers and 

can modulate drug resistance by increasing transcription of a multidrug transporter (Bargou 

et al., 1997). Our data revealed that YB-1 has a critical role in binding to a subset of mRNAs 

including ERBB2 in brain metastatic breast cancer cells. We found that YB-1 localizes 

primarily to the cytosol and that knockdown of YB-1 does not affect ERRB2 mRNA levels. 

These data suggest that YB-1 promotes HER2 translation in breast cancer brain metastases 

without altering ERBB2 transcription.

RNA-binding proteins play a role in mRNA-specific translational control, and previous 

studies have found that YB-1 can disrupt the highly structured 5′ UTR of HIF1A and 
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SNAI1, allowing binding by the eIF4E translation initiation complex (El-Naggar et al., 

2015; Evdokimova et al., 2009). While many studies have focused on binding to the 5′ and 

−3′ UTR of mRNA transcripts, emerging evidence suggests that proteins can bind within 

the coding region to affect translation. For example, members of the DEAD-box family of 

RNA helicases bind to the coding region of mRNAs and remodel the secondary structure 

to enhance translation (Jungfleisch et al., 2017). Interestingly, acute translation, but not 

polysome profiling, was altered by ABL kinase inhibition. These data support a role for 

ABL kinases in translation elongation rather than translation initiation. YB-1 may promote 

mRNA translation elongation of ERBB2 by disrupting its secondary structure.

In breast cancer, mRNA-specific translational control of metastatic targets can be enhanced 

through deregulation of ribosomal proteins and RNA-binding proteins. Overexpression of 

the ribosomal subunit RPL15 increased breast cancer metastatic burden by selectively 

promoting the translation of mRNAs encoding proteins required for cell proliferation 

(Ebright et al., 2020). The N6-methyladenosine reader YTHDF3 is upregulated in brain 

metastases and enhances translation of a subset of mRNAs including ST6GALNAC5, GJA1, 

and EGFR, all of which promote extravasation and colonization of the brain parenchyma 

(Chang et al., 2020). Our data show that loss of YB-1 impairs metastatic outgrowth in the 

brain by targeting the ERBB2 mRNA.

In addition to ERBB2, YB-1 also binds to AXL and L1CAM mRNAs, which encode cell-

surface receptors that have been implicated in brain metastasis (Hoj et al., 2019; Valiente et 

al., 2014). Interestingly, AXL has also been shown to promote resistance to HER2-targeted 

therapies, and its dimerization with HER2 leads to enhanced metastatic potential in HER2+ 

breast cancer (Goyette et al., 2018; Liu et al., 2009). Inhibition of the ABL-YB-1 signaling 

axis markedly decreases HER2, L1CAM, and AXL protein levels without affecting the 

expression of the corresponding mRNAs. While knockdown of HER2 and, to a lesser extent, 

AXL decreased breast cancer cell viability, knockdown of L1CAM did not. Thus, our data 

suggest that loss of cell viability upon YB-1 knockdown is mediated primarily through 

HER2 and, to a lesser extent, through AXL.

HER2 mutant lung cancer has a high propensity to metastasize to the brain (Offin et al., 

2019). Currently, there are no approved targeted therapies for patients with mutant HER2-

driven lung cancer (Zhao and Xia, 2020). The majority of HER2 mutations in non-small 

cell lung cancer occur in exon 20, which can confer resistance to HER2-targeted therapies 

(Baraibar et al., 2020). Since ABL kinases regulate the translation of HER2, we tested 

whether ABL kinase inhibition could affect mutant HER2 protein levels. The ABL kinase 

allosteric inhibitor ABL001, which is FDA approved for BCR-ABL1+ leukemia, ablated 

HER2 protein levels in the human mutant HER2-driven lung cancer line NCI-H1781, 

leading to reduced cell viability (Mauro et al., 2019). ABL kinase inhibition disrupted the 

binding of YB-1 to mutant HER2 mRNA, and loss of YB-1 decreased mutant HER2 protein. 

These data suggest that ABL kinases may also regulate mutant HER2 expression in BCBM 

and that ABL kinases may be an actionable target in mutant HER2+ tumors.

Our data show that binding of YB-1 to mRNAs of several cell-surface receptor proteins 

was markedly impaired by ABL kinase inhibition. Notably, we found that ABL kinases 

McKernan et al. Page 11

Cell Rep. Author manuscript; available in PMC 2022 September 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorylate YB-1 and that increased ABL kinase activity leads to phosphorylation of 

YB-1 in both the CSD and the C-terminal domains. Interestingly, previous work has 

identified a role for tyrosine residues Y72 and Y99 in the recognition of RNA-binding 

sequence motifs and homodimerization of YB-1 (Yang et al., 2019). Here, we show that 

while YB-1 wild type rescues HER2 translation and protein expression in YB-1-depleted 

breast cancer cells, the YB-1 Y72/Y99F phospho-deficient mutant fails to rescue HER2 

translation and protein levels in these cells. Together, these data support the hypothesis 

that tyrosine phosphorylation at Y72 and Y99 of YB-1 impacts its ability to recognize 

and bind ERBB2 mRNA. Our data revealed that loss of ABL-mediated YB-1 tyrosine 

phosphorylation disrupts its binding to ERBB2 mRNA. These findings support the use of 

ABL kinase allosteric inhibitors for the treatment of HER2+ brain metastasis and suggest 

that these inhibitors may be used to target YB-1 translational activity by disrupting the 

binding to ERBB2 and a subset of other transcripts encoding for proteins implicated in brain 

metastasis.

Limitations of the study

While we were able to assess the effects of inhibition of YB-1 tyrosine phosphorylation at 

Y72 and Y99 using phospho-deficient mutations, we did not perform rescue studies with 

phospho-mimetic mutants. Phenylalanine and tyrosine residues are nearly identical except 

for the hydroxyl group on the tyrosine residue, which serves as the site of phosphorylation. 

However, phospho-mimetic mutations of tyrosine residues to glutamate do not accurately 

recapitulate the spatial and ionic binding presented by phosphotyrosine residues and, 

consequently, often fail to elicit proper structure-function regulation. To evaluate the role 

of ABL kinases in the regulation of mutant HER2 in tumor types other than breast cancer, 

we employed the NCI-H1781 lung cancer cell line. Future studies should employ additional 

HER2-mutant cell lines as well as primary tumor cells expressing mutant HER2 to assess 

sensitivity to ABL kinase allosteric inhibitors.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to, and will be fulfilled by, the corresponding author and Lead Contact, Ann Marie 

Pendergast (ann.pendergast@duke.edu).

Materials availability—All unique and stable reagents generated in this study are 

available from the Lead contact upon completion of a Materials Transfer Agreement.

Data and code availability

• The mass spectrometry dataset generated during this study has been deposited 

in the University of California, San Diego Mass Spectrometry Interactive Virtual 

Environment (MassIVE) under identifier: MSV000087674. Immunoblot data 

have been deposited at Mendeley Data and are publicly available as of the date 

of publication. DOIs are listed in the key resources table. This paper analyzes 
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existing publicly available data. These accession numbers for the datasets are 

listed in the key resources table.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal models—All procedures involving mice were approved and performed following 

the guidelines of the IACUC of Duke University Division of Laboratory Animal Resources. 

For studies using human breast cancer cells, we employed 8–12-week old age-matched 

female outbred athymic nu/nu mice (#007850; RRID: IMSR_JAX:007850) purchased from 

The Jackson Laboratory. For immunocompetent studies, 8–12-week old age-matched female 

FVB/NJ mice (Jackson Laboratory; #001800; RRID: IMSR_JAX:001800) were injected 

intracranially with murine-derived ErbB2-BrM2 cells. The mice were maintained under 

pathogen-free conditions in the Duke Cancer Center Isolation Facility for immune-deficient 

mice.

Cell lines and cell culture—HCC1954-LCC1 and ErbB2-BrM2 cells were a gift from 

Dr. Joan Massagué (Memorial Sloan Kettering Cancer Center, New York, NY, USA). 

SUM190-BrM cells were a gift from Dr. Patricia Steeg (National Cancer Institute, Bethesda, 

MD, USA). HCC1954-LCC1, ErbB2-BrM2, and SUM190-BrM cells were originally 

isolated from female breast cancer patients. HEK293T (female) and NCI-H1781 (female) 

cells were purchased from the Duke University Cell Culture Facility. HCC1954-LCC1 cells 

were maintained in RPMI 1640 (Life Technologies) supplemented with 10% fetal bovine 

serum (FBS, Corning) and 1% antibiotic-antimycotic (Life Technologies). ErbB2-BrM2 

and HEK293T cells were maintained in DMEM (Life Technologies) supplemented with 

10% FBS (Corning) and 1% penicillin-streptomycin (Life Technologies). SUM190-BrM 

cells were maintained in F12 (Life Technologies) supplemented with 1× insulin-transferrin-

selenium-ethanolamine (Life Technologies), 1 ug/mL hydrocortisone (Sigma), 10 mM 

HEPES (Life Technologies), 10 nM tri-iodo thyronine (T3) (Sigma), and 1.0 g/L bovine 

serum albumin (Sigma). 2% FBS (Corning) was added to the media for SUM190-BrM 

cell adherence but was removed for every subsequent feeding. NCI-H1781 cells were 

maintained in RPMI 1640 (Life Technologies) supplemented with 10% FBS (Corning), 

1 mM sodium pyruvate (Life Technologies), 10 mM HEPES (Life Technologies), and 0.2% 

glucose (Sigma). All cultures were maintained at 37°C in humidified air with 5% CO2. For 

in vitro pharmacologic treatments with GNF5, ABL001, or DPH, drugs were dissolved in 

DMSO and replaced every 24 hours. GNF5 and ABL001 were synthesized by the Duke 

Small Molecule Synthesis Facility and verified by LC-MS, 1H-NMR, and cell-based assays. 

DPH was purchased from Sigma-Aldrich and validated by cell-based assays.

METHOD DETAILS

DNA plasmids—Sequences for shRNAs targeting the ABL kinases were 

as follows: scrambled shRNA (GGTGTATGGGCTACTATAGAA); ABL1 shRNA 

(GGTGTATGAGCTGCTAGAGAA); ABL2 shRNA (CCTTATCTCACCCACTCTGAA). 
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Stable non-inducible shRNAs against non-target control (NTC), AGO1, AGO2, AGO3, 

AGO4, YBX1, SSB, ERBB2, AXL, and L1CAM were from the Sigma Mission TRC1 

Lentiviral shRNA library and were obtained through the Duke Functional Genomics 

Shared Resource Facility. Sigma clone identifiers are listed in the key resources table. 

The lentiCas9-blast plasmid was a gift from Dr. Feng Zhang (Addgene #52962) 

(Sanjana et al., 2014). The perbB2-ECFP plasmid was a gift from Martin Offterdinger 

(Addgene #40268) (Offterdinger and Bastiaens, 2008). The TetO-FUW-pgk-puro was a 

gift from Emily Dykhuizen (Addgene plasmid # 85747; http://n2t.net/addgene:85747; 

RRID:Addgene_85747) (Chowdhury et al., 2016).

Cloning—For pLKO-shYB1 #2-puro, the shRNA sequence corresponding to YBX1 
(GGTTCCCACCTTACTACAT) (Shibata et al., 2013) was cloned into the pLKO.1-puro 

backbone. Briefly, sense and anti-sense oligos for respective shRNA sequences flanked 

by 5′ AgeI and 3′ EcoRI restriction site overhangs were mixed in 1× annealing 

buffer (100 mM NaCl, 10 mM Tris-HCl, pH 7.4) and annealed by placing in 

boiling water that was allowed to cool to 25°C. pLKO.1-shNTC-puro (Sigma Mission 

TRC1 Lentiviral shRNA library) was digested with AgeI-HF (NEB) and EcoRI-HF 

(NEB) followed by gel purification using the QIAquick Gel Extraction Kit (QIAGEN). 

Gel-purified vector and annealed oligos were ligated using the Quick Ligation kit 

(NEB) and subsequently transformed in One Shot Stbl3 chemically competent cells 

(Thermo Fisher). For the FUW-HER2-pgk-puro construct, HER2 was PCR amplified 

from the perbB2-ECFP plasmid using primers flanked with a 5′ and −3′ NheI 

restriction site (Forward: TAAGCAGCTAGCATGGAGCTGGCGGCCTTGTG; Reverse: 

TGCTTAGCTAGCTCACACTGGCACGTCCAGAC). The PCR product was gel purified. 

The PCR product and the TetO-FUW-pgk-puro were digested with NheI-HF (NEB) and the 

backbone was dephosphorylated using Quick CIP (NEB). The digested PCR product and 

backbone were gel-purified and annealed using T4 DNA ligase (NEB). The ligation product 

was transformed.

YB-1 construct cloning—The pDESTmycYBX1 was a gift from Dr. Thomas 

Tuschl (Addgene #19878) (Landthaler et al., 2008). The mEGFP-C1 backbone 

was a gift from Michael Davidson (Addgene #54759; http://n2t.net/addgene:54759; 

RRID:Addgene_54759). The N174-MCS backbone was a gift from Adam Karpf (Addgene 

#81061; http://n2t.net/addgene:81061; RRID:Addgene_81061). Full length and YB-1 

domains were PCR amplified from pDESTmycYBX1 and flanked by a 5′ BspEI and 3′ 
BamHI restriction site. Sequences for PCR primers were as follows: 5′ BspEI YB-1 full 

length forward (TAAGCATCCGGAatgagcagcgaggccgagac), 3′ BamHI YB-1 full length 

reverse (TGCTTAGGATCCttactcagccccgccctgct), 5′ BspEI YB-1 A/P domain forward 

(TAAGCAtccggaATGAGCAGCGAGGCCGAGACCC), 3′ BamHI YB-1 A/P domain 

reverse (TGCTTAggatccttaGTCCCCGCCGGCAGGCGC), 5′ BspEI YB-1 Cold shock 

domain forward (TAAGCAtccggaAAGAAGGTCATCGCAACGAA), 3′ BamHI YB-1 Cold 

shock domain reverse (TGCTTAggatccttaACCAGGACCTGTAACATTTG), 5′ BspEI YB-1 

C-terminal domain forward (TAAGCAtccggaGGTGTTCCAGTTCAAGGCAG), and 3′ 
BamHI YB-1 C-terminal domain reverse (TGCTTAggatccTTACTCAGCCCCGCCCTG). 

The PCR products were gel purified. The PCR products were then cleaved with BspEI 
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(NEB) and BamHI-HF (NEB). The mEGFP-C1 backbone was cleaved with BspEI (NEB) 

and BamHI-HF (NEB) and dephosphorylated using Quick CIP (NEB). The cleaved 

PCR products and backbone were then gel purified. Gel purified backbone and PCR 

products were annealed using the Quick Ligation Kit (NEB). The ligation products were 

transformed. To clone the N174-eGFP-YB-1 vector, eGFP-YB-1 was PCR amplified from 

the mEGFP-YB-1-C1 (this paper) plasmid using primers flanked with a 5′ and −3′ NotI 

restriction site (Forward: TAAGCAgcggccgcATGGTGAGCAAGGGCGAGGA; Reverse: 

TGCTTAgcggccgcTTACTCAGCCCCGCCCTGCT). The PCR product was gel purified. 

The PCR product and N174-MCS backbone were cleaved with NotI-HF (NEB). The 

N174-MCS backbone was dephosphorylated using Quick CIP (NEB). The cleaved PCR 

product and backbone were gel purified. The PCR product and backbone were ligated 

using the Quick Ligation Kit (NEB). The ligation product was transformed. For TetO-FUW-

eGFP-YB-1-pgk-puro and TetO-FUW-eGFP-YB-1 Y72/99F-pgk-puro, eGFP-YB-1 was 

PCR amplified from the mEGFP-YB-1-C1 plasmid using primers flanked with a 5′ and-3′ 
NheI restriction site (Forward: TAAGCAgc tagcATGGTGAGCAAGGGCGAGGA; Reverse: 

TGCTTAgctagcTTACTCAGCCCCGCCCTGCT). The PCR product was gel purified and 

cleaved with NheI-HF (NEB). TetO-FUW-pgk-puro was cleaved and dephosphorylated 

using Quick CIP (NEB). The PCR product and backbone were gel purified and ligated using 

the T4 DNA ligase (NEB). The ligation product was transformed. For the 3×FLAG-YB-1 

plasmid, YB-1 was PCR amplified from pDESTmycYBX1 using primers flanked with a 

5′ BamHI and 3′ XhoI restriction site (Forward: TAAGCAGGATCCatgagcagcgaggccgagac; 

Reverse: TAAGCACTCGAGttactcagccccgccctgct). The PCR product was gel purified and 

cleaved with BamHI-HF (NEB) and XhoI (NEB). The backbone 3×FLAG-FUS-WT was 

a gift from Robin Reed (Addgene #44985) (Yamazaki et al., 2012). The backbone was 

cleaved with BamHI-HF (NEB) and XhoI (NEB) and dephosphorylated with CIP (NEB). 

The cleaved PCR product and backbone were gel purified and ligated using T4 DNA ligase 

(NEB). The ligation product was transformed.

CRISPR-Cas9 cloning—The lentiGuide-Puro backbone was a gift from Dr. Feng 

Zhang (Addgene #52963) (Sanjana et al., 2014). The lentiGuide-Hygro (Addgene# 

139462; http://n2t.net/addgene:139462; RRID:Addgene_139462) and lentiGuide-Neo 

backbones (Addgene #139449) were a gift from Dr. Caroline Goujon (Doyle et al., 

2018). Oligonucleotides with mouse ABL1 gRNA (AAGGGAGGGTGTACCACTAC), 

mouse ABL2 gRNA (GCCCCGGAGCCTCCCCGACG), human ABL1 

gRNA #1 (GGTTCATCATCATTCAACGG), human ABL1 gRNA 

#2 (CTTAGGCTATAATCACAATG), human ABL2 gRNA #1 

(GGTTCAACATCACAACCATA), or human ABL2 gRNA #2 (TATCGAATG 

GAACAGCCTGA) flanked by BsmBI 5′ or 3′ restriction site overhangs were 

phosphorylated and annealed using the T4 PNK (NEB). The lentiGuide backbones were 

cleaved and dephosphorylated using BsmBI (NEB) and CIP (NEB). The backbones were 

then gel purified using the QIAquick Gel Extraction Kit (QIAGEN). Gel purified backbone 

and annealed oligos were then ligated using the Quick Ligation Kit (NEB) (Sanjana et al., 

2014). The ligation products were transformed in One Shot Stbl3 chemically competent cells 

(Thermo Fisher).
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Mutagenesis—The GFP-ABL1PP plasmid was generated by site directed mutagenesis 

using the pcDNA-GFP-ABL1 plasmid (Burton et al., 2003). The mEGFP-YB1 CSD Y72F 

and mEGFP-YB1 CSD Y99F plasmid were generated using the mEGFP-YB1 CSD-c1 

plasmid. The mEGFP-YB1 Y72/99F-c1 plasmid was generated using the mEGFP-YB1-c1 

plasmid. PCR amplification was performed using the PfuUltra II Fusion High-fidelity 

DNA polymerase (Agilent) according to the manufacturer’s instructions. The template 

DNA was digested using DpnI (NEB) and the remaining DNA was transformed into One 

Shot Stbl3 chemically competent cells (Thermo Fisher). Primers used for mutagenesis 

were as follows: ABL1 P249E Forward: tctcccacttgtcgtagttctcggacacaccatagacagtg; 

ABL1 P249E Reverse: cactgtctatggtgtgtccgagaactacgacaagtgggaga; 

ABL1 P242E Forward: ggacacaccatagacagtctccttgttgcgctttggggc; 

ABL1 P242E Reverse: gccccaaagcgcaacaaggagactgtctatggtgtgtcc; 

YB-1 Y72F Forward: cctgttgatgaaaccaaatccgttccttacattgaacc; YB-1 

Y72F Reverse: ggttcaatgtaaggaacggatttggtttcatcaacagg; YB-1 Y99F 

Forward: acactgcgaaggaacttcctggggttattcttcttt; YB-1 Y99F Reverse: 

aaagaagaataaccccaggaagttccttcgcagtgt.

Lentiviral transduction—Lentiviral shRNAs and CRISPR-Cas9 constructs were 

packaged using 3rd generation lentiviral packaging plasmids (pMDL, RSV-Rev, and CMV-

VSVG) as previously described (Chislock and Pendergast, 2013; Chislock et al., 2013; 

Smith-Pearson et al., 2010). For cells transduced with TetO-FUW-pgk-puro or TetO-FUW-

HER2-pgk-puro, 2nd generation lentiviral packaging plasmids (pMD2.G, psPAX2). For 

TetO-FUW-pgk-puro or TetO-FUW-HER2-pgk-puro, cells were also transduced with pLVX-

Tet-On Advanced (Clontech). Plasmid expression was induced using 1 μg/mL doxycycline 

(Sigma-Aldrich). HEK293T cells were transfected with the packaging and shRNA or 

CRISPR-Cas9 DNA using FuGENE 6 (Promega). After 48 hours, the viral titer was filtered 

using a 0.45 μm filter. For lentiviral transduction in the ErbB2-BrM2 cells, the viral titer was 

concentrated 10× using Lenti-X concentrator (Takara Bio) according to the manufacturer’s 

instructions. The viral titer and 1.6 μL of 10 μg/mL polybrene (Sigma-Aldrich) was added to 

the target cells and the cells were centrifuged at 2250 RPM for 1 hour at 25°C. The viral titer 

was replaced with target cell maintenance media. When appropriate, cells were selected with 

puromycin at 1–2 μg/mL, blasticidin at 5–10 μg/mL, or hygromycin at 200–500 μg/mL.

Transient transfection—Transient transfections were performed using Lipofectamine 

2000 (Invitrogen) according to the manufacturer’s instructions. Cells were transfected 

with 2 μg of full length and truncated eGFP-YB-1 DNA or 3×FLAG-YB-1. Cells were 

transfected with 1.5 μg of pcDNA-ABL1PP, pcDNA-ABL2PP, or GFP-ABL1PP DNA for 

all experiments except for GNF5 drug treatment (Plattner et al., 2004). For GNF5 drug 

treatment, cells were transfected with 50 ng of Myc-His-ABL1PP. After 24 hours, cells were 

treated with DMSO or 40 μM GNF5 for 24 hours.

Immunoprecipitation—For YB-1 phosphorylation studies, cells were lysed in RIPA 

buffer (50 mM Tris HCl, 150 mM NaCl, 1% NP40, 1% sodium deoxycholate, 0.1% 

SDS, 1 mM EDTA pH 7.6) supplemented with 1× protease/phosphatase inhibitor cocktail 

(Cell Signaling). For co-immunoprecipitation studies, cells were lysed in NP-40 buffer 
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(150 mM NaCl, 1% NP-40, 50 mM Tris-Cl pH 8.0) supplemented with 1× protease/

phosphatase inhibitor cocktail (Cell Signaling). For RNase treatment, 3.33 μg of RNase 

A (Thermo-Fisher) was added to 1000 μg of protein lysate and incubated at 25°C for 

10 minutes. Lysates were incubated on ice for 30 minutes and then cleared by spinning 

at 10,000 RPM for 10 minutes at 4°C. Supernatants were incubated with GFP-Trap 

agarose beads (Chromotek) for 2 hours at 4°C or FLAG agarose beads at 4°C overnight. 

Beads were washed three times with RIPA or NP-40 lysis buffer afterward for YB-1 

phosphorylation and co-immunoprecipitation studies respectively. Bound proteins were 

eluted with 4× Laemmli Sample Buffer (BioRad) and visualized by SDS-PAGE on 

nitrocellulose membranes followed by immunoblot analysis. A portion of each protein lysate 

input was run concurrently to measure total expression for each protein.

Cell viability assay—Cells were seeded in triplicate in a 96-well white plates with a 

clear bottom at 2,000–8,000 cells per well, and measured every other day using Cell Titer 

Glo reagent (Promega). Plates were read on a Tecan Infinite M1000 Microplate reader, and 

results were analyzed in GraphPad Prism 9 software.

Caspase Glo—Cells were seeded in triplicate in a 96-well white plate with a clear bottom 

at 500–2,000 cells per well. ErbB2-BrM2 cells were treated with DMSO, 10 μM GNF5, 

or 10 μM ABL001 for 48 hours. For a positive control, cells were treated with 1 μM 

staurosporine (Sigma-Aldrich) for 4.5 hours. Caspase activity was measured by Caspase-Glo 

3/7 reagent (Promega). Plates were read on a Tecan Infinite M1000 Microplate reader, and 

results were analyzed in GraphPad Prism 9 software.

Nuclear/cytoplasmic cell fractionation—Fractionation of cells was performed 

following the REAP cell fractionation method as previously described (Suzuki et al., 2010). 

Briefly, HCC1954-LCC1 cells were plated into 10 cm dishes and treated with DMSO or 10 

μM GNF5 for 48 hours. Cells were harvested in ice-cold PBS and centrifuged for 10 seconds 

in a tabletop centrifuge. The supernatant was removed and cells were lysed and triturated in 

ice-cold 0.1% NP-40 in PBS. A portion of the lysate was removed and used for the whole 

cell lysate fraction. The remaining lysate was centrifuged for 10 seconds. A portion of the 

supernatant was removed and designated the cytosolic fraction. The remaining supernatant 

was removed and the pellet was washed with ice-cold 0.1% NP40. The samples were 

centrifuged for 10 seconds and the supernatant was removed. The pellet was resuspended in 

1× Laemmli buffer and designated the nuclear fraction. Laemmli sample buffer was added to 

the whole cell lysate and cytoplasmic fractions. The nuclear and whole cell lysate fractions 

were sonicated twice for 5 seconds on ice. The samples were boiled for 1 minute prior to 

immunoblot analysis.

2D colony formation assay—100 ErbB2-BrM2 cells were seeded into a 6-well plate. 

Cells were treated with DMSO, 10 μM GNF5, or 10 μM ABL001 for 7 days. The media 

and drug were replenished every 2 days. For CRISPR KO colony formation assays, 200 

ErbB2-BrM2 control and ABL1/2 KO cells were seeded into a 6-well plate. On day 7, the 

media was removed and the cells were washed 3× with PBS. The cells were fixed in 100% 

ice-cold methanol for 10 minutes. The cells were stained with 0.5% crystal violet in 25% 
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methanol for 20 minutes. The plates were rinsed with water and dried overnight. The next 

day, the plates were imaged and the colonies destained for 20 minutes using 10% acetic acid. 

The absorbance was measured at 590 nm using a Tecan Infinite M1000 Microplate reader 

(adapted from (Kim et al., 2019)).

Flow cytometry—ErbB2-BrM2 and SUM190-BrM cells were treated with DMSO or 

10 μM GNF5 for 48 hours. Following treatment, 1,000,000 cells were washed once with 

PBS. The cells were resuspended in 50 μL blocking buffer (PBS+ 2% HI FBS (Life 

Technologies) + 0.05% sodium azide+ BD Fc Block (BD Biosciences)). The cells were 

incubated for 5 minutes at 4°C. 50 μL of blocking buffer and 5 μL PE Rat anti-Mouse 

ErbB2 (R&D FAB6744P) were added to stain ErbB2-BrM2 samples. 50 μL of blocking 

buffer and 5 μL APC/Fire750 anti-human HER2 (BioLegend #324422) were added to stain 

SUM190-BrM samples. The cells were incubated for 30 min at 4°C in the dark. The cells 

were washed twice with FACS buffer (PBS+2% HI FBS+ 0.05% sodium azide). The cells 

were resuspended in 300 μL FACS buffer. The samples were run on a BD FACS Canto flow 

cytometer. The data was analyzed using FlowJo Version 10.

Immunoblotting—Cells were lysed in RIPA buffer (50 mM Tris HCl, 150 mM NaCl, 

1% NP40, 1% sodium deoxycholate, 0.1% SDS, 1 mM EDTA pH 7.6) supplemented 

with 1× protease/phosphatase inhibitor cocktail (Cell Signaling). Cell lysates were rotated 

at 4°C for 30 minutes followed by centrifugation at 15,000 RPM for 15 minutes at 

4°C. The cell debris was discarded and the lysates were quantified using the DC Protein 

Assay (Bio-Rad). Proteins were separated using 7.5% polyacrylamide gels and transferred 

to 0.2 μm nitrocellulose membranes (Bio-Rad). The membranes were stained with 0.1% 

Ponceau before blocking. The membranes were blocked in 5% milk for 1 hour and probed 

with HER2 (Cell Signaling #2165, 1:10,000), HER2 (Cell Signaling #4290, 1:1000), 

p-CrkL (Tyr207) (Cell Signaling #3181, 1:2000), CrkL (Santa Cruz sc-319, 1:1000), 

GAPDH (Santa Cruz sc-32233, 1:5000), ABL1 (BD Biosciences #55448, 1:1000), ABL2 

(Abnova H00000027-M03, 1:1000), SSB (Cell Signaling #5034, 1:1000), YB-1 (Santa 

Cruz sc-101198, 1:1000), YB-1 (Cell Signaling #9744, 1:1000), GFP (Cell Signaling 

#2956, 1:2000–1:5000), phospho-ABL1 (Y245) (Cell Signaling #2868, 1:1000), Phospho-

Tyrosine (Sigma #05–321, 1:1000), FLAG (Sigma #F1804,1:1000), Lamin B1 (Cell 

Signaling #13435, 1:1000), SOX2 (Cell Signaling#3579, 1:1000), MMP9 (Cell Signaling 

#13667, 1:1000) AXL (Cell Signaling #8861, 1:1000), AXL (Santa Cruz sc-166269, 

1:1000), L1CAM (Cell Signaling #89861, 1:1000), SREBP1 (Novus NB100–2215SS, 

1:1000), p-STAT3 (Y705) (Cell Signaling #9145, 1:1000), and STAT3(Cell Signaling 

#4904, 1:1000) primary antibodies in 5% milk or 3% bovine serum albumin at 4°C 

overnight. The membranes were probed with Peroxidase AffiniPure Goat anti Mouse 

IgG (H + L) (Jackson Immunoresearch, 1:2000–1:5000), Peroxidase AffiniPure Goat anti 

Rabbit IgG (H + L) (Jackson Immunoresearch, 1:2000–1:10,000), or TidyBlot Western 

Blot Detection Reagent:HRP (BioRad, 1:500) secondary antibodies in 5% milk for 1 

hour at room temperature. Immunoblots were visualized using SuperSignal West PLUS 

Chemiluminescent Substrate developing solution (Thermo Fisher) and imaged using X-ray 

film.
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Intracranial injections—All animal experiments were conducted in accordance with 

protocols approved by the Duke University Division of Laboratory Animal Resources 

Institutional Animal Care and Use Committee (IACUC). All mice used for immunodeficient 

studies were 8–12 week female athymic nu/nu mice (Jackson Laboratory). The day prior 

to HCC1954-LCC1 intracranial injections, all mice were injected intraperitoneally with 50 

uL of anti-asialo GM1 (Fujifilm Wako). The mice were injected with anti-asialo GM1 

every 5 days throughout the experiment. For intracranial injections, mice were anesthetized 

with 5% isoflurane. Breast cancer brain metastatic cells suspended in 5 uL of PBS were 

injected 2 mm to the right of the bregma using a stereotactic frame. Mice were injected with 

100,000 HCC1954-LCC1 cells for GNF5 treatment studies and 50,000 HCC1954-LCC1 

cells for YB-1 knockdown studies. Mice were injected with 25,000 SUM190-BrM cells for 

YB-1 knockdown studies. For immunocompetent studies, FVB mice (Jackson Laboratory) 

were injected intracranially with 500 ErbB2-BrM2 cells. Animals were monitored until 

recovery from anesthesia. To measure tumor burden, the mice were injected with Xenolight 

D-luciferin (PerkinElmer) and imaged using the IVIS Lumina XR bioluminescent imager. 

Bioluminescent images were analyzed using the Living Image software. For pharmacologic 

studies, mice bearing brain metastases were divided into treatment groups at Day 7–10 

post-injection. GNF5 and ABL001 were prepared as a 10 mg/mL suspension in 0.5% 

methylcellulose/0.5% Tween-80. For HCC1954-LCC1 study, mice were treated with vehicle 

or 100 mg/kg GNF5 twice daily by oral gavage. For ErbB2-BrM2 study, mice were treated 

with vehicle or 100 mg/kg ABL001 once daily by oral gavage (Wylie et al., 2017).

Immunofluorescence—After euthanasia, the mouse was perfused with 0.25 mg/mL 

heparin in ice-cold PBS. Then, the mouse was perfused with ice-cold 4% paraformaldehyde 

(PFA). The brain was dissected and transferred to 4% PFA for 2 hours on ice. The brains 

were transferred to 20% sucrose in PBS and incubated overnight at 4°C. The next day, the 

brains were transferred to 30% sucrose in PBS and incubated overnight at 4°C. The brains 

were embedded in OCT and 10 μm sections were cut. The brain sections were washed 2× in 

TBS and blocked in 5% normal goat serum in TBST for 1 hour at room temperature. The 

brains were stained overnight at 4°C with HER2 (Santa Cruz sc-33684, 1:250). The sections 

were washed 3× with TBST and incubated with secondary antibody Alexa Fluor 633 Goat 

Anti Mouse IgG (H + L) (Thermo Fisher, 1:250) for 1 hour in the dark at room temperature. 

The slides were washed 3× with TBST. The sections were stained with Hoescht 33342 

(5 μg/mL) for 10 minutes at room temperature in the dark. The sections were washed 3× 

with TBST and 1× with TBS. The cover slips were mounted using Dako aqueous mounting 

medium (Dako). The sections were imaged using a Leica SP8 upright confocal microscope.

RT-qPCR—RNA was isolated from cell culture plates using the RNAspin Mini Kit 

(GE Healthcare). cDNA was prepared using oligo(dT) primers (Invitrogen), RNase OUT 

(Invitrogen), and M-MLV reverse transcriptase (Invitrogen). Primers used for RT-qPCR 

are listed in Table S1. RT-qPCR was performed using iTAQ Universal SYBR Green mix 

(Bio-Rad) on a Bio-Rad CFX384 machine. Data was analyzed using the Bio-Rad CFX 

Maestro software. GAPDH was used as the house keeping gene for analysis.
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Polysome fractionation—ErbB2-BrM2 cells were treated with DMSO, 10 μM GNF5, 

or 10 μM DPH for 48 hours. The cells were lysed in a modified RIPA buffer (50 mM 

Tris HCl pH 7.6, 150 mM NaCl, 5 mM MgCl2, 1% NP40, 1% sodium deoxycholate, 1X 

protease/phosphatase inhibitor cocktail (Cell Signaling), 1 mM DTT (Invitrogen), 40 U/mL 

RNase OUT (Invitrogen), 0.2 mM cycloheximide) and centrifuged at 12,000 × g for 10 

minutes at 4°C. The clarified lysate was overlaid on a sucrose gradient (15–50% sucrose in 

200 mM KCl, 15 mM MgCl2, 25 mM K-HEPES, pH 7.2–7.4, 0.2 mM cycloheximide, 1 mM 

DTT, and 10 U/mL RNase OUT) and centrifuged at 35,000 RPM for 3 hours at 4°C. Twenty 

0.5 mL fractions were collected using a gradient fractionator with continuous monitoring 

of UV254 nm absorbance. The RNA was isolated from the fractions using TRIzol reagent 

(Thermo-Fisher) according to the manufacturer’s protocol. cDNA was prepared using 10 

uL of RNA and RT-qPCR was performed for ACTB and ERBB2 according to the protocol 

above.

[35S]-methionine/cysteine pulse—HCC1954-LCC1 and ErbB2-BrM2 cells were 

treated with DMSO, 10 μM GNF5, or 10 μM DPH for 48 hours. HCC1954-LCC1 shScr, 

shAA, shNTC, and shYB-1 cells were prepared according to the lentiviral transduction 

protocol above. The cells were incubated in methionine-free media (DMEM (Life 

Technologies #21013024), 10% dialyzed FBS (Sigma #F0392)) for 15–30 minutes at 

37°C. Cycloheximide-control cells were treated with 100 ug/mL cycloheximide prior to 

radiolabelling. The cells were pulsed with [35S]-methionine/cysteine (150 μCi/mL) for 30 

minutes. Following radiolabelling, cells were treated with 100 ug/mL cycloheximide for 10 

minutes at 37°C. The cells were lysed in RIPA+1 × protease/phosphatase inhibitor cocktail 

(Cell Signaling). The lysates were rotated at 4°C for 30 minutes and centrifuged at 15,000 

RPM for 15 minutes at 4°C. The supernatant was used for immunoprecipitation. The lysates 

were pre-cleared with Rabbit IgG (Novus) or Mouse IgG (Santa Cruz) and A/G-Agarose 

beads (Santa Cruz). The lysates were incubated with Rabbit IgG (Novus), Mouse IgG (Santa 

Cruz), HER2 (Santa Cruz, sc-33684, 1 ug) or HER2 (29D8) antibody (Cell Signaling, 1:100) 

at 4°C overnight. The lysates were incubated with A/G-Agarose beads for 2 hours at 4°C. 

The beads were washed 3× with RIPA and the proteins were eluted in 2× sample buffer 

(Bio-Rad). The radioactivity was measured using a liquid scintillation counter. The counts 

per minute (CPM) for each sample was normalized to the amount of input protein used for 

the immunoprecipitation (μg). The following formula was used to calculate the amount of 

radio-labelled HER2 in each sample.

CPM
μg protein HER2

= CPM
μg protein sample − CPM

μg protein CHX Control

Phosphorimaging—The samples were run on a 4–15% gel (Bio-Rad). The gel was fixed 

in 10% acetic acid, 50% methanol for 1 h at room temperature. The gel was rinsed 2× with 

deionized water. The gel was incubated in deionized water for 30 min at room temperature 

2×. The gel was dried at 70°C overnight. The gel was exposed to the phosphor screen and 

imaged using a GE Amersham Typhoon.
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Calculation of HER2 half-life—Cells were treated with DMSO or 10 μM GNF5 and 

20 ug/mL cycloheximide (Sigma) for 0, 2, 4, 8, 24, and 48 hours. The cell lysates were 

prepared and immunoblotting for HER2 and GAPDH was performed as described above. 

The levels of HER2 were normalized to GAPDH and plotted over time in GraphPad Prism 9. 

A nonlinear best fit curve was plotted for one-phase decay.

Proteasomal inhibition—Cells were treated with DMSO or 10 μM GNF5 for 48 h 1 μM 

MG132 was added to the cells during the last 24 hours of drug treatment. The cell lysates 

were prepared and immunoblotting was performed as described above.

Preparation of mRNA probes for pulldown—The pBABEpuro-ERBB2 plasmid was 

a gift from Matthew Meyerson (Addgene plasmid #40978) (Greulich et al., 2012). RNA 

was isolated from HCC1954-LCC1 cells using the RNASpin Mini Kit (GE Healthcare). 

cDNA was prepared using oligo(dT) primers (Invitrogen), RNase OUT (Invitrogen), and 

Maxima reverse transcriptase (Thermo Fisher). The 5′ and-3′ UTR of ERBB2 were 

PCR amplified using DreamTaq DNA polymerase (Thermo Fisher). Primers for PCR 

amplification were designed to include the T7 promoter on the 5′ end. 5′ UTR PCR primers 

were: Forward 5′-AGTAATACGACTCACTATAGGGATTCCCCTCCATTGGGACCG-3′, 

Reverse 5′-GGTGCTCACTGCGGCTCCGG-3′. 3′ UTR PCR primers were: 

Forward 5′-AGTAATACGACTCACTATAGGGACCAGAAGGCCAAGTCCG-3′, Reverse 

5′-GTTTTCCAAAATATATTTGCAAATGGACAAAGTGGGTGTGG-3′. The PCR 

products were separated by gel electrophoresis and isolated using the QIAquick 

Gel Extraction Kit (Qiagen). The coding region of the ERBB2 mRNA was 

PCR amplified from pBABEpuro-ERBB2 using Q5 High-Fidelity Master Mix (New 

England BioLabs). Primers for PCR amplification were designed to include the T7 

promoter at the 5′ end. Primers for PCR amplification of the coding region were: 

Forward 5′-AGTAATACGACTCACTATAGGGATGGAGCTGGCGGCCTTG-3′, Reverse 

5′-TCACACTGGCACGTCCAGACC-3′ 5′-TCACACTGGCACGTCCAGACCC-3′. The 

PCR products were separated by gel electrophoresis and isolated using the QIA quick Gel 

Extraction Kit (Qiagen). In vitro transcription was performed using the PCR products for 

5′ UTR, 3′ UTR, and coding region of ERBB2 and the MEGAscript T7 Transcription kit 

(Thermo Fisher).

RNA protein pulldown—HCC1954-LCC1 cells were treated with DMSO or 10 μM 

GNF5 for 48 h 5′ UTR, 3′UTR and coding ERBB2 mRNA was biotinylated using 

the Pierce RNA 3′ End Desthiobiotinylation kit (Thermo Fisher). RNA binding proteins 

were immunoprecipitated using the Pierce Magnetic RNA-Protein Pull-Down kit (Thermo 

Fisher). Immunoprecipitated proteins were washed 3× with 1% NP-40, 150 mM NaCl, 25 

mM Tris (pH 7.5). Proteins were eluted in 2% SDS, 25 mM Tris (pH 7.5), 5 mM DTT, and 

5 mM free biotin at 80°C for 10 min. Proteins were run on a 4–15% polyacrylamide gel 

(BioRad) and the gel was silver stained using the Pierce Silver Stain for Mass Spectrometry 

Kit (Thermo Fisher). Bands were excised and identified by LC-MS/MS by the Duke Center 

for Genomic and Computational Biology.
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LC-MS/MS proteomics analysis—For gel band analysis, SDS-PAGE gel bands 

were subjected to reduction, alkylation, and in-gel tryptic digestion as described here: 

https://genome.duke.edu/sites/genome.duke.edu/files/In-gelDigestionProtocolrevised_0.pdf. 

Digested peptides were lyophilized to dryness and resuspended in 12 uL of 0.2% formic 

acid/2% acetonitrile. Each sample was subjected to chromatographic separation on a Waters 

NanoAquity UPLC equipped with a 1.7 μm HSS T3 C18 75 μm I.D. X 250 mm reversed-

phase column (NanoFlow data). The mobile phase consisted of (A) 0.1% formic acid in 

water and (B) 0.1% formic acid in acetonitrile. 3 μL was injected and peptides were trapped 

for 3 min on a 5 μm Symmetry C18 180 μm I.D. X 20 mm column at 5 μL/min in 

99.9% A. The analytical column was then switched in-line and a linear elution gradient 

of 5% B to 40% B was performed over 30 min at 400 nL/min. The analytical column 

was connected to a Fusion Lumos mass spectrometer (Thermo) through an electrospray 

interface operating in a data-dependent mode of acquisition. The instrument was set to 

acquire a precursor MS scan from m/z 375–1500 at R = 120,000 (target AGC 2 × 105, 

max IT 50 ms) with MS/MS spectra acquired in the ion trap (target AGC 5 × 103, max 

IT 100 ms). For all experiments, HCD energy settings were 30v and a 20 s dynamic 

exclusion was employed for previously fragmented precursor ions. Raw LC-MS/MS data 

files were processed in Proteome Discoverer (Thermo Scientific) and then submitted to 

independent Mascot searches (Matrix Science) against a Human protein database containing 

both forward (20260 entries) and reverse entries of each protein. Search tolerances were 

5 ppm for precursor ions and 0.8 Da for product ions using trypsin specificity with up 

to two missed cleavages. Carbamidomethylation (+57.0214 Da on C) was set as a fixed 

modification, whereas oxidation (+15.9949 Da on M) and deamidation (+0.98 Da on NQ) 

were considered dynamic mass modifications. All searched spectra were imported into 

Scaffold (v4.4, Proteome Software) and scoring thresholds were set to achieve a peptide 

false discovery rate of 1% using the PeptideProphet algorithm. Data was visualized using 

Scaffold 4 software.

RNA immunoprecipitation—Cells were treated with DMSO, 10 μM GNF5, or 10 μM 

ABL001 for 48 or 72 h. RNA immunoprecipitation was performed using the MagnaRIP 

RNA-binding protein Immunoprecipitation kit (Sigma) according to the manufacturer’s 

instructions. 5 ug of YB-1 antibody (Santa Cruz sc-101198) or mouse IgG (Santa Cruz) 

was used for the immunoprecipitation. 10 uL of RNA was used for the cDNA synthesis and 

RT-qPCR was performed on input and immunoprecipitation samples as detailed above.

CLIP-sequencing analysis—YB-1 HITS-CLIP dataset for long RNA species (GEO: 

GSE63604) was analyzed using the standard approach to identify YB-1 binding sites 

(Goodarzi et al., 2015; Shah et al., 2017). Briefly, reads were filtered and the 3′ adaptor 

sequence was trimmed. The duplicates were collapsed and 5′ degenerate barcode was 

removed. The reads were aligned to the human genome (hg19; (Langmead and Salzberg, 

2012)). Unique CLIP tags were obtained by collapsing PCR duplicates. The genomic 

distribution of CLIP tags was obtained and visualized using the Integrative Genomics 

Viewer (Robinson et al., 2011). Galaxy (usegalaxy. org) was used to quantify the number 

of CLIP tags across each gene. To define background YB-1 binding, the average number of 
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CLIP tags across 100 randomly selected genes was quantified (103 CLIP tags). Transcripts 

with >103 CLIP tags were defined as ‘YB-1 binding targets’.

HER2 mRNA stability—Cells were treated with DMSO or 10 μM GNF5 for 48 h 5 

ug/mL actinomycin-D was added during the last 2, 4, 8, and 12 h of drug treatment. The 

RNA was isolated, cDNA was prepared, and RT-qPCR was performed as described above.

In vitro kinase assay—1.0 μg of recombinant His-YB-1 (Novus Biologicals) was added 

to kinase buffer (25 mM Tris HCl pH 7.5, 20 mM MgCl2, 1 mM DTT, 25 mM β-glycerol 

phosphate, 0.5 mM Na3VO4, 100 μM ATP). 1.0 μg of recombinant GST-ABL1 (Pro137-

Ser554) (Sino Biological) was added to His-YB-1 and the reaction was incubated at 37°C 

for 30 min. The reaction stopped by adding 4× Laemmli buffer and the samples were 

prepared for immunoblot analysis.

Breast cancer patient analysis—Breast cancer patient microarray data were analyzed 

using the KMplot analysis tool (kmplot.com) (Gyorffy et al., 2010). HER2+ breast 

cancer patients were stratified by quartile (n = 451 total patients across all cohorts). 

Affimetrix identifier for YB-1 was 216,940_x_at. Mutual exclusivity analysis was 

performed with cBioPortal using the Metastatic Breast Cancer Project, INSERM Metastatic 

Breast Cancer dataset, TCGA Breast Invasive Carcinoma dataset, Sanger Breast Invasive 

Carcinoma dataset, Broad Breast Invasive Carcinoma dataset, British Columbia Breast 

Invasive Carcinoma dataset, SMC Breast Cancer dataset, MSKCC Breast Cancer dataset, 

METABRIC breast cancer dataset, and MSK breast cancer dataset (n = 6513 patients) 

(Banerji et al., 2012; Curtis et al., 2012; Kan et al., 2018; Lefebvre et al., 2016; Nixon et 

al., 2019; Pereira et al., 2016; Razavi et al., 2018; Shah et al., 2012; Stephens et al., 2012). 

Patients with mRNA expression data and Z score threshold ±2.0 were included. Mutual 

exclusivity analysis was performed on cBioPortal using default settings and results were 

plotted using Graphpad Prism 9 software.

QUANTIFICATION AND STATISTICS ANALYSIS

Immunoblots and immunofluorescence images were quantified using ImageJ (Schneider 

et al., 2012). HER2 expression measured in immunofluorescence images were normalized 

to the number of nuclei in the tumors. All statistics were performed using the Graphpad 

Prism 9 software. To calculate the p value for Kaplan-Meier survival curves, a Mantel-Cox 

log rank test was performed. For statistical comparisons between two groups, a student’s 

t-test (unpaired, two-tailed) was performed. Statistical comparisons of more than two groups 

were conducted using an ANOVA followed by Bonferroni’s or Holm-Šidák post-hoc testing. 

Outliers were detected using Grubb’s test. For all tests, a p value <0.05 was considered 

significant. All figures show mean ± SEM. Statistical analysis and the number of biological 

replicates (n) for specific experiments are indicated in the corresponding figure legends. For 

mouse experiments, mice were divided evenly between treatment groups so that the tumor 

burden was not significantly different between groups at the start of treatment as measured 

by a student’s t-test (unpaired, two-tailed).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ABL kinase inhibition decreases HER2 translation in brain metastatic cell

• YB-1 binds to ERBB2 mRNA, and this interaction is disrupted by ABL 

kinase inhibitors

• ABL-mediated phosphorylation of YB-1 is required to promote HER2 

translation

• ABL-YB-1 inhibition impairs outgrowth in the brain and improves overall 

survival
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Figure 1. ABL kinase allosteric inactivation or depletion impairs outgrowth of HER2+ breast 
cancer brain metastatic cells and improves overall survival of tumor-bearing mice
(A–C) Nude mice were injected intracranially with HCC1954-LCC1 cells on day 0. On day 

10, mice were divided between treatment groups (vehicle [n = 9] or GNF5 [n = 10]). Tumors 

were monitored weekly by bioluminescent imaging (BLI) until experimental endpoint (day 

55).

(B) Representative BLI images on day 33.

(C) Overall survival curve of mice.
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(D and E) Cell viability of HCC1954-LCC1 (D) or SUM190-BrM (E) cells treated with 

DMSO, 10 μM GNF5, or 10 μM ABL001 as measured by CellTiter-Glo.

(F) Immunoblots of ABL1 and ABL2 in HCC1954-LCC1 cells virally transduced with 

Cas9 and gRNAs targeting ABL1 and ABL2 (ABL1/2 knockout [KO] #1). Control cells are 

virally transduced with empty gRNA backbones (control).

(G) Cell viability of HCC1954-LCC1 ABL1/2 KO #1 and control cells as measured by 

CellTiter-Glo.

(H–J) Nude mice were injected intracranially with HCC1954-LCC1 control (n = 15) or 

ABL1/2 KO #1 (n = 15) cells.

(H) Representative BLI images of mice on day 21.

(I and J) Brain flux over time (I) and overall survival curve (J) of mice.

(K–M) FVB mice were injected intracranially with ErbB2-BrM2 cells on day 0. On day 7, 

mice were divided between treatment groups (vehicle or ABL001) (n = 13/group). Tumors 

were monitored weekly by BLI until experiment endpoint (day 21).

(L) Representative BLI images of mice on day 21 are shown.

(M) Brain flux over time in mice was measured by BLI.

Statistical analysis was performed using a repeated measures ANOVA (n = 3) or log rank 

(Mantel-Cox) test for survival studies. *p < 0.05, ***p < 0.001, ****p < 0.0001. Data are 

mean ± SEM. p/s, photons/second.
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Figure 2. ABL kinase inhibition decreases HER2 protein in HER2+ breast cancer brain 
metastatic cells
(A) Immunoblot and quantification of HER2 in HCC1954-LCC1 cells treated with DMSO, 

10 μM GNF5, or 10 μM DPH for 48 h.

(B) Immunoblot and quantification of HER2 in HCC1954-LCC1 virally transduced with 

shRNAs targeting ABL1 and ABL2 (shAA) or a scramble control (shScr).

(C) Immunoblot and quantification of HER2 in ErbB2-BrM2 cells treated with DMSO, 10 

μM GNF5, or 10 μM ABL001 for 48 h.

(D) HER2 cell-surface levels were measured by FACS analysis of mean fluorescence 

intensity. ErbB2-BrM2 cells were treated with DMSO or 10 μM GNF5 for 48 h.

For immunoblots, p-CrkL serves as a marker of ABL kinase activity, and HER2 protein 

levels were normalized to GAPDH. Statistical analysis was performed using Student’s t test 

and one-way ANOVA with Bonferroni’s post hoc testing (n = 3). *p < 0.05, ***p < 0.001, 

****p < 0.0001. Data are mean ± SEM.
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Figure 3. ABL kinases regulate HER2 translation in HER2+ brain metastatic breast cancer cells
(A and B) qRT-PCR of ERBB2 in HCC1954-LCC1 (A) or ErbB2-BrM2 (B) cells treated 

with DMSO or 10 μM GNF5 for 48 h.

(C) qRT-PCR of ERBB2 in HCC1954-LCC1 cells virally transduced with shAA or shScr.

(D and E) Immunoblot and quantification of HER2 in HCC1954-LCC1 (D) and ErbB2-

BrM2 (E) cells treated with DMSO or 10 μM GNF5 for 48 h; 1 μM MG-132 was added 

during the last 24 h of treatment. p-CrkL serves as a marker for ABL kinase activity. HER2 

protein levels are normalized to GAPDH.

(F–M) Cells were pulsed with 150 μCi/mL [35S]Met/Cys for 30 min, and 

immunoprecipitation for HER2 and immunoglobulin G (IgG) was performed.

(F and G) Phosphorimaging and liquid scintillation counts of radiolabeled HER2 in 

HCC1954-LCC1 cells treated with DMSO or 10 μM GNF5 for 48 h.

(H and I) Phosphorimaging and quantification of radiolabeled HER2 in ErbB2-BrM2 cells 

treated with DMSO or 10 μM GNF5 for 48 h.

(J and K) Phosphorimaging and liquid scintillation counts of radiolabeled HER2 in 

HCC1954-LCC1 cells virally transduced with shScr or shAA.

(L and M) Phosphorimaging and liquid scintillation counts of radiolabeled HER2 in 

HCC1954-LCC1 cells treated with DMSO or 10 μM DPH for 48 h.

GAPDH was used as the housekeeping gene for qRT-PCR. Statistical analysis was 

performed using Student’s t test and one-way ANOVA with Bonferroni’s post hoc testing (n 

= 3). n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Data are 

mean ± SEM.
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Figure 4. ABL kinase inhibition disrupts ERBB2 mRNA binding to Y-box-binding protein 1
(A) Workflow of RNA-binding protein pull-down. ERBB2 mRNA was biotinylated, bound 

to streptavidin magnetic beads, and incubated with lysates from HCC1954-LCC1 cells 

treated with DMSO or 10 μM GNF5 for 48 h, and RNA-binding proteins were eluted.

(B) Heatmap of unique spectrum counts of eluted RNA-binding proteins from the coding 

region of ERBB2 mRNA as identified by mass spectrometry analysis.

(C) Immunoblots of RNA-binding proteins SSB and YB-1 from the eluates of the ERBB2 
CDS mRNA binding protein pull-down. p-STAT3 serves as a marker of ABL kinase activity.

(D and E) RNA immunoprecipitation of YB-1 followed by qRT-PCR of ERBB2 in 

HCC1954-LCC1 and SUM190-BrM cells. ERBB2 mRNA levels were normalized to 

immunoprecipitation input.

(D) HCC1954-LCC1 cells were treated with DMSO or 10 μM GNF5 for 48 h.

(E) SUM190-BrM cells were treated with DMSO or 10 μM ABL001 for 72 h (n = 2).

(F) Mapped CLIP tags across whole ERBB2 gene (bottom) from YB-1 CLIP-sequencing 

analysis for 3 biological replicates.

Statistical analysis was performed using a one-way ANOVA with Holm-Šidák post hoc 

testing (n = 3). *p < 0.05, **p < 0.01. Data are mean ± SEM
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Figure 5. YB-1 knockdown decreases HER2 protein levels and inhibits outgrowth in the brain by 
HER2+ breast cancer cells
(A) Immunoblots of HER2 in HCC1954-LCC1 and SUM190-BrM cells transduced with 

shRNAs targeting YB-1 (shYB-1 #1) or a non-target control (shNTC).

(B) Immunoblots of HER2 in HCC1954-LCC1 transduced with TetO-FUW-pgk-puro empty 

vector or TetO-FUW-eGFP-YB-1-pgk-puro. Cells were treated with 1 μg/mL doxycycline 

and DMSO or 10 μM GNF5 for 48 h.

(C and D) Phosphorimaging of radiolabeled HER2 in HCC1954-LCC1 cells virally 

transduced with shNTC or shYB-1 #1 and pulsed with 150 μCi/mL [35S]Met/Cys 

for 30 min. HER2 or IgG was immunoprecipitated. Liquid scintillation counts of 

immunoprecipitated HER2 were measured.

(E) Cell viability of HCC1954-LCC1 and SUM190-BrM cells virally transduced with 

shNTC or shYB-1 #1 as measured by CellTiter-Glo. All time points for shNTC were 

normalized to 1.

(F) Cell viability of HCC1954-LCC1 cells virally transduced with shNTC or shRNAs 

targeting HER2 (shHER2 #1, or shHER2 #2) as measured by CellTiter-Glo. All time points 

for shNTC were normalized to 1.

(G) Cell viability of SUM190-BrM cells virally transduced with shNTC or shYB1 #1 and 

empty vector or HER2 as measured by CellTiter-Glo (n = 2).

(H–J) Nude mice were injected intracranially with HCC1954-LCC1 cells transduced with 

shNTC (n = 15) or shYB-1 #1 (n = 15). Representative bioluminescent images of mice at 

day 28 are shown. BLI was monitored weekly to measure brain flux over time. Overall 

survival is shown. p/s, photons/second.
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(K) Distant metastasis-free survival of patients with HER2+ breast cancer with high and low 

expression of YBX1 is shown. Survival groups were separated by quartile based on mRNA 

expression (n = 451 total patients).

Statistical analysis was performed using a one-way ANOVA or repeated measures ANOVA 

with Bonferroni or Holm-Šídák post hoc testing (n = 3). For survival studies, statistical 

analysis was performed using a log rank (Mantel-Cox) test. n.s., not significant, *p < 0.05, 

**p < 0.01, ****p < 0.0001. Data are mean ± SEM.
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Figure 6. ABL1-mediated tyrosine phosphorylation of YB-1 is required for ERBB2 translation 
and HER2 protein expression
(A) Immunoprecipitation (IP) of FLAG and subsequent immunoblotting in HEK-293T cells 

were co-transfected with 3×FLAG-YB-1 and a hyperactive form of ABL1 (ABL1PP) (top).

(B) GFP IP and subsequent immunoblotting of HEK-293T cells co-transfected with EGFP-

YB-1 and ABL1PP and treated with DMSO or 40 μM GNF5 for 24 h (top).

(C) coIP of GFP and subsequent immunoblotting of HEK-293T cells co-transfected with 

EGFP-YB-1 and ABL1PP (top).
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(D) coIP of GFP and subsequent immunoblotting of HEK-293T cells co-transfected with 

EGFP-ABL1PP and 3×FLAG-YB-1 (top).

(E) GFP IP and subsequent immunoblotting of HCC1954-LCC1 cells virally transduced 

with N174-EGFP-YB-1 and transfected with ABL1PP (top).

(F) GFP IP and subsequent immunoblotting of SUM190-BrM N174 and N174-EGFP-YB-1 

cells treated with DMSO or 10 μM ABL001 for 48 h (top).

(G) Immunoblotting of an in vitro kinase assay with purified His-YB-1 and GST-ABL1.

(H) Diagram of full-length EGFP-YB-1 and EGFP-tagged YB-1 domains: EGFP-A/P 

domain (amino acids 1–51), EGFP-cold-shock domain (CSD) (amino acids 52–129), and 

EGFP-C-terminal domain (C-term) (amino acids 130–324).

(I) coIP of GFP and subsequent immunoblotting of HEK-293T cells co-transfected with 

ABL1PP and either full-length EGFP-YB-1 or EGFP-YB-1 domains (top).

(J) GFP IP and subsequent immunoblotting of HEK-293T cells co-transfected with ABL1PP 

and EGFP-YB-1 domains (top).

(K and L) HCC1954-LCC1 breast cancer cells were virally transduced with the TetO-FUW-

pgk-puro empty vector (TetO-FUW), TetO-FUW-eGFP-YB-1-pgk-puro (eGFP-YB-1), 

or TetO-FUW-eGFP-YB-1 Y72/99F-pgk-puro (eGFP-YB-1 Y72/99F). Cells were then 

transduced with shNTC or shYB-1 #1 and treated with 1 μg/mL doxycycline for 72 h.

(K) Immunoblots and quantification for HER2 are shown (top). EGFP-YB-1 expression and 

endogenous YB-1 were detected with anti-YB-1 antibody.

(L) Cells were pulsed with 150 μCi/mL [35S]-Met/Cys for 30 min. HER2 or IgG 

was immunoprecipitated. Liquid scintillation counts of immunoprecipitated HER2 were 

measured (n = 3 for all conditions except LCC1 TetO-FUW shYB-1 #1, which has n = 2). 

Statistical analysis was performed using a one-way ANOVA followed by Bonferroni post 

hoc testing.

For IP experiments, whole-cell lysate (WCL) immunoblots are shown on the bottom. 

GAPDH was used as a loading control (bottom). *p < 0.05. Data are mean ± SEM.
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Figure 7. ABL inhibition and YB-1 knockdown reduces mutant HER2 protein in lung cancer 
cells
(A) HER2 immunoblot and quantification in NCI-H1781 cells treated with DMSO or 10 μM 

ABL001 for 72 h. p-CrkL is a marker of ABL kinase activity. HER2 protein quantifications 

were normalized to GAPDH.

(B) Cell viability of NCI-H1781 cells treated with DMSO or 10 μM ABL001 as measured 

by CellTiter-Glo.
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(C) RNA IP of YB-1 followed by qRT-PCR to measure ERBB2 mRNA in NCI-H1781 cells 

treated with DMSO or 10 μM ABL001 for 72 h. mRNA levels were normalized to IP input 

(n = 2).

(D) Immunoblot of HER2 in NCI-H1781 cells virally transduced with shNTC or shYB-1.

E) Cell viability of NCI-H1781 cells virally transduced with shNTC or shYB-1 as measured 

by CellTiter-Glo.

(F) Model diagram illustrating ABL-YB-1 signaling axis in HER2+ brain metastases.

Statistical analysis was performed using Student’s t test, repeated measure ANOVA, and 

one-way ANOVA with Bonferroni post hoc testing (n = 3). *p < 0.05, **p < 0.01, ***p < 

0.001. Data are mean ± SEM.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HER2 (29D8) Cell Signaling Cat# 2165; RRID:AB_10692490

HER2 (D8F12) Cell Signaling Cat# 4290; RRID: AB_10557104

HER2 (3B5) Santa Cruz Cat# sc-33684; RRID:AB_627996

ABL1 (8 × 109) BD Pharmingen Cat# 554148; RRID:AB_2220994

Phospho-CrkL (Tyr207) Cell Signaling Cat# 3181; RRID:AB_331068

ABL2 (6D5) Abnova Cat# H00000027-M03; RRID: AB_565433

HER2 PE-Conjugated R&D Cat# FAB6744P; RRID: AB_10890577

Phospho-STAT3 (Tyr705) Cell Signaling Cat# 9145; RRID: AB_2491009

STAT3 Cell Signaling Cat# 4904; RRID: AB_331269

CrkL (C-20) Santa Cruz Cat# sc-319; RRID:AB_631320

GAPDH (6C5) Santa Cruz Cat# sc-32233; RRID:AB_627679

APC/Fire 750 anti-human HER2 Biolegend Cat# 324422; RRID: AB_2687225

SOX2 Cell Signaling Cat#3579; RRID: AB_2195767

MMP9 Cell Signaling Cat#13667; RRID: AB_2798289

Normal Mouse IgG Santa Cruz Cat# sc-2025; RRID: AB_737182

Normal Rabbit IgG Novus Biologicals Cat# NB810-56910; RRID: AB_844243

La antigen/SSB (D19B3) Cell Signaling Cat#5034; RRID: AB_10620954

YB-1 (59-Q) Santa Cruz Cat#sc-101198; RRID: AB_2219288

AXL (H-3) Santa Cruz Cat#sc-166269; RRID: AB_2243305

AXL (C89 × 107) Cell Signaling Cat#8661; RRID: AB_11217435

SREBP1 Novus Biologicals Cat# NB100-2215; RRID: AB_10002406

Phosphotyrosine (4G10) Sigma Cat#05-321; RRID: AB_309678

GFP (D5.1) Cell Signaling Cat#2956; RRID: AB_1196615

YB-1 (D2A11) Cell Signaling Cat#9744; RRID:AB_11178953

Phospho-ABL1 (Y245) (73 × 105) Cell Signaling Cat#2868; RRID:AB_2221094

FLAG M2 antibody Sigma Cat#F1804; RRID:AB_262044

TidyBlot Western Blot Detection Reagent:HRP BioRad Cat#STAR209P

Goat anti-Mouse IgG (H + L) Highly Cross-Adsorbed 
Secondary Antibody, Alexa Fluor 633

Thermo Fisher Cat# A-21052, RRID: AB_2535719

NCAM-L1 (D5N9S) Cell Signaling Cat#89861, RRID: AB_2800145

Peroxidase AffiniPure Goat Anti-Mouse IgG (H + L) Jackson Immunoresearch Cat# 115-035-003, RRID:AB_10015289

Peroxidase AffiniPure Goat Anti-Rabbit IgG (H + L) Jackson Immunoresearch Cat#115-035-144

Chemicals, peptides, and recombinant proteins

GNF-5 (Abl kinase small molecule inhibitor) Duke Small Molecule Synthesis 
Facility

N/A

ABL001 (Asciminib) Duke Small Molecule Synthesis 
Facility

N/A

EasyTag Express 35S Protein Labeling Mix Perkin Elmer Cat# NEG772007MC
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REAGENT or RESOURCE SOURCE IDENTIFIER

Cycloheximide Sigma Cat#C6255

Actinomycin-D Sigma Cat#A9415

Anti asialo GM1 Rabbit FUJIFILM Wako Chemicals Cat#986-10001; RRID:AB_516844

Lenti-X Concentrator Takara Bio Cat #631231

DPH Sigma Cat #SML0202

GFP-Trap Agarose Chromotek Cat#gta-20

GST-ABL1 Recombinant Protein Sino Biological Cat#11199-H09B

His-YB1 Recombinant Protein Novus Biologicals Cat#NBP2-30101

Staurosporine Sigma Cat#S6942

Anti-FLAG M2 Affinity Gel Sigma Cat#A2220

PureLink RNase A Thermo Fisher Cat#12091021

Critical commercial assays

Pierce Magnetic RNA-Protein Pull-Down Kit Thermo Fisher Cat# 20164

Pierce RNA 3′ End Desthiobiotinylation Kit Thermo Fisher Cat# 20163

Pierce Silver Stain for Mass Spectrometry Thermo Fisher Cat# 24600

MagnaRIP RNA-Binding Protein 
Immunoprecipitation Kit

Sigma Cat#17-700

Cell Titer Glo Promega Cat# G7571

Hoescht 33342 Solution Thermo Fisher Cat# 62249

Caspase-Glo 3/7 Assay Promega Cat#G8091

Deposited data

HER2 mRNA Binding Protein Pulldown Mass 
Spectrometry Data

This paper MassIVE: MSV000087674

Original, Unprocessed Data This paper Mendeley Data: https://doi.org/10.17632/
nzsk26yf5x.1

YB-1 HITS-CLIP dataset for long RNA species Goodarzi et al., 2015 GEO: GSE63604

Metastatic Breast Cancer Project dataset Metastatic Breast Cancer Project cBioPortal

INSERM Metastatic Breast Cancer dataset Lefebvre et al., 2016 EGA: EGAS00001001695

TCGA Breast Invasive Carcinoma dataset TCGA, Firehose Legacy cBioPortal

Sanger Breast Invasive Carcinoma dataset Stephens et al., 2012 EGA: EGAD00001000133

Broad Breast Invasive Carcinoma dataset Banerji et al., 2012 dbGaP: phs000369.v1.p1

British Columbia Breast Invasive Carcinoma dataset Shah et al., 2012 EGA: EGAS00001000132

SMC Breast Cancer dataset Kan et al., 2018 GEO: GSE113184

MSKCC Breast Cancer dataset Nixon et al., 2019 cBioPortal

METABRIC Breast Cancer dataset Curtis et al., 2012; Pereira et al., 2016 EGA: EGAS00001001753; 
EGAS00000000083

MSK Breast Cancer dataset Razavi et al., 2018 dbGaP: phs001674.v1.p1

Experimental models: Cell lines

HCC1954-LCC1 Malladi et al., 2016 N/A

ErbB2-BrM2 Valiente et al., 2014 N/A

SUM190-BrM Gril et al., 2018 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

NCI-H1781 ATCC Cat# CRL-5894; RRID: CVCL_1494

HEK-293T ATCC Cat# CRL-3216; RRID: CVCL_0063

Experimental models: Organisms/strains

Outbred athymic nu/nu mice Jackson Laboratory Cat#007850; RRID: IMSR_JAX:007850

FVB/NJ Jackson Laboratory Cat#001800; RRID: IMSR_JAX:001800

Oligonucleotides

See Table S4 for a list of all primers and oligonucleotides

pLKO-puro Non-Target Sigma Mission TRC1 SHC016-1EA

shRNA Control

pLKO-puro shAGO1 Sigma Mission TRC1 TRCN0000007861

pLKO-puro shAGO2 Sigma Mission TRC1 TRCN0000007865

pLKO-puro shAGO3 Sigma Mission TRC1 TRCN0000007870

pLKO-puro shAGO4 Sigma Mission TRC1 TRCN0000007875

pLKO-puro shAGO4 Sigma Mission TRC1 TRCN0000007874

pLKO-puro shYB1 #1 Sigma Mission TRC1 TRCN0000007951

PLKO-puro shYB1 #2 This paper N/A

pLKO-puro shYB1 #3 Sigma Mission TRC1 TRCN0000007948

pLKO-puro shSSB Sigma Mission TRC1 TRCN0000062197

pLKO-puro shHER2 Sigma Mission TRC1 TRCN0000010341

pLKO-puro shHER2 Sigma Mission TRC1 TRCN0000010342

pLKO-puro shAXL #1 Sigma Mission TRC1 TRCN0000000572

pLKO-puro shAXL #2 Sigma Mission TRC1 TRCN0000000573

pLKO-puro shL1CAM #1 Sigma Mission TRC1 TRCN0000063913

pLKO-puro shL1CAM #2 Sigma Mission TRC1 TRCN0000063914

Scramble control shRNA Gu et al., 2016 N/A

ABL1 shRNA Gu et al., 2016 N/A

ABL2 shRNA Gu et al., 2016 N/A

pBABEpuro-ERBB2 Greulich et al., 2012 Addgene #40978; RRID: Addgene_40978

lentiCas9-Blast Sanjana et al., 2014 Addgene #52962; RRID: Addgene_52962

LentiGuide-Hygro http://n2t.net/addgene:139462 Addgene #139462; RRID: 
Addgene_139462

LentiGuide-Neo Doyle et al., 2018 Addgene #139449; RRID: 
Addgene_139449

LentiGuide-Puro Sanjana et al., 2014 Addgene #52963; RRID: Addgene_52963

LentiGuide-sgRNA human ABL1 #1-Neo This paper N/A

LentiGuide-sgRNA human ABL1 #2-Neo This paper N/A

LentiGuide-sgRNA human ABL2 #1-Hygro This paper N/A

LentiGuide-sgRNA human ABL2 #2-Hygro This paper N/A

LentiGuide-sgRNA mouse ABL1 #1-Hygro This paper N/A

LentiGuide-sgRNA mouse ABL2 #1-Puro This paper N/A

pLVX-Tet-On Advanced Clontech Ref# 632162
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REAGENT or RESOURCE SOURCE IDENTIFIER

TetO-FUW-pgk-puro Chowdhury et al., 2016 Addgene #85747; RRID: Addgene_85747

TetO-FUW-HER2-pgk-puro This paper N/A

pcDNA-ABL1PP Plattner et al., 2004 N/A

pcDNA-ABL2PP Plattner et al., 2004 N/A

mEGFP-c1 http://n2t.net/addgene:54759 Addgene #54759; RRID: Addgene_54759

mEGFP-YB1-c1 This paper N/A

pcDNA-GFP-ABL1 Burton et al., 2003 N/A

GFP-ABL1PP This paper N/A

mEGFP-YB1 A/P Domain-c1 This paper N/A

mEGFP-YB1 CSD-c1 This paper N/A

mEGFP-YB1 CSD Y72F-c1 This paper N/A

mEGFP-YB1 CSD Y99F-c1 This paper N/A

mEGFP-YB1 C-Term Domain-c1 This paper N/A

3xFLAG-FUS-WT Yamazaki et al., 2012 Addgene #44985; RRID: Addgene_44985

3xFLAG-YB-1 This paper N/A

N174-MCS http://n2t.net/addgene:81061 Addgene #81061; RRID: Addgene_81061

N174-eGFP-YB-1-MCS This paper N/A

perbB2-ECFP Offterdinger and Bastiaens, 2008 Addgene #40268; RRID: Addgene_40268

pDESTmycYBX1 Landthaler et al., 2008 Addgene #19878; RRID: Addgene_19878

Software and algorithms

Prism 8 Graphpad http://graphpad.com/scientific-software/
prism

ImageJ Schneider et al., 2012 http://imagej.nih.gov

Living Image Perkin Elmer http://perkinelmer.com

CLIP Tool Kit Shah et al., 2017 https://zhanglab.c2b2.columbia.edu/
index.php/CTK_Documentation
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