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Sex-dimorphic role of prefrontal oxytocin receptors
in social-induced facilitation of extinction in
juvenile rats
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Abstract
We previously reported that in the adult animal extinction in pairs resulted in enhanced extinction, showing that social
presence can reduce previously acquired fear responses. Based on our findings that juvenile and adult animals differ in
the mechanisms of extinction, here we address whether the social presence of a conspecific affects extinction in
juvenile animals similarly to adults. We further address whether such presence has a different impact on juvenile males
and females. To that end, we examined in our established experimental setting whether conditioned male and female
animals extinguish contextual fear memory better while in pairs. Taking advantage of the role of oxytocin (OT) in the
mediation of extinction memory and social interaction, we also study the effect of antagonizing the OT receptors
(OTR) either systemically or in the prefrontal cortex on social interaction-induced effects of fear extinction. The results
show that social presence accelerates extinction in males and females as compared to the single condition. Yet, we
show differential and opposing effects of an OTR antagonist in both sexes. Whereas in females, the systemic
application of an OTR antagonist is associated with impaired extinction, it is associated with enhanced extinction in
males. In contrast, prefrontal OT is not engaged in extinction in juvenile males, while is it is critical in females.
Previously reported differences in the levels of prefrontal OT between males and females might explain the differences
in OT action. These results suggest that even during the juvenile period, critical mechanisms are differently involved in
the regulation of fear in males and females.

Introduction
Fear memory can be weakened through extinction

training1–4. Important open questions regarding extinc-
tion include which factors can modulate extinction and
whether extinction can be enhanced without pharmaco-
logical intervention. We previously showed that fear
extinction could be facilitated by extinction in pairs; i.e.,
two animals that undergo extinction together5. We fur-
ther demonstrated that this phenomenon is dependent on

oxytocin (OT) in the infralimbic subregion of the pre-
frontal cortex (IL-mPFC) since the microinfusion of an
OT receptor (OTR) antagonist inhibited the extinction
enhancement5. We previously showed that distinct
mechanisms regulate fear extinction in adult and juvenile
animals following exposure to stress6,7 and in response to
OTR manipulations5,8,9.
OTR receptors are abundantly expressed in the

mPFC10–12 and are known to play a role in the facilitation
of extinction9,13 as well as in mediating social behavior14–16.
In young juvenile animals, social behavior is pre-
dominantly characterized by social play behavior17–19.
Lesions to either the mPFC or orbitofrontal cortex (OFC)
in rats lead to changes in both adult social and juvenile
play behaviors20–22.
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Social behavior exists in male and female juvenile ani-
mals; female rats exhibit less anxiety-like behavior than
their male conspecifics23,24. There have been inconsistent
findings on the question of whether the brain OT system
is sexually dimorphic in adult animals25–27. A previous
study addressed age- and sex-dependent differences in
OT plasma levels following exposure to stress, and
reported that not only both male and female adults, but
only juvenile females showed a significant increase in
plasma OT levels following stress exposure28. These
results may suggest that even prior to puberty, differences
between males and females exist.
In this study, we use the paradigm that we developed for

social interaction during the extinction of fear to address
sex differences in juvenile animals and to explore if
manipulations of systemic or prefrontal OT differently
affect extinction and social interaction-induced facilita-
tion of extinction.

Materials and methods
Animals
Experiments were performed on juvenile male and female

Sprague Dawley rats aged 27 postnatal days (P27) and bred
at the Haifa University animal facilities. The subjects were
randomly selected from several litters to avoid the litter
effect, and no more than two animals were taken from each
litter. At postnatal day 20 (P20) the pups were weaned and
housed in plexiglas cages and maintained on a free-feeding
regimen with a 12-h light: 12-h dark schedule (7:00 AM to
7:00 PM). Sample size was determined according to our
previous findings as sufficient to obtain statistically sig-
nificant results5. In experiment 3, surgery of the juvenile
was performed at P23, when the rats weighed 55–70 g.
Animals were anesthetized using ketamine (65mg per kg,
intraperitoneally
(i.p.)) and xylazine (7.5mg per kg, i.p.), and restrained in a
stereotactic apparatus8,29–31. The animals were implanted
bilaterally with a stainless-steel guide cannula (23 gauge)
aimed at the mPFC (aiming to the IL) (anteroposterior,
+2.7mm; lateral, ±0.6mm; ventral, −3.8mm; Supplemen-
tary Fig. S1)31,32. The cannulae were held in place with
acrylic dental cement secured with two skull screws. A
stylus was placed in the guide cannula to prevent clogging.
The animals were allowed 3 days to recuperate before being
subjected to experimental procedures8,29,31. The young rats
have a much faster recovery rate than the adults. In
numerous studies, 24 h are considered to be sufficient for
juvenile’s recovery from cannula and electrode implantation
surgery33–36. Thus our method of allowing for 3 days of
recovery was designed to be the least traumatic for the
juvenile animals. The procedures were performed in strict
accordance with the University of Haifa ethical committee
regulations and the US National Institutes of Health
guidelines (NIH publication number 8023).

Housing
All animals were housed in groups of four to five rats

per cage in the animal room. Animals were randomly
divided into “single” and “pairs” conditions. Animals that
were assigned into the “pairs” condition were always taken
from the same home cage. This pairing-assignment
method, which is based on familiarity, is used to prevent
aggressive behavior, as described in previous studies5,37,38.
Due to the experimental setting of testing in either single
or pairs, no blinding of the experimenter to the subject
condition was possible.

Contextual fear conditioning
Based on our previous conditioning and extinction

protocols5,29, rats from all experimental groups were
placed in a conditioning chamber with black methacrylate
walls, a transparent front door, a top-view video camera,
and a metal grid floor. For conditioning, each animal
received three foot shocks delivered through the grids
(0.6 mA lasting 0.5 s at 2-min intervals).
Rats were given 2min for acclimatization to the context

before delivery of the first shock and an additional 2min after
the last shock. In total, the whole conditioning session lasted
about 8min (for details39,40). The chamber was cleaned with
70% ethanol and dried with paper towels after each trial. All
animals underwent fear conditioning separately.

Retrieval session (Ret)
The retrieval session was performed at 24 h after con-

ditioning. The conditioned rats were placed in a con-
ditioning chamber for 5 min during which no shock was
delivered. Afterward, based on freezing-rate data (com-
parable freezing levels ± 10%), they were divided into two
groups: paired (pairs) and individuals (single). This allo-
cation served to ensure even distribution of basal
freezing rates.

Extinction sessions (Ext1 and Ext2)
Rats underwent two consecutive 10-min extinction

sessions separated by 24 h. The “pairs group” underwent
extinction training together with data collected from both
animals and rats in the “single group” underwent the same
procedure but individually.
Schematic representations of the protocols are repre-

sented in Figs. 1–3A.

Freezing
To record freezing, the data were analyzed with the

high-sensitivity movement transducer of Ethovision soft-
ware (Noldus), in which the animal’s movements were
recorded by a color video camera for offline analysis.
Motion and exploration were recorded and analyzed
using a designated software component of Ethovision. To
differentiate between the animals in the pairs condition,
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animals were marked with a Xylene-free, instant drying,
and waterproof permanent marker. Freezing duration was
defined as the overall time duration, in which the animal
ceases all types of movement except for respiration41–44.
Freezing duration was measured and averaged over all
sessions. For the conditioning session, the first 2 min
served for acclimatization to the chamber, during which
the rat explored the cage. The last 2 min were used to
estimate the success of the conditioning. For the extinc-
tion session, freezing was averaged over the whole session.
Two criteria of exclusion were set: (1) animals that
expressed immobility during the 2 min of acclimatization
period prior to conditioning and (2) animals that
expressed <50% of freezing at the retrieval test (Ret). Only
two animals were excluded based on high freezing levels
prior to conditioning.

Biochemical analysis of oxytocin levels
To examine the levels of OT in the mPFC in males and

females, naive animals were decapitated. The brains were
quickly removed, frozen in liquid nitrogen to “snap
freeze”, and stored at −80 °C until further processing.
Bilateral micropunches of 1-mm diameter were taken
from the IL-mPFC. The tissue micropunches were
homogenized in ice-cold lysis buffer (100Mm Tris pH 7.4,
150mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton x-
100, protease inhibitor, PMSF 1mM), and then the
homogenized samples were centrifuged at 14,000 rpm for
2 min. Only the superior fraction was collected, and OT
levels were determined using an oxytocin ELISA kit
(detection range: 15.6–1000 pg/mL; intra-assay variance
for low concentration samples 12.6%; inter-assay variance
for low concentration samples 20.9%; ab133050, Abcam).

Drugs and administration
For microinjections, we used the OT receptor antago-

nist desGly-NH2,d(CH2)5[D-Tyr
2,Thr4]OVT (kindly

donated by Dr. M. Manning, University of Toledo, Ohio)
dissolved in saline (0.9% NaCl) to a final concentration of
153 μmol/L (74.8 ng, this dose is based on the work of
refs. 5,45).
For systemic injections, we used the OT antagonist

hydrochloride (S)-2-amino-N-((1S, 2S, 4R)-7,7-dimethyl-
1-((4-o-tolylpiperazin-1-ylsulfonyl)methyl) bicyclo[2.2.1]
heptan-2-yl)-4 (methylsulfonyl) butanamide was
(L-368,899) dissolved in saline to a final concentration of
1.5 mg/ml and injected i.p. at a dosage of 2 mg/kg. There
is evidence demonstrating that peripherally administered
L-368,889 crosses the blood–brain barrier46 and affects
oxytocin-associated behaviors47. All control groups were
injected with saline. The experimenter was blind to the
injected drug.
All microinjections or injections were performed 30 min

before the Ext1 session; this time point was chosen based
on previous experimental findings5,8,9. For microinjec-
tions, the stylus was removed from the guide cannula, and
a 28-mm gauge injection cannula was inserted. The
injection cannula was connected via PE20 tubing to a
Hamilton microsyringe driven by a microinfusion pump
(Harvard Apparatus, USA). Microinjections were per-
formed bilaterally using a volume of 0.5 µl per hemisphere
delivered over 1 min. The injection cannula was left in
position for an additional minute to minimize dragging of
the injected solution along the injection tract.

Statistics
On each of the testing days, freezing was averaged.

Freezing is determined as the percentage of time spent
freezing, and the results are expressed as means ± SEM.
All data were analyzed using the Shapiro–Wilk test to
examine sample distribution and analyzed using the F test
to examine homoscedasticity. All normally distributed
data were analyzed using mixed ANOVA. All the ANO-
VAs were followed by one-way ANOVA and Student’s t
tests when needed. All tests were two-tailed, and a P value
of <0.05 was considered statistically significant. All post-
hoc comparisons were made using least significant dif-
ference (LSD) multiple comparison tests.

Results
Experiment 1: facilitation of extinction by social presence
The aim of this experiment was to examine whether

social presence affects the memory of extinction similarly
in juvenile males and females. To that end, animals
underwent fear conditioning as singles, followed by
retrieval session as singles or pairs. Animals were divided
into four groups (male-singles: n= 6, male-pairs: n= 8;
female-singles: n= 8; females-pair-: n= 10). There were

Fig. 1 Enhanced extinction in male and female rats trained for
extinction in pairs. A Schematic representation of the behavioral
protocol. B Male and female rats were tested for the extinction of fear
memory in pairs or individually (pairs/single). Freezing levels were
similar between groups on the retrieval day (RET). ANOVA with
repeated measures on freezing levels on extinction days (Ext1 and
Ext2) showed significant effects of sex (&P < 0.001), with females
extinguishing faster than males, and condition (#P < 0.001), with the
pairs condition having higher extinction rates than the single
condition.
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no differences in the freezing levels during the retrieval
test, between groups that were later divided into different
conditions (F(1, 28) < 1, n.s.). No differences between
males and females were observed (F(1, 28) < 1, n.s.; Fig.
1B), indicating comparable baseline freezing during the
retrieval test.
ANOVA with repeated measures on freezing levels on

extinction days (Ext1 and Ext2) showed significant effects
of sex (males, females), and condition (singles, pairs) (P <
0.001 significance for both). However, without significant
interaction of sex and condition (F(1, 28)= 2.24, n.s.).
These results suggest that females exhibited lower freez-
ing levels in both single and paired conditions than males
and further show that extinguishing in pairs in both males
and females facilitates extinction. A significant effect of
the testing day was also found (F(1, 28)= 73.86, P <
0.001). A significant interaction for the testing day with
the condition (F(1, 28)= 8.57, P < 0.01) was found but not
with sex.

Experiment 2: sex-dependent effect of systemic OT on
single and paired extinction
The aim of this experiment was to examine whether the

effect of social interaction can be modified by manip-
ulating systemic oxytocin and the possible differences
between juvenile males and females. To that end, animals
underwent fear conditioning, followed by retrieval session
as singles and divided into eight groups (male-single-sal-
ine: n= 6, male-single-OTA: n= 10; male-pairs-saline: n
= 10, male-pairs-OTA: n= 10; female-single-saline: n=
7, female-single-OTA, n= 10, female-pairs-saline: n= 8,
female-pairs-OTA: n= 10). There were no differences in
the freezing levels during the retrieval test, between

groups that were later divided into different conditions
(F(1, 63) < 1, n.s.). No differences between males and
females were observed (F(1, 63) < 1, n.s.; Fig. 2B), indi-
cating a comparable baseline of freezing.
ANOVA with repeated measures on freezing levels on

extinction days (Ext1 and Ext2) showed significant effects
of drug (saline, OTA), sex (males, females), and condition
(singles, pairs) (P < 0.001 significance in all). Furthermore,
a significant interaction of drug and sex was found (F(1,
63)= 212, P < 0.001), but no significant interactions of
condition and sex (ns) or condition and drug (n.s.). The
testing day was found to be significant (F(1, 63)= 185,
P < 0.001). A significant interaction was found for testing
day, sex, and condition (F(1, 63)= 4.15, P < 0.005). All
other interactions were not significant. A follow-up ana-
lysis by sex showed that in males, the significant main
effects are condition (F(1, 32)= 38.0, P < 0.001), drug (F(1,
32)= 15.18, P < 0.001), and testing day (F (1, 32)= 150.07,
P < 0.001), but without significant interactions. Specifi-
cally, animals in pairs had reduced freezing levels com-
pared to singles. Interestingly, systemic inhibition of the
OTR resulted in reduced freezing levels compared to the
saline-treated animals. The lack of interaction between
condition and drug suggests that no difference in the
effects of drugs was observed in singles and pairs.
In females, significant effects of condition, drug, testing

day, and interaction between testing day and drug were
found, without other interactions. Follow-up showed that
Ext1 was significantly affected by condition (F(1, 31)=
22.4, P < 0.05) and drug (F(1, 31)= 219.93, P < 0.001), but
without significant interaction. However, the only sig-
nificant effect on Ext2 was drug (F(1, 31)= 181.4, P <
0.001). The females in the pairs condition showed reduced

Fig. 2 Oxytocin is involved in extinction and social-induced facilitation of extinction in females but not males. A Schematic representation of
the behavioral protocol. B, C Male and female rats were tested for the extinction of fear memory in pairs or individually (pairs/single), and were
systemically injected with saline or OT antagonist (OTA). Freezing levels were similar between groups on the retrieval day (RET). B Male freezing levels
at Ext1 and Ext2 showed that the pairs condition extinguished faster than the single condition (#P < 0.001). Systemic inhibition of the OTR with an
OTA resulted in reduced freezing levels compared to control, saline-treated animals, in both the pairs and single conditions (*P < 0.001). C In females,
systemic inhibition of the OTR with an OTA resulted in impaired extinction in both pairs and single conditions (*P < 0.001). The Female-Pairs-Saline
group was different from the Female-Single-Saline only at Ext1, but not Ext2 (#P < 0.001).
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freezing levels compared to the single condition only for
Ext1, and females treated with the OTR antagonist
showed enhanced freezing levels for Ext1 and Ext2.
These results suggest opposite effects of systemic inhi-

bition of OTR in males and females regardless of whether
tested in pairs or individually.

Experiment 3: sex-dependent effect of prefrontal OT on
single and paired extinction
We previously showed that in the adult animal, OT in

the IL is important for the social-induced enhancement of
extinction5. We thus examined the dependency of IL-OT
in juvenile males and females. To that end, an OTR-
selective antagonist (OTA) was microinfused into the IL-
mPFC prior to extinction (Ex1) in singles and in pairs.
The groups were assigned as following (male-single-sal-
ine: n= 8, male-single-OTA-IL: n= 10; male-pairs-saline:
n= 10, male-pairs-OTA-IL: n= 10; female-singles-saline:
n= 8, female-single-OTA-IL, n= 12, female-pairs-saline:
n= 10, female-pairs-OTA-IL: n= 12).
No differences between the groups (F(1, 72)= 1.8; n.s.)

were observed on the retrieval test, suggesting comparable
freezing levels in all the groups.
ANOVA with repeated measures (sex (males, females),

condition (single, pairs), drug (ASCF, OTA), testing days
(Ext1, Ext2); (2X2X2×2)) showed significant effects of sex
(P < 0.005), drug (P < 0.001), condition (P < 0.001), and
interactions of drug, sex, and condition (F(1, 72)= 6.32,
P < 0.05; Fig. 3B). Further, there was a significant inter-
action between testing day, drug, and condition (F(1, 72)
= 12.29, P < 0.001), but without an interaction between
testing day, drug, sex, and condition (P > 0.05).
A follow-up analysis showed that in males during Ext1

and Ext2, there was an effect of condition (P < 0.001)

without an effect of drug (n.s.), suggesting that blocking
OTR in the IL has no effect on extinction in males.
In contrast, a follow-up analysis for Ext1 and Ext2 in

females showed interactions between condition, drug, and
testing day (F(1, 38)= 5.3, P < 0.05). For Ext1, significant
effects of condition (F(1, 38)= 42.47, P < 0.001] and of
drug (F(1, 38)= 262.5, P < 0.0001) were found. However,
no interaction was reported between the two variables (n.
s.), suggesting differences between individuals and pairs
and that the drug similarly affected the single and the
pairs conditions.
For Ext2 however, a significant interaction between

drug and condition (F(1, 38)= 8.43, P < 0.001) was found
in addition to significant effects of drug (F(1, 38)= 368.3,
P < 0.001] and condition (F(1, 38)= 57.66, P < 0.001). A
follow-up analysis by drug showed no significant effect of
condition (single or pairs) for the saline groups, while
single and pairs significantly differed in the OTA groups
(t(20)= 8.57, P < 0.001]. The single-OTA-IL maintained
enhanced freezing levels compared to the pairs-OTA-IL
(63.3 ± 1.8%; 40.3 ± 1.9, respectively), suggesting a bene-
ficial effect of the pairs condition even under OTA-IL.
Together, these results suggest that inhibition of OTA

in the IL has an effect on extinction only in females
without affecting males, and that its effect in the pairs
condition is moderate compared to the single condition.

Differences in the OT levels in the mPFC of males and
females
The differential effects observed for males and females

in response to OT manipulations motivated us to ask
whether the two sexes have different baseline levels of OT
in the mPFC. Accordingly, males and females were
decapitated, and tissues from the IL-mPFC were taken for
OT quantification [see Yaseen et al.31]. An independent t

Fig. 3 Prefrontal oxytocin is involved in extinction and social-induced facilitation of extinction in females but not males. A Schematic
representation of the behavioral protocol. B, C Male and female rats were tested for the extinction of fear memory in pairs or individually (pairs/
single), and were microinjected with ACSF or the OT antagonist (OTA). Freezing levels were similar between groups on the retrieval day (RET). B Male
freezing levels at Ext1 and Ext2 showed that the pairs condition extinguished faster than the single condition (#P < 0.001). There was no effect of OTA
in the IL- mPFC. C Females having OTA microinjected into the IL had significant impairment in extinction in both the pairs and single conditions. The
Female-Pairs-Saline group was different from the Female-Single-Saline only at Ext1, but not Ext2 (#P < 0.001).
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test showed that females have significantly higher OT
levels than males (t(7)= 6.72, P= 0.035; males: 52.04 ±
5.63 pg/ml; females: 73.73 ± 5.9 pg/ml; Fig. 4).

Discussion
We previously established a behavioral paradigm in

which we showed that, in adult males, social presence
facilitates the extinction of fear and that this social-
induced facilitation is dependent on OT in the IL-mPFC5.
In this study, we used the same paradigm and examined
whether juvenile animals exhibit similar behavior while
also addressing possible differences between juvenile
female and male animals and the dependency of these
differences on OT. Our results show (1) social interaction
facilitates extinction in juvenile males and females, (2)
systemic OTR antagonist impairs fear extinction in
females in both single and pairs conditions, whereas it
facilitates fear extinction in males, and (3) prefrontal OT
is involved in extinction in females, but not in males, in
both single and pairs conditions.
These results indicate that even at the juvenile stage,

OTR inhibition exerts different effects in males and
females.

The effects of extinguishing in pairs on extinction of fear
Here and in our previous study, we tested the impact of

extinguishing fear in pairs on the extinction. Our previous
results in adult male rats showed that the social presence
of two animals that previously underwent fear con-
ditioning resulted in accelerated extinction rates com-
pared to solitary extinction5. In this study, we replicate
these findings in juvenile animals and report the beneficial
contribution of social presence for fear extinction in both
juvenile males and females; freezing levels were sig-
nificantly lower in both sexes in the pair’s condition

compared to the single condition. It is worthy of men-
tioning that in females, the facilitation in the pair’s con-
dition is mainly reflected on Ext1 and less on Ext2 (Figs. 2
and 3); this is probably attributed to the floor effect that
shows very low freezing levels in both conditions.
It could be argued as animals underwent conditioning

as individuals, being tested in pairs may result in a per-
ception of the conditioning context as a new one. We
previously reported that in adult animals the context is
not perceived as a new one as a reinstatement of fear even
in the pairs condition showed high freezing levels5.
However, as we did not conduct an experiment for rein-
statement in this study, we suggest that also in the juve-
nile animal, the presence of another animal that
underwent the same conditioning procedure can have a
protective effect and help to reduce fear. Future studies
should address and dissociate between social presence
and exploratory behavior (for example, for an object) on
fear reduction.
The reduction in freezing by social presence could be

mediated by play behavior, as juvenile social play behavior
is one of the earliest forms of non-mother-directed social
behavior in rodents. This may imply that the way fear
reduction is mediated by social presence may differ in
juveniles and adults and may suggest that the social play
induced by the presence of another animal may reduce
context-induced fear. However, it should be noted that in
this study, we did not examine other social behaviors, but
we focused on freezing behavior.

Sex differences in social interaction
Juvenile’s social play behavior is sexually dimorphic with

males exhibiting higher levels compared to females. Males
were reported to engage in more rough-and-tumble social
play than females48–51. This sex difference was attributed
largely to an increased rate of play initiation by
males48,50,52–55. In this study, we do not observe differ-
ences between males and females, perhaps because the
experimental setting does not allow for natural social play.
Future studies should address the possible link between
social play in juvenile rats and the reduction in fear
responses. Interestingly, it was previously reported that
females exhibit higher locomotor activity than males56–58.
We dismiss the possibility that reduced freezing levels
result from more locomotor activity in females since we
did not observe differences in freezing levels between
males and females during the retrieval or conditioning
sessions. Further, it was reported that, juvenile female, but
not male, animals show renewal of fear and spontaneous
recovery following extinction training59, suggesting sig-
nificant differences in extinction behavior between males
and females60. Although we did not find qualitative dif-
ferences between males and females or different loco-
motion activity during conditioning or retrieval, future

Fig. 4 Juvenile males and females have different levels of
prefrontal oxytocin. Juvenile males and females were decapitated,
and OT levels were measured from punches from the mPFC.
Independent t test showed that females have higher levels of OT in
the mPFC (&P= 0.035).
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studies should address whether differences in fear beha-
viors are influenced by baseline anxiety differences in
males and females.
Importantly, dominance and kinship were not con-

trolled for in this study. Dominance was found to be
influential in socially transmitted fear conditioning
memory in adult males61, and kinship was found to be of
similar involvement in the adult females62. There are as
yet no evidence of the role of these factors in the
extinction learning of the juvenile male and female.
Future studies should address these issues at the earlier
stages of development.

The role of oxytocin in extinction and the beneficial effect
of social interaction
Another main finding of this study is the differential

role of OT in mediating extinction in males and females.
We addressed this by systemic and intra-IL-mPFC injec-
tions of OT antagonist. Although we expected to find
differences in the pairs, but not singles, the results show
opposite patterns in both sexes. Surprisingly, whereas
systemic administration of an OT antagonist impaired
extinction in females, it facilitated extinction in males,
regardless of the testing condition. The systemic admin-
istration of OTA has previously been demonstrated to
inhibit OTR within the brain for 6–18 h63. We speculate
that the observed long-term effects of the drug on beha-
vior are not related to its pharmacological properties
per se, but rather due to an effect on memory processes
that occurred immediately following the OTA adminis-
tration and persisted for 48 h.
To the best of our knowledge, the majority of research

addressing the effects of OT manipulations or behavio-
rally dependent release of OT has focused on adult male
animals28. It was previously reported that exposure of
male rats to novelty, forced swimming, or social defeat
rapidly increases OT release into the blood but also within
the PVN and/or SON and in other limbic brain regions,
such as the central amygdala or septum64,65. It should be
noted that we did not measure differences in OT release
after the different conditions, we only addressed whether
baseline differences in OT in the mPFC in males and
females could mediate the observed differences in the
effects of social interaction. Future studies should address
how social interaction affects OT levels in the mPFC in
juvenile males and females. Nonetheless, the results of the
present report clearly show that not only OT levels are
different in juvenile males and females, but using the same
dose and time point, the effects of blocking the OTR are
different in males and females. The results also suggest
that regardless of the social condition of testing (pairs vs.
single group), blocking the OTR results in similar effects
within the same sex. Our current work did not consider
dose-dependency, and it is plausible that different doses

could elicit different effects. It was previously reported
that in males, only adult animals show significant
increases in plasma OT levels following exposure to
restrain stress, while juveniles do not exhibit such an
increase at all. Female adults have a higher baseline OT
level and show a transient decrease in response to stress.
Juvenile females have an increase in OT levels after stress
and are, in this respect, surprisingly similar to the adult
male28. Therefore, age and sex may determine the effects
of OT on cognitive and emotional processes.
In addition, recent human studies have demonstrated

that intranasal application of OT has a sex-dimorphic
dose-dependent effect on the response to negative social
stimuli. Specifically, males exhibit decreased activation of
the amygdala in response to fearful faces when adminis-
tered with an intermediate dose of OT. In contrast,
females showed an increase in the same parameter even
after the administration of lower doses of OT66,67. This
implies that the application of exogenous OT may change
the valence of social presence in a sex-dimorphic manner.
The mPFC, which is critically involved in mediating

extinction of fear68,69, is especially sensitive to experi-
ments involving both social and emotional tasks70. The
mPFC has an abundance of OT receptors71, which are
crucially involved in modulating social behavior in
humans and nonhuman mammals72,73 and mediating
anxiety response74. In addition, we and others previously
showed that ICV microinfusion or direct microinfusion
into the IL-mPFC of OT or its agonist could enhance fear
extinction in adult animals9,75, while in juvenile animals,
microinfusion of OT into the IL of mPFC had no effect on
subsequent extinction8. In contrast, antagonizing OR in
the IL of the adult male animal did not affect freezing in
the Single condition but precluded the facilitatory effect of
extinguishing in pairs5. In the juvenile male animals,
similar treatment in both single and pairs conditions had
no effect on subsequent freezing. Thus, blocking the OT
system did not preclude the facilitatory effect of social
interaction on extinction, suggesting that the enhancing
effect of social interaction on extinction in juvenile males
is not mediated through mPFC-OT, unlike the adult
males5. These results join our recent reports in showing
that the mechanisms mediating extinction in adult and
juvenile animals may be distinctive6–8,29. The present
findings provide strong evidence of sex difference, even
before sexual maturation, in many biological processes
and signaling and point to substantial differences between
males and females76. This will open future research
directions on sex differences in neurological and psy-
chiatric disorders76,77.
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