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Simple Summary: Here we introduce a new feature selection algorithm DTA, which selects impor-
tant, non-redundant, and relevant features from diverse omics data. DTA selects non-redundant
features by maximizing the similarity between each patient pair by an approximate k-cover algo-
rithm. We successfully applied this algorithm to three different biological problems: (a) disease
to healthy sample classification, (b) multiclass classification of different disease samples, and (c)
disease subtypes detection. DTA outperformed other feature selection techniques in the binary
classification of healthy and disease samples and multiclass classification of various diseases. It also
improved the performance of a subtype detection algorithm by selecting the important features for
few cancer types.

Abstract: Biologists seek to identify a small number of significant features that are important, non-
redundant, and relevant from diverse omics data. For example, statistical methods such as LIMMA
and DEseq distinguish differentially expressed genes between a case and control group from the
transcript profile. Researchers also apply various column subset selection algorithms on genomics
datasets for a similar purpose. Unfortunately, genes selected by such statistical or machine learning
methods are often highly co-regulated, making their performance inconsistent. Here, we introduce
a novel feature selection algorithm that selects highly disease-related and non-redundant features
from a diverse set of omics datasets. We successfully applied this algorithm to three different
biological problems: (a) disease-to-normal sample classification; (b) multiclass classification of
different disease samples; and (c) disease subtypes detection. Considering the classification of ROC-
AUC, false-positive, and false-negative rates, our algorithm outperformed other gene selection and
differential expression (DE) methods for all six types of cancer datasets from TCGA considered
here for binary and multiclass classification problems. Moreover, genes picked by our algorithm
improved the disease subtyping accuracy for four different cancer types over state-of-the-art methods.
Hence, we posit that our proposed feature reduction method can support the community to solve
various problems, including the selection of disease-specific biomarkers, precision medicine design,
and disease sub-type detection.

Keywords: feature subset selection; disease classification; subtype detection

1. Introduction

Omics data usually comprise thousands of features; however, most of these features
are redundant, irrelevant, or noisy. Experimental noise, multiple intrinsic interconnections
between the biological units, and co-regulation between the features are possible reasons
for redundancy. For example, typical RNA-seq measurements catalog the expression of
thousands of transcripts; however, most of them are redundant (i.e., highly correlated)
or noisy. Moreover, due to the experimental costs, the number of samples available is
lower than the number of features, making the traditional machine learning and statistical
algorithms easily overfit the biological data. Another problem is the lack of control/normal
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samples; this is mainly because there are fewer chances to collect data from healthy patients.
Therefore, selecting a small number of relevant and non-redundant features among the
complete set of features is a significant research problem.

Yu et al. classified the genes in a disease into the following four categories: (a) irrel-
evant or noisy genes; (b) weakly relevant and redundant genes; (c) weakly relevant and
non-redundant genes; and (d) strongly relevant genes [1]. Generally, researchers wish
to select a small number of genes that are either strongly relevant or weakly relevant
and non-redundant. The selection of this subset of relevant genes is essential for several
biological problems, such as identifying causal disease-related genes, the early detection
of diseases, designing precision medicine, and disease sub-type detection [2]. In machine
learning, a similar problem is termed the feature selection problem, where the goal is to
select the most informative and small subset of features from a larger number of features.
Feature selection becomes critical when only a few samples are available compared to
the number of features in the dataset; it reduces noise, improves the training time of the
machine learning models, and prevents over-fitting. Ang et al. [2] classified the feature
selection techniques into the following five categories: (a) filter; (b) wrapper; (c) embedded;
(d) hybrid; and (e) ensemble. Several of these feature selection techniques have been used
in the past for different purposes. For example, twoPhase [3]; iterFS [4]; WeiBi [5] are based
on information gain, LASSO, or Fisher score. Feature selection algorithms in the biological
domain were briefly discussed in [2,6].

In this paper, we propose a new feature selection method and demonstrate its perfor-
mance in (i) classifying disease samples from normal samples; (ii) classifying the different
types of disease samples; and also (iii) disease subtype detection. First, we evaluated
the performance of our method in disease classification considering six different large
cancer gene expression datasets from The Cancer Genome Atlas (TCGA) [7]. Then, we
benchmarked our results using three different feature/geneset selection methods and a
few differential expression (DE) methods on the same dataset. From the results, we found
that our proposed method outperformed all the popular geneset selection methods and
can identify essential genes and functional pathways in diseases in general and particu-
larly cancer.

2. Materials and Methods
2.1. Method Overview

Our proposed feature selection method consists of two main steps. First, it creates
a binary patient-specific perturbation profile (PEEP) from the genomics dataset using
data normalization and imposes a cut-off. Second, it selects non-redundant features that
maximize the similarity between each patient pair by an approximate k-cover algorithm.
The k-cover problem in a graph G = (V, E) is an NP-complete problem, which seeks a set
of size k nodes that cover the maximum number of edges. A standard greedy algorithm can
approximate this problem with (1 − 1/e) approximation. However, due to the large space
consumption and time complexity which can be a bottleneck for a large graph, several
algorithms have been proposed for approximate k-cover. We used the dynamic threshold
algorithm (DTA) [8] to find the subset C of k genes that guarantee a 1− 1

e − ε approximation
solution to the k-cover problem. Figure 1 shows a brief overview of the DTA algorithm.

2.2. Creating Personalized Perturbation Profile (PEEP)

First, we converted the raw gene expression dataset into a log scale. Consider a set of
n patients X = {X1, X2, · · · , Xn}, where a patient, Xi, is represented by m features. First,
we compute the mean and standard deviation of each feature from the control sample.
Then, we perform a column-wise normalization using the following formula:

zij =
xij − µN

j

σN
j

(1)
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Here, xij refers to the log-transformed raw expression of patient i and feature j, zij is
the Z-score transformed value of the expression of patient i and feature j. µN

j and σN
j are

the mean and standard deviation of feature j in the control samples.
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Figure 1. Overview of the method: (a) gene expression profiles of the patients; here, Pi denotes
the disease sample, and Ci denotes the control sample; (b) construction of PEEP matrix from (a);
(c) creating a patient-to-patient (denoted by PiPj) similarity matrix and selecting the column using
an approximate k-cover algorithm; (d) an overview of the subtype detection pipeline.

In the next step, we convert the Z matrix to the binary ‘0’/‘1’ PEEP matrix P = pij by
imposing a threshold of zt. For example, if the absolute value of a feature in a subject has
an expression that is greater than zt, we consider that as ‘1’, otherwise ‘0’:

pij =

{
0 if − zt < zij < zt

1 if − zt > zij or zt < zij
(2)

Thus, the features having ‘1’ can be viewed as over-expressed/under-expressed in one
subject. Similar normalization was performed as before, and we used the same zt cutoff
of 2.5 for our analysis [9]. We also performed the same analysis using two other cutoffs
(2 and 3) and observed similar results (shown in Supplementary Figure S1).

2.3. Feature-Selection Problem Formulation

In our method, we only selected a subset of features to run the classification. Here,
we selected k features so that we can preserve the maximum information of the patients.
By performing gene-selection, we reduced the overfitting of the classification, thereby
improving accuracy.

Similarly to the feature-selection problem [10], we considered the dataset as the set of
pairs of patients. We defined that two patients are similar if there exists a feature that is
up-regulated/ down-regulated in both patients. We build a similarity matrix S = sij as
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sij =

{
1 if ∃h : pih = pjh = 1
0 if otherwise

The goal is to select a subset C of k features so that we can preserve the similarity
matrix. More concretely, we want to maximize the similarity between patients on the subset
C as follows:

C = arg max
C⊂G,|C|=k

∑ sC
ij

where:

sC
ij =

{
1 if ∃h ∈ C : pih = pjh = 1
0 if otherwise

2.4. DTA Algorithm

The feature-selection problem can be considered as a k-cover problem. Let us say a
feature h covers a pair of patients (Xi, Xj) if pih = pjh = 1; we use the DTA algorithm [8] to
find the subset C of k genes that guarantee a 1− 1

e − ε approximation solution. However,
note that our proposed framework can work seamlessly with other existing algorithms for
the k-cover problem.

In the DTA algorithm, we sample random hyperedges (each hyperedge consists of a
feature and a pair of patients covered by that feature) to select a subset of k features.

In particular, we iterate k times to select the subset of k features. At a specific iteration,
we select a feature as follows:

• Add new hyperedges by repeating the following steps.

– Randomly choose two patients Xi, Xj;
– For each feature h ∈ G, if pih = pjh = 1, add (h, (i, j)) to the hyperedge.

• Select a feature h∗ that covers the most pairs of patients. For each pair of patients (i, j)
that is covered by h∗, remove all hyperedges that consist of (i, j).

The DTA algorithm has a run-time of O(ε−2km log m) (where m is the total number
of genes, and k is the number of selected genes) and can quickly scale to thousands of
patients’ data.

2.5. Classification Workflow

We performed five-fold cross-validation (5-CV) with an 80–20 split on the raw dataset.
For each split of the training dataset, we first estimated the mean (µ) and standard deviation
(σ) from the healthy samples. We then selected a set of genes from the training set using our
method. Finally, we trained the model with a linear-SVM on the selected genes and classified
the samples as healthy or diseased samples. Unfortunately, the TCGA dataset is imbalanced
as it has fewer healthy samples than disease samples. Hence, we use the ROC-AUC score,
false-positive, and false-negative rates to evaluate the classification performance.

We also benchmarked our results with two other feature selection methods, twoPhase [3],
iterFS [4]; one geneset selection method Barabasi [9]; and one DE analysis method, LIMMA.
For twoPhase, iterFS, and Barabasi we follow the same preprocessing as our method to
select the subset of features. For LIMMA, we directly used raw data as the input as LIMMA
takes continuous inputs.

For multiclass classification, we merged the PEEP transformed patient subjects’ data
of six cancer types. Furthermore, we performed a 5-CV with an 80–20 split. For the
performance evaluation, we first measured the ROC-AUC score of one-to-all classification
of one cancer type to all other cancer types. Then, we averaged the ROC-AUC score
of one-to-all classifications of the cancer types. Finally, for the multiclass classification,
we only benchmarked twoPhase and iterFS, as Barabasi and LIMMA were not designed
for the multiclass problem.
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2.6. Disease Subtyping Workflow

A heterogeneous disease such as cancer is activated through several pathways and
shows a high level of molecular heterogeneity. Therefore, causal oncogenes only express
in a subset of patients for a cancer type. For example, in the TCGA-lung squamous cell
carcinoma (LUSC) dataset, the popular linear DE method LIMMA identified approximately
13,852 genes as differentially expressed (p ≤ 0.05) [11]. Interestingly, most of these differ-
entially expressed genes are only perturbed in a few patients. For a heterogeneous disease
such as cancer, different perturbations in multiple oncogenes lead to a common phenotypic
outcome. The outcome of patients with the same cancer type also significantly differs based
on the phenotypic outcome. Thus, disease subtyping is a crucial method to predict disease
variability, identify associated molecular pathways, and design a personalized treatment
plan for a heterogeneous disease.

The disease subtype prediction from omics data mainly consists of the following two
steps. First, it computes patient-to-patient similarity (e.g., Euclidean distance, Pearson
correlation) from the omics data. It then performs an unsupervised clustering (e.g., k-
means, consensus) on that similarity matrix to group similar patients for identifying the
sub-types. Subtype detection is complex and often requires multi-omics data integration of
the same patients to achieve better clustering/subtyping. Some of the popular multi-omics
data integration methods are iCluster [12], similarity network fusion (SNF) [13], PINS [14],
CIMLR [15] and autoencoders [16]. However, these methods often depend on selecting
important features from diverse high-dimensional omics datasets (e.g., gene expression,
methylation, copy number, miRNA expression). Our proposed DTA method can identify
such important features from these multiple datasets and improve the existing sub-type
detection methods.

We analyzed the performance of DTA as a feature selection method in the standard
subtype detection pipeline using the data integration method SNF. SNF is a network
fusion method that first generates a patient-to-patient similarity network from all datatypes
individually using a non-linear kernel function. Then, it fuses all individual networks
into a single comprehensive network using an iterative cross-network diffusion algorithm.
Here, we use gene expression, miRNAs expression, and DNA methylation profiles from
TCGA [7] of the same patients to perform subtype detection. Then, we used our feature
selection method on the multiview data to individually select essential features from each
data type. We created the PEEP profile of each data type separately and ran k-cover to
identify the important features. Due to the lack of common healthy samples, the cancer
samples themselves were used as control samples. Based on this, we calculated the
Euclidean distance (i.e., similarity) for every patient pair. Then, we integrated these three
distance matrices into a single comprehensive dataset using SNF. Later, we performed
spectral clustering on this Euclidean distance to group similar patients and validate disease
subtypes using the Kaplan–Meier curve of the survival rate of the patients.

We used the R tool CancerSubtype for subtyping a cancer type [17]. For feature
selection, we used DTA and the other two feature selection methods based on principal
component analysis (PCA) and variance (VAR) for comparison. For further analysis,
we used the linear model LIMMA to identify DE genes [11], and the ClusterProfiler
package for the functional analysis of the DE geneset [18].

3. Results
3.1. TCGA Dataset

The Cancer Genome Atlas (TCGA) program integrates various molecular profile
information of more than 33,000 samples across 68 different cancer types [7]. We performed
our classification analysis for RNA-seq data for six different types of cancer from TCGA:
breast invasive carcinoma (BRCA); lung adenocarcinoma (LUAD); lung squamous cell
carcinoma (LUSC); prostate adenocarcinoma (PRAD); colon adenocarcinoma (COAD);
and kidney chromophobe (KICH). We discarded other cancer types in TCGA from our
analysis, as they had fewer control samples. We used the TCGA dataset of four cancer types
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BRCA, COAD, LUSC, and GBM (glioblastoma multiforme), for subtype detection. Three
different data types—gene expression, DNA methylation, and miRNA expression—of the
same patient set were used herein. To perform the survival analysis, we also downloaded
the clinical data of the patients from the TCGA. We used the TCGAbiolink package to load
data from TCGA [19].

3.2. Classifying Disease Samples with Normal Samples

First, we evaluated the performance of DTA for cancer with normal sample classi-
fication using gene expression data. We selected a comparatively small k (1 ≤ k ≤ 20)
number of genes using DTA for each cancer type. DTA performed remarkably well in
classifying the diseases of the normal samples compared to the baseline (classification
without any feature reduction). Additionally, its performance was quite consistent over
different disease types in achieving a high ROC-AUC score with a low FN rate, as shown
in Figure 2. We also benchmarked four other methods twoPhase [3]; iterFS [4]; Barabasi [9];
and LIMMA. We found that the performance of these algorithms was inconsistent, and
that the performance degraded—especially when a small number of features were selected
(Figure 2). This shows that these standard feature selection algorithms cannot find the most
non-redundant and relevant features that reduce the classification accuracy. The average
of the FP, FN, and ROC-AUC scores for the classification of six different cancer types are
shown in Figure 2a. DTA achieved an almost perfect ROC-AUC using only three genes,
while the other methods struggled to achieve a ∼0.7 ROC-AUC for the same number of
selected genes. The FP, FN, and ROC-AUC score of BRCA classification are shown in
Figure 2b, and the ROC-AUC of LUSC, LUAD, is shown in Figure 2c,d.

3.3. Multiclass Disease Classification

Then, we extended our analysis to evaluate the performance of DTA in a multiclass
disease classification problem. We trained a multiclass classification model using SVM
with a linear kernel and also performed 5-CV. DTA showed a remarkable improvement in
ROC-AUC classification compared to the other gene selection methods and the original
data. In particular, DTA achieved approximately 0.9 ROC-AUC for the selected 20 genes.
Especially for a small number of selected genes, the performance of the other methods was
quite poor. The comparison of ROC-AUC of DTA to the other two feature section methods
twoPhase and iterFS is shown in Figure 2e. These feature selection algorithms performed
poorly for a small number of genes compared to DTA.

3.4. Disease Subtype Detection

DTA-selected genes performed quite well to identify different subtypes in a cancer
type. For most of the cancer types, the identified clusters have a different survival profile.
The DTA method improved the p-value of the survival profile/Kaplan–Meier curve of
the clusters over the baseline (without feature selection) shown in Figure 3. Here, a low
p-value confirmed that the survival profile of patients in different clusters is significantly
different. Furthermore, we benchmarked the result with the other two feature selection
techniques: PCA and maximum variance (VAR). DTA showed a better and more consistent
performance in most cancer types in terms of the p-value of the Kaplan–Meier curve and
average silhouette score of the clusters. We also performed a functional analysis on the DE
gene set of the identified clusters. This further confirmed that the identified clusters are
related to very different biological pathways.

3.5. Key Findings on Brca

Breast cancer is the most commonly diagnosed cancer among US women after skin
cancer. In the TCGA-BRCA dataset, the DE method, LIMMA, identified 13,493 genes
as differentially expressed among 18,934 genes (adj p-value < 0.05), most of which were,
however, redundant and co-regulated. To identify the non-redundant genes, we applied
the DTA method on this TCGA dataset. DTA achieved an almost perfect ROC-AUC only



Cancers 2021, 13, 4297 7 of 14

using three genes—while the other methods struggled to achieve 0.7 ROC-AUC using the
same number of genes. The genes selected by DTA for k = 10 are ANO3, CT83, ERBB2,
MAGEA6, OR7D2, SPAG6, TDRD12, TDRD9, UGT2B11, VSTM2A. However, surprisingly
among these top 10 genes, SPAG6, OR7D2, TDRD9, and TDRD12 genes were not found to
be differentially expressed although the involvement of some of these genes was already
mentioned in the literature. For example, ERBB2 is an oncogene whose involvement has
been reported in several studies for the past 30 years [20]. The expression of MAGEA6 was
found to be associated with the poor survival of breast cancer patients [21]. Thus, DTA
could find important features (i.e., genes) from the dataset even though their expression
profiles did not exhibit significant differential expression. Although DTA picked genes
TDRD9 and TDRD12, which belong to the same family, we found their expression pattern
to be quite different for cancer samples. We calculated the logical XOR of the PEEP profile
for the genes TDRD9 and TDRD12 and found that approximately 6.2% of patients showed
a reverse expression profile (i.e., TDRD9 is expressed while TDRD12 is not expressed or
vice versa). This value is higher than the expected random value of 4.875% (considering
genes follow a Gaussian distribution and a Zt cutoff of 2.5); this suggests that TDRD9 and
TDRD12 expression is more different than an average/random gene in this dataset.

a)

b)

c) d) e)

Figure 2. Performance benchmarks of DTA compared to other feature selection methods for disease
classification. The blue color denotes PCA, green denotes two-phase, cyan denotes Barabasi, magenta
denotes LIMMA, while red denotes DTA geneset: (a) the average false-positive, false-Negative, and
ROC-AUC score of the SVM classifier over six different disease datasets from TCGA; (b) false-positive
(FP), false-Negative (FN), and ROC-AUC score for the TCGA-BRCA dataset; (c) ROC-AUC score
of TCGA-LUSC dataset; (d) ROC-AUC score of TCGA-LUAD dataset; and (e) ROC-AUC score of
multiclass classification for six cancer types from TCGA.
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Figure 3. Disease subtype detection using DTA as a feature reduction step. Kaplan–Meier curve of
the detected subtypes using DTA (left) and maximum variance (right) selected genes of (a) COAD
cancer; and (b) GBM cancer. The colors indicate the different clusters that were identified. p-value
signifies that the patients in different subtypes have different survival profiles.

We observed that the maximum number of DTA identified genes are differentially
expressed. For example, for BRCA cancers, 13,493 genes were found to be differentially
expressed (adj p-value < 0.05). SPAG6, TDRD9, TDRD12, OR7D2 are the four genes which
come in the top ten DTA genes, but are not differentially expressed. Five out of the top ten
DTA genes also come under the Barabasi combinatorial pool of geneset: MAGEA6, CT83,
ERBB2, ANO3, OR7D2. Only four genes chosen by DTA are differentially expressed and
also present in the Barabasi geneset. These four genes are MAGEA6, CT83, ANO3, ERBB2.
The top ten DTA genes which are not differentially expressed or come under the Barabasi
geneset are SPAG6, TDRD9, TDRD12.

Subtype detection using DTA identified four subtypes of BRCA of 299 patients. The
DTA identified subtypes did not show different survival profiles (p-value = 0.07). The other
feature selection methods also failed to achieve the subtype with significant difference
in survival profiles. Subtype 1 has 121 patients, whereas a total of 91 and 87 patients
were identified as subtype 2 and subtype 3, respectively, in BRCA. COL10A1, MMP11,
DMD, C10orf90, and CNTNAP3 are the top five differentially expressed genes (based on the
lowest p-value) of BRCA subtype 1. Similarly, the genes COL10A1, MMP11, CXCL2, CA4,
and LRRC3B were the top five differentially expressed genes in subtype 2. The top five
differentially expressed genes of subtype 3 are TPX2, KIF4A, NEK2, CDCA5, and COL10A1.

We compared our approach with the PAM50 enriched BRCA subtype identified by
Berger et al. [22] as shown in Table 1. Our subtype 2 mainly includes patients from the
Basal subtype which are expected to lose the function of TP53, RB1 and BRCA1 genes [23].
Fifty-two out of 55 patients in the Basal subtype come under subtype 3. The DTA identified
that first subtype also overrepresents the LumA subtype. Note that PAM50 identifies
subtypes based on RNA expression only, whereas our method integrates multiview data
containing RNA expression, DNA methylation and miRNA expression.
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Table 1. A comparison of our approach with the PAM50 enriched BRCA subtype identified by
Berger et al. [22].

Group Basal Her2 LumA LumB Normal Sum

1 1 12 80 26 2 121
2 2 13 44 29 3 91
3 52 10 16 8 1 87

Sum 55 35 140 63 6 299

3.6. Key Findings on COAD

Colorectal cancer is the fourth-ranked in terms of cancer-related deaths globally.
DTA selected the following genes as important indicators of colorectal cancer: ABCA12,
CLDN18, MAGEA11, MAGEA6, MTRNR2L1, MTTP, NPC1L1, PRSS21, SLC14A1, and
SPESP1. CLDN18 encodes the gastric type adhesion molecule and is a known biomarker
for gastric cancer [24]. MUC5AC expression is associated with tumorigenesis in colorectal
cancer via a serrated neoplasia pathway [25]. Another study found that MUC5AC was
expressed in pancreatic ductal and various gastrointestinal tract tumors [26]. Colorectal
cancer is strongly associated with lipid metabolism; NPC1L1 is a sterol transporter that is a
key regulator of lipid homeostasis. NPC1L1 knockout mice were found to have a reduced
number of tumors than the wild-type mice [27]. SLC14A1 was identified in intestinal stem
cell signature, which is associated with the poor survival of COAD patients [28]. Thus,
the genes detected by DTA are significant predictors of colorectal cancer.

DTA also identified four different clusters in COAD by using only 10 features from
each of the three data types. These clusters showed an entirely different survival pro-
file (p-value< 0.00022). The clusters consisted of 26, 37, 48, and 25 patients, respectively.
The top five DE genes of the first cluster are CDH3, CA7, PHLPPL, GCNT2, and ENPP6. The
most related functional pathways considering these genes are cell division, the G2/M transi-
tion of the mitotic cell cycle, mitotic nuclear division, regulation of protein serine/threonine
kinase activity, leukocyte migration. Top differentially expressed genes in the second clus-
ter are MYOC, ABHD7, ABCA8, SLC30A10, and CDH3, and the corresponding enriched
biological processes are cell division, the G2/M transition of the mitotic cell cycle, cell
cycle G2/M phase transition, ncRNA processing, and the ncRNA metabolic process. CA7,
CDH3, CLEC3B, CLDN8, SLC30A10 are the most differentially expressed genes in cluster 3,
corresponding to the enriched biological processes: mitotic cell cycle phase transition, cell
cycle G2/M phase transition, cell cycle phase transition, the G2/M transition of the mitotic
cell cycle, and mitotic nuclear division. In the last cluster, the most expressed genes are
ABCA8, SFRP1, CDH3, GCNT2, KIAA1199, and the corresponding enriched GO terms are
the regulation of leukocyte migration, leukocyte migration, cell division, mitotic nuclear
division, and cell cycle G2/M phase transition.

3.7. Key Findings on GBM

Glioblastoma multiforme is the most common malignant brain tumor in adults. DTA
selected the following genes in this cancer: ARHGEF2, FRS3, IRX2, VAT1L, NDRG1, PDPK1,
PTK6, RAB3C, RPS4Y1, and WDR18. NDRG1 is a tumor suppressor gene with the ability of
metastasis and migration of cancer cells. A study found NDRG1 to be associated with the
hypoxia-associated molecule and is expressed in the GBM cell [29]. GBM is also the most
studied dataset for subtype detection. Here, we identified four subtypes for 276 GBM patients.
The first cluster consists of 137 patients, and the most expressed genes are IL12RB2, CACNB1,
ICAM5, BTN3A2, and INPP5F. The regulation of vesicle-mediated transport, axodendritic
transport, neuron death, mitotic cell cycle phase transition, and cell cycle phase transition are
the most enriched processes in this cluster. The second cluster consists of 59 patients, and
the signature DE genes are PI4KA, IL12RB2, CACNB1, MICAL2, and SLC17A7. The third
cluster has 33 patients with a high survival rate, and the top DE genes are WSCD2, CACNB1,
KDELR2, MICAL2, and RYR2. Mitotic cell cycle phase transition, cell cycle phase transition,
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axodendritic transport, axonal transport, and regulation of mitotic cell cycle phase transition
are the top enriched processes in this cluster. The fourth cluster consists of 47 patients with
signature DE genes being HRH3, TSPYL1, MAP2K1, GOT2, and FUT1. The functional analysis
of identified clusters can be found in Supplementary Figures S2–S5.

3.8. Key Findings on LUAD

TCGA-LUSC has a dataset of 59 control samples and 533 LUAD patient samples. Here,
we achieved almost perfect AUC using only 3 genes using DTA. The top 10 genes selected
using DTA are ABCC2, CHRNA9, CSAG1, EPS8L3, INSL4, SLC13A2, SPESP1, TDRD1,
ZFR2, and ZNF560. One study identified ABCC2 as an important gene candidate for LUAD
using the expression and network analysis [30]. CSAG1 encodes cancer-germline antigens
(CGAs) [31]. Aberrant INSL4 signaling is related to LKB1-inactivated lung cancer [32].
CHRNA9 is a Nicotinic Receptor and is related to smoking-induced tumor formation [33].
We did not perform subtype detection for LUAD due to the lack of common patients in the
three datatypes used in our analyses.

4. Discussion

Feature selection is a crucial step of biological data analysis as biological measurements
contain a high number of features compared to samples. Here, we present an algorithm
that showed a remarkable improvement over existing feature selection techniques for
disease classification and subtype detection problems. Genes selected by our algorithm
were previously validated as shown in Table 2. Furthermore, we performed a few tests to
analyze some of the algorithm’s properties, making it an excellent feature selection method.
To ensure each identified cluster in a cancer type is functionally different, we enriched
the functional GO terms from the DE genes of each cluster of GBM and COAD cancers.
The enriched functions of each cluster are quite different from each other (Figure 4a and
Supplementary Figure S6). We also computed the correlation between the selected genes by
our algorithm and compared them with the other feature selection methods. We observed
a very low correlation between the selected genes, which ensures the capability to choose
non-redundant features by our method. The mean gene-to-gene correlation is higher
for LIMMA and VAR than DTA, as shown in Figure 4b. Lastly, we predicted the gene
regulatory network from the gene expression data of a cancer type. We used a consensus
of six different gene-regulatory network prediction algorithms to obtain a high confidence
regulatory network based on our previously developed pipeline [34]. Then, we performed
a clustering to group similar genes in the network. Thus, the genes belonging to a cluster
regulate each other more than regulating genes from the other clusters. We found that
the genes selected by DTA belonged to different clusters, as shown in Figure 4c, whereas
feature selection methods such as LIMMA and VAR choose the features, i.e., genes that
belong to the same cluster.

Table 2. List of previously validated genes selected by our algorithm.

Disease Genes Comments

BRCA ERBB2 Involvement is reported in several studies for the past 30 years [20].
MAGEA6 Associated with poor survival of breast cancer patients [21].

COAD

CLDN18 Encodes gastric type adhesion molecule and known biomarker for gastric cancer [24].
MUC5AC Associated with tumorigenesis in colorectal cancer via a serrated neoplasia pathway [25].
NPC1L1 Key regulator of lipid homeostasis [27].
SLC14A1 Associated with poor survival of COAD patients [28].

GBM NDRG1 Associated with the hypoxia-associated molecule and is expressed in GBM cell [29].

LUAD

ABCC2 Important gene candidate for LUAD [30].
CSAG1 Encodes cancer-germline antigens (CGAs) [31].
INSL4 Related to LKB1-inactivated lung cancer [32]

CHRNA9 Nicotinic receptor and is related to smoking-induced tumor formation [33].
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a)

b)

c)

Figure 4. (a) Enriched biological functions of each subtype of GBM cancer type where DTA was used
as a feature reduction technique. xlabel denotes the enriched biological terms and color intensity
represents the p-value of the association; (b) analysis of how DTA selected features are different from
those identified by other feature selection methods. Here, we compared the correction among the
genes for different feature selection and DE methods. The left-side figure is for BRCA and the right
side is for COAD; and (c) Predicted gene–gene interaction network of BRCA. The colors indicate
five different clusters that were identified. The big circle shows the DTA selected genes, which are
distributed over the network. The medium-sized circle denotes the genes selected by LIMMA, which
mainly belong to one cluster (cluster with violet color).

5. Conclusions

In this work, we introduced a novel feature selection technique that selects important
and non-redundant disease-related features. We applied DTA for three different biological
problems. DTA outperformed other feature selection techniques in the binary classification
of healthy and cancer samples and the multiclass classification of various cancers. It also
improved the performance of a subtype detection algorithm by selecting the important
features for few cancer types. Currently, DTA operates on a patient-specific binary per-
turbation matrix. Hence, some information can be lost due to discretization to create a
patient-specific binary profile. Thus, one potential improvement over our current method
is to design extensions of the DTA algorithm to work with the continuous inputs. Theo-
retically, this can reduce the information loss due to discretization and further improve
the results. Currently, our algorithm selects genes purely based on the expression data.
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Adding the prior knowledge of gene families and their functionality can further improve
our feature selection process.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
cancers13174297/s1, Figure S1: Classification accuracy of BRCA for two different cutoffs (a) zt = 2
(blue), (b) zt = 3 (orange). Figure S2: Functional analysis of GBM cluster 1. Figure S3: Functional
analysis of GBM cluster 2. Figure S4: Functional analysis of GBM cluster 3. Figure S5: Functional
analysis of GBM cluster 4. Figure S6: Enriched biological functions of each subtype of COAD cancer.
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