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A microprocessor based on a two-dimensional
semiconductor
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The advent of microcomputers in the 1970s has dramatically changed our society. Since then,

microprocessors have been made almost exclusively from silicon, but the ever-increasing

demand for higher integration density and speed, lower power consumption and better

integrability with everyday goods has prompted the search for alternatives. Germanium and

III–V compound semiconductors are being considered promising candidates for future

high-performance processor generations and chips based on thin-film plastic technology or

carbon nanotubes could allow for embedding electronic intelligence into arbitrary objects

for the Internet-of-Things. Here, we present a 1-bit implementation of a microprocessor

using a two-dimensional semiconductor—molybdenum disulfide. The device can execute

user-defined programs stored in an external memory, perform logical operations and

communicate with its periphery. Our 1-bit design is readily scalable to multi-bit data. The

device consists of 115 transistors and constitutes the most complex circuitry so far made from

a two-dimensional material.
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T
wo-dimensional (2D) materials, such as semiconducting
transition metal dichalcogenides (TMDs)1,2, black
phosphorus3, silicene4 and others, are considered

promising candidates for future generations of electronic
circuits. It is currently not foreseen that silicon will be replaced
for mainstream digital electronics in the mid-term future;
however, similar to organic semiconductors5 or carbon
nanotubes6, 2D materials offer a number of interesting
properties that could lead to novel applications. Their ultrathin
channel thickness provides improved electrostatic gate control
and reduced short-channel effects7,8, which ultimately results in
better geometric scaling behaviour9,10 and less power
consumption. 2D semiconductors are also one of the leading
candidates to enable tunnel field-effect transistors (FETs)11,12,
working with sub-threshold swing below 60 mV per decade and
thus low supply voltage. Together, with their high mechanical
flexibility and stability, optical transparency, excellent
optoelectronic properties13 and compatibility with standard
semiconductor technology processing this could lead to energy
efficient and flexible electronics14–16.

The field of TMD-based electronics has progressed enormously
during the past few years. Soon after the first realizations of
bulk17,18 and monolayer2 FETs, basic electronic circuits were
demonstrated19,20. Both n-type (NMOS)19–21 and complementary
(CMOS)22,23 metal-oxide–semiconductor technologies have been
developed and a good understanding of the FET device physics has
been gained24–26. The work on devices has been paralleled by the
development of growth techniques27–30 for the large-scale
fabrication of TMD films with good uniformity over the size of
a wafer30 and the development of technologies for transferring
2D materials onto bendable14–16 substrates. Nevertheless, due to
the plethora of challenges being faced in large-scale integration,
previous work has so far been restricted to applications consisting
of only a few transistors and with limited functionality.
These challenges range from the necessity to match voltage
levels and achieve high noise margins in cascaded logic stages to
stringent requirements on device uniformity over millimetre size
dimensions.

Here, we demonstrate the feasibility of using a 2D semicon-
ductor to realize a complex digital circuit—a microprocessor.

Results
Microprocessor architecture. Figure 1a depicts the architectural
block diagram of our microprocessor. For demonstration
purposes, we minimized transistor count and thus realized
a device that operates on single-bit data only. We stress that this
is not a fundamental limitation and the device is readily scalable
to N-bit data, broadly speaking by connecting N of our devices in
parallel. Although we reduced the architecture of our device to
the essentials, it comprises all basic building blocks that are
common to most microprocessors. In particular, these are: an
arithmetic logic unit (ALU), that forms the heart of the processor
and is, in general, capable of performing basic arithmetic and
logical operations; for simplicity, we have implemented here only
logical conjunction and disjunction operations. An accumulator
(AC), which holds one of the operands to be supplied to the ALU.
An instruction register (IR), that stores the content of the
program memory currently being executed, where the most sig-
nificant two bits contain the instruction itself and the third bit
contains the data (Although we retrieve the data directly from the
program memory, our device can also process data stored in
a separate data memory (Harvard architecture). In this case, the
IR is supplied with an address that points to the data memory
content, which is then placed on the bus.). A control unit (CU),
that receives as input the instruction code from the IR and

orchestrates all resources by enabling components to access the
internal bus via the control signals EA and EO; A/O conveys to
the ALU the operation selection code (conjunction, A/O¼ 0;
disjunction, A/O¼ 1). A program counter (PC), which
supplies the memory with the address of the active instruction.
And, finally, an output register (OR), that allows the processor to
transfer the results of a calculation to the output port. The
memory is, as usual, implemented off-chip.

Figure 1b depicts the timing diagram of the device, using three
clock (CLK) signals. The execution of each instruction occurs in
two sequences—a FETCH sequence followed by an execute (EXE)
sequence. The FETCH sequence consists of two phases: in a first
phase, the content of the external memory (at the address stored
in the PC) is loaded into the IR; the PC is then incremented in
a second step. During the EXE sequence, which is implemented
here in a single phase, the microprocessor decodes and executes
the command stored in the IR. This cycle is repeated
continuously. Each phase is triggered by a CLK signal (CLK1,
phase 1; CLK2, phase 2; CLK3, phase 3). In order to be flexible in
terms of clock rate and timing, we generated the CLK signals
externally; an on-chip implementation is straightforward.
Figure 1c summarizes the instruction set that we have
implemented. The instructions are encoded with two bits; some
of them are followed by one bit of data. The no-operation (NOP)
instruction has no effect other than to increase the PC. LDA
allows the transfer of data from the memory into the AC. AND
and OR perform logical conjunction and disjunction operations,
respectively.

It is instructive to consider a simple example. The program
fragment

Address Mnemonic OpCode
0 LDA 0 010
1 AND 1 101

transfers in a first step, triggered by CLK1, the bit sequence
010 from the memory into the IR. CLK2 then increases the
PC and the next instruction becomes available, but is not loaded
into the IR yet. Triggered by CLK3, the CU then signals the
AC (EA¼ 1) to receive the data (0) from the IR via the internal
bus. With the next CLK1 signal, the content of the IR is updated
(IR¼ 101), and the CU enables the ALU to perform a logical
conjunction operation (A/O¼ 0) between the data on the bus
(1) and that stored in the AC during the previous instruction.
Triggered by CLK3, the result of this operation (0) is finally
written into the OR (EO¼ 1).

Device implementation. We now come to the actual device
implementation using a 2D semiconductor. Our microprocessor
was fabricated in gate-first technology on a silicon wafer with
280-nm-thick silicon dioxide. The substrate fulfills no other
function than acting as a carrier medium and could thus be
replaced by glass31 or any other material, including flexible
substrates14–16. We fabricated 18 devices per wafer, with
FET channels made from chemical vapour deposition (CVD)
grown large-area bilayer MoS2 films. Two Ti/Au metal layers
were used to interconnect the transistors and Al2O3 was used as
gate oxide. A detailed description of the device fabrication steps
can be found in Methods. Subunits, such as for example, the ALU
or the IR, were provided with metal pads for individual testing in
a wafer probe station. All subunits were eventually bonded
together and the sample was placed back into the probe chamber,
where it remained in vacuum for final testing of the complete
circuit.

Figure 2a (bottom) shows a schematic drawing of a so-obtained
MoS2 FET. The devices exhibit a field-effect mobility of
B3 cm2 V� 1 s� 1, a threshold voltage VT of B0.65 V
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(Supplementary Fig. 3), an on/off ratio of B108, and uniform
behaviour over a B50 mm2 area over the wafer (Supplementary
Fig. 4). The circuit is based on the NMOS logic family, where
both pull-up (load) and pull-down networks were realized using
n-type enhancement-mode FETs. The implementation of an

inverter (see circuit schematic in Fig. 2d) using this logic family is
shown in Fig. 2a (top). A careful design of the W/L ratios, where
W and L denote the width and length of the FET channels, is
crucial, as it determines the switching threshold voltage VM and
thus the ability to cascade logic stages. For simple analytic
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Figure 1 | Microprocessor architecture. (a) Block diagram, showing the arithmetic logic unit (ALU) with inputs A and B, accumulator (AC), control unit

(CU), instruction register (IR), output register (OR) and program counter (PC). Enable signals (EA and EO) and operation selection code (A/O) are

supplied by the CU to the respective subunits. CLK signal generation and memory are implemented off-chip. (b) Timing diagram for the Nth instruction

cycle. During the FETCH sequence the content of the memory is loaded into the IR and the address, stored in the PC, is increased. During the EXE sequence

the command, stored in the IR, is executed. (c) Instruction set of the microprocessor. NOP is the no-operation instruction; LDA transfers data from the

memory into the AC; AND and OR perform logical operations.
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Figure 2 | Characterization of MoS2 transistors and inverter. (a) Schematic drawing of an inverter circuit (top) and an individual MoS2 transistor

(bottom) in gate-first technology (see Supplementary Fig. 5 for corresponding micrograph). (b) Transfer characteristics of load (W/L¼45/2) and

pull-down (W/L¼ 7/5) transistors. (c) Output characteristic for gate voltages between 1 and 5 V (in 1 V steps). (d) NMOS inverter circuit schematic.

(e) Graphical construction to determine the output voltage VOUT of an inverter for a given input voltage VIN. The blue symbols show the load curve

and the red lines are the output characteristics of the pull-down transistor (in 0.25 V steps). The intersection point of both curves determines VOUT. (f) The

solid line shows the measured voltage transfer characteristic of an inverter. By mirroring this curve (dashed line) a butterfly plot is obtained, from which

NM can be extracted by nesting the largest possible square in the grey shaded area.
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modelling, we performed calculations based on long-channel
FET theory32. The pull-down FET is described by
ID2¼K2 VIN�VTð ÞVOUT�V2

OUT=2
� �

in the triode regime and
ID2¼K2 VIN�VTð Þ2=2 in the saturation regime (red curves in
Fig. 2e). The load FET is operated in the sub-threshold regime
(VG1¼ 0oVT), and thus acts as a current source over a large
drain voltage range, ID1¼K1 1� exp �bVD1ð Þ½ � with b being the
reciprocal of the thermal potential. From the circuit schematic
Fig. 2d, it is apparent that VD1¼VDD�VOUT, and thus
ID1¼K1 1� exp bVOUT� bVDDð Þ½ � (blue symbols in Fig. 2e). The
parameters K1 and K2 are taken from the experiment (Fig. 2b).
By equating both currents, ID1¼ID2, we obtain a relation
between VOUT and VIN, from which the switching threshold
VM can be determined (Supplementary Fig. 6). If both transistors
are implemented with same W/L ratio, VM drops below 1 V
(Supplementary Fig. 6b), resulting in low noise margin, especially
in the presence of additional hysteresis. Asymmetric transistor
design, on the other hand, allows shifting VM towards VDD/2
(Supplementary Fig. 6a), resulting in improved switching
behaviour. W/L ratios of the pull-up and pull-down transistors
were hence made 45/2 (mm/mm) and 7/5, respectively.

Logic NAND gates with M inputs were implemented by
connecting M pull-down transistors with W/L¼ (M� 7)/5 in
series. The processor was realized by using a combination of these
elements. The minimum feature size of 2 mm was chosen rather
large for two reasons. It makes the design immune to sample
inhomogeneities (for example, small holes, cracks and contam-
inations in the MoS2 film) and also allows for fast visual
inspection of the lithographic structures with an optical
microscope. Because of the immunity of 2D transistors to
short-channel effects7–10, we expect comparable performance
when the devices are scaled to sub-micrometre dimensions,
provided that low contact resistance can be achieved.

Figure 2b shows the transfer characteristics of load and pull-
down transistors, where the B14 times higher current through
the former demonstrates reliable controllability of the device
characteristics by geometrical scaling. The output characteristic,
depicted in Fig. 2c, shows clear current saturation due to channel
pinch-off at the drain. The voltage transfer characteristic of
our inverters exhibit excellent performance for a wide supply
voltage range between VDD¼ 2 and 7 V, with input and output
logic levels being perfectly matched. Figure 2f (solid line) shows
the results for VDD¼ 5 V, for which the voltage gain
AV¼� dVOUT=dVIN reaches values of AVE60. Although the
voltage transfer curve shows some hysteresis (that mostly stems
from trap charges in the gate oxide) the noise margin of the
inverter (see shaded area in Fig. 2f), NME0.59� (VDD/2), is
sufficiently large for integration into multi-stage logic circuits.
The NAND gates showed comparable performance. We estimate
a static power consumption of Ps¼VDD ID;Lþ ID;H

� �
=2E1.4 mW

per logic gate, where ID,L and ID,H denote the currents at VIN¼ 0
and 5 V (Fig. 2e), respectively. The total power consumption of
the circuit, consisting of 41 stages, is thus B60 mW.

A microscope image of the microprocessor is shown in Fig. 3a.
The device is composed of 115 MoS2 transistors and measures—
without bonding pads—0.6 mm2 in size. Circuit schematics for
a D-Latch and the ALU are shown in Fig. 3b,c, respectively.
The complete schematic is presented in Supplementary Fig. 1.
A D-Latch is a bi-stable circuit that can be used as 1-bit data
storage element, triggered by a CLK signal. It forms the basic
building block of all our data registers (IR, AC and OR) and the
PC. The ALU is a combinational logic circuit, entirely based
on NANDs, that performs bitwise logic operations on 1-bit data.
The additional input A/O signals the ALU which operation to
perform. Measurements of the ALU output for different input
logic states are presented in Supplementary Fig. 8.
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We first verified the functionality of the microprocessor by
running the example program from above and measuring
waveforms at different locations on the chip (see Methods for
measurement details). As shown in Fig. 4a, the device is indeed
able to deliver the correct result, with excellent signal integrity
and with rail-to-rail performance, proving the ability to cascade
logic stages based on 2D semiconductors. To further demonstrate
the operability of the device, we present in Fig. 4b the results from
a series of logical disjunction operations. The match of measured
and expected outputs shows again correct operation. As shown in
Supplementary Fig. 10, the device proved to be functional at CLK
frequencies of 50 Hz. This is by no means a limitation of the
TMD material itself, but is caused by the limitations of our
measurement setup. Ultimately, the speed is limited by the
current-driving capability of the pull-up transistor, which is
operated in the sub-threshold regime (VGS¼ 0oVT) and acts as
current source with IDE0.55 mA. For a typical (external)
capacitive load of CLE1–10 pF, we estimate a maximum
operation frequency of fMAX � ID= 2pVDDCLð ÞE2–20 kHz
(Supplementary Fig. 11). To increase fMAX, ID could be increased
by employing depletion-mode load FETs20, controlled chemical
doping, improving the carrier mobility of the 2D semiconductor
or just by reducing the transistor channel lengths.

Discussion
In summary, we have reported a first step towards the
development of microprocessors based on 2D semiconductors.
The major challenge that we faced during device fabrication is
yield. Although the yield for subunits was high (for example,
B80% of ALUs were fully functional), the sheer complexity of the
full system, together with the non-fault tolerant design, resulted
in an overall yield of only a few per cent of fully functional
devices. Imperfections of the MoS2 film, mainly caused by the
transfer from the growth to the target substrate, were identified as
main source for device failure. However, as no metal catalyst is

required for the synthesis of TMD films27–30, direct growth on
the target substrate is a promising route to improve yield. Besides
that, we do not see any roadblocks that could prevent the scaling
of our 1-bit design to multi-bit data. Our work demonstrates that
integrated circuits consisting of 2D materials are a promising
emerging technology.

Methods
Device fabrication. Fabrication (Supplementary Fig. 7) started with patterning of
the bottom metal (gate) layer by electron beam lithography (EBL) and evaporation
of Ti/Au (5/25 nm). A 22-nm-thick Al2O3 gate oxide was then deposited using
atomic layer deposition, followed by a second lithography step and wet chemical
etching in potassium hydroxide to define the via-holes that connect the bottom and
top metal layers where necessary. Following the procedure described in ref. 29,
a large-area MoS2 film was grown by CVD on sapphire and then transferred onto
the target wafer. The film is continuous over an area of B50 mm2 with bilayer
thickness and small multi-layer MoS2 islands and contaminations. The MoS2 film
was characterized by atomic force microscopy and Raman spectroscopy
(Supplementary Fig. 2). In a third EBL step, rectangular MoS2 channels were
patterned and subsequently etched using Ar/SF6 plasma. Before lift-off, mild
treatment of the sample in oxygen plasma was performed to remove the crust from
the surface of the polymer mask. The top metal (drain/source contact) layer was
then formed by another EBL process and subsequent Ti/Au (5/35 nm) deposition.
The sample was finally annealed in vacuum at 400 K for several hours to remove
adsorbants from the surface and reduce device hysteresis.

Electrical testing. For testing, we generated the CLK signals externally, using
a digital I/O card (National Instruments PCI-6229) in a computer. The same card was
used for emulating the external memory. The device was supplied with VDD¼ 5 V,
and waveforms were recorded with a Semiconductor Parameter Analyzer (Agilent
4155C), connected to the probe tips of a wafer probe station (Lakeshore TTPX).

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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