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This paper is based on a discussion that was held during a special session on models of mental disorders, at the NeuroMath
meeting in Stockholm, Sweden, in September 2008. At this occasion, scientists from different countries and different fields
of research presented their research and discussed open questions with regard to analyses and models of mental disorders, in
particular depression. The content of this paper emerged from these discussions and in the presentation we briefly link biomarkers
(hormones), bio-signals (EEG) and biomaps (brain-maps via EEG) to depression and its treatments, via linear statistical models
as well as nonlinear dynamic models. Some examples involving EEG-data are presented.
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1. Introduction

When studying mental disorders researchers have primarily
focused on gathering data, that is, the approach is basically
empirical. In recent years, this has often been performed with
advanced technical equipment. On the other hand, analysis
of data often consists of rather elementary statistics, where
comparisons are performed through testing hypotheses.
There is also a growing literature on dynamics and non-
linear modelling, in particular for EEG data, but very rarely
it is distinguished between individual and within individual
variation. To some extent, technology is far ahead of analytic
tools and explanatory theories. The research mainly relies on
the following well known paradigm: (i) make a model of the
phenomenon under study; (ii) collect data by an experiment
or sample survey; (iii) test the model using data; (iv) refine

the model and restart. The weak point is of course the
knowledge about the model. Einstein once rather drastically
pointed out: “A theory can be proved by an experiment but
no path leads from the experiment to the birth of a theory.”

This paper is unique in so far that many researcher
from many disciplines have met and discussed depression
from different perspectives. The paper delivers a lot of
bricks, but no house is built. In fact, an architect is missing.
The aim of the paper is to share our experiences of a
multidisciplinary view where hopefully empirically oriented
researchers, as well as those who are more deductive can
find new perspectives in modelling depression. Indeed, the
project is a novel approach to help to uncover a serious
mental decease, which would be hard to carry out within
commonly structured academic institutions.
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Problems in Classifying and Modelling Major Depression. The
use of the current classification schemas, including DSM-
IV, undoubtedly contributes to the difficulties in finding
genes and biological variables for psychiatric disorders. They
are based on clusters of symptoms and characteristics of
clinical courses that do not necessarily describe homogenous
disorders, and rather reflect common final pathways of
different pathophysiological processes [1].

Moreover, biological variables and behaviours may not
be associated on a simplistic, one-to-one basis; the true
relationship between, for example, a gene and a behaviour,
is probably more akin to the sensitive dependence on initial
conditions in chaos theory. For example, there is presumably
no gene for ’language’. Instead, there is a number of genes
that pattern the embryonic brain in such a way as to facilitate
and allow the physiological processes necessary for language
acquisition. In a similar manner, no gene has been found
to singularly code for a human psychiatric condition. To
understand the pathogenesis and neurobiology of depression
multidisciplinary research is necessary.

A strategy to overcome the methodological difficulties
mentioned above is the proposal of putative endopheno-
types. The term “endophenotype” was described as an
internal phenotype (i.e., not obvious to the unaided eye) that
fills the gap between available descriptors and between the
gene and the elusive disease process [2], and therefore may
help to resolve questions about etiological models. Modelling
Major Depression must be based on the state of art of
knowledge of which psychopathological characteristics that
are biologically and clinically meaningful and can be assessed
quantitatively.

The endophenotypes may be defined at two levels, (a)
the key components of major depression, that is, kern
symptoms and stress sensitivity and (b) biological endophe-
notypes Not surprisingly, studies on the biological basis of
depression have found stronger associations between specific
biological dysfunctions and certain components of major
depression symptoms, such as cognitive deficits, rumination,
psychomotor retardation, anhedonia, and lowered mood
have been associated with specific focal abnormalities of
regional cerebral blood flow (CBF; [3, 4]). Thus, biological
variables strongly related to key components are defined as
biological endophenotypes.

The key components of major depression are: (1) Depressed
Mood (Mood Bias Toward Negative Emotions), (2) Anhedonia
(Impaired Reward Function), (3) Impaired Learning and
Memory, (4) Neurovegetative Signs, (5) Diurnal Variation, (6)
Impaired Executive Cognitive Function (Response Speed), (7)
Psychomotor Change (Retardation, Agitation), (8) Increased
Stress Sensitivity (Gender Specific).

The biological endophenotypes are: (1) REM Sleep, (2)
Abnormalities in Brain Structure and Function (Functional
imaging, Structural imaging, Receptor pharmacology, Sero-
tonin, Dopamine, and Norepinephrine), (3) HPA Axis and
CRH, (4) Intracellular Signalling Molecules (Neurotrophic
factors, Ubiquitous signalling cascades).

In this paper we describe some potential biological
endophenotypes, such as circadian rhythms, EEG findings
and animal models. It is obvious that there is no simple

model for depression, rather many complex models based on
various scales from a micro-, meso- and macro perspective.

Finding appropriate models for mental disorders is
the ultimate goal and we believe that for this purpose
relevant inter-/multi-disciplinary knowledge is necessary. In
this paper, we will briefly mention some advanced linear
statistical models, which are useful when studying circadian
rhythms (Sections 2 and 3), some ideas about complexity
in signals (EEG data, Sections 4 and 5), and we also
consider animal models (Section 7), which are important
in generating models for humans. Moreover, four different
examples which comprise EEG data are presented (Sections
6, 8, and 9).

2. Circadian Rhythms, Melatonin,
and Bright Light Therapy

Circadian rhythms control, among other things, appetite,
energy, mood and sleep. The study of these rhythms dates
back to the 19th century. From about 1980 one began to
study changes in physical strength, aerobic capacity, blood
pressure, mental alertness, and secretion of neurotrans-
mitters and hormones. Depression was then studied in
relation to the disruption of biological clocks. In Seasonal
Affective Disorder (SAD) the mood is closely connected
with circadian rhythm disorder. Moreover, it seems that the
Suprachiasmatic Nucleus (SCN), which may be viewed as a
master clock of the body, has difficulties to follow the changes
in the day and night cycle. A support for this hypothesis is
the production of the hormone melatonin and its relation
so SAD. Melatonin is produced by pinealocytes in the pineal
gland, which is under the influence of SCN and is suppressed
by daylight.

More than 20 years ago, depression was studied in
relation to various hormones, in particular melatonin. Mela-
tonin peak level was found lowered in acutely ill depressed
patients, who also had hypercortisolemia and an abnormal
dexamethasone suppression test in comparison to healthy
subjects. The melatonin peak levels remained low when these
patients were re-examined during remission, whereas the
changes in the hypothalamatic-pictiutary-adrent-cortex axis
disappeared (see Wetterberg et al. [5], Beck-Friis et al. [6]).
Therefore, melatonin levels may be viewed as biomarkers for
depression.

During the 1980s, Bright Light Therapy (BLT) was
introduced with a clear therapeutic effect on approximately
85% of the patients with SAD, as well as on patients with
bipolar disorder. Most studies support that BLT normalizes
circadian rhythms, that is, the phase and the melatonin level
(amplitude) may vary between individuals, as well as states
of physiological conditions and disorders (cf. [7, 8]).

It is important to have appropriate designs of experi-
ments, strong statistical/mathematical tools, and specialized
knowledge concerning the hormones under investigation.
For example, the effect of age, gender, body weight/height
on the melatonin level is important to take into account.
Initially, circadian melatonin rhythms were analysed with
ordinary regression analysis and trigonometric functions.
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Studies were often designed so that around 10 serum
measurements per individual were taken over the day and
night cycle. Usually between 10 and 50 individuals from
different diagnostic groups, including a control group, were
studied with an aim to compare the treatment groups with
respect to the hormone profile over the day and night
cycle. The main problem is that melatonin is not stable
in serum, since it is rhythmically released within relatively
short time intervals. With a sampling strategy of about 10
measurements over 24 hours the release of melatonin is
impossible to capture and the variation will be built in as a
measurement error.

3. Statistical Repeated Measurements Models
for the Analysis of Circadian Rhythms:
An Example of Linear Models Analysis

Since there are often repeated measurements on individuals
in depression studies one has to apply some of the repeated
measurements tools that nowadays are available, and not
use standard regression methods. The difficulty lays in
finding an appropriate model for the covariance structure
within individuals. A conservative approach is to assume an
arbitrary covariance matrix and if melatonin sampling has
taken place at the same time points for all individuals we
may apply the classical Growth Curve model due to Potthoff
and Roy [9] or generalized Growth Curve models (cf. Kollo
and von Rosen [10, Chapter 4]). Otherwise, we may rely
on mixed linear models analysis (cf. Fitzmaurice et al. [11])
with random parameters, which is suitable for analyzing
short time series. However, this approach usually gives only
asymptotic correct results.

Nowadays, for example, melatonin is often sampled via
an inserted indwelling intravenous catheter and samples
are collected every, say, 15 minutes. This calls for more
advanced methods than the suggested analyses above, which
are extensions of classical multivariate variance analysis. New
methods have to be developed in order to estimate melatonin
profiles and to perform rigorous significance tests. Of course,
one can always create summary statistics, but it is challenging
to make use of the full sampling resolution. In the future,
we will probably see more of high-dimensional statistical
analysis or stochastic process approaches.

4. Techniques for Identifying
Depression from EEG

An even more advanced method than to model high-
resolution hormone samples is to study bio-signals, such
as EEG and sometimes EEG in addition to hormones, in
particular when assessing BLT. The information from EEG
is of a completely different type than, for example, serum
melatonin concentration, and it is important to study these
often nonstationary time series.

As behavioural alterations are based on neurophysiology,
behaviour should be studied in association with brain
activity correlates—single neuronal discharges, local field
potentials and EEG/ECoG. In other words, the behavioural

changes in food intake, sleep patterns, work habits and
general motor activity are quite conspicuous in depression,
in humans as well as in animals, and may be quantified
with changes in EEG. Moreover, antidepressant treatments
(drug therapy, moderate physical exercise, electroconvulsive
shock) reverse more or less the EEG changes found in
human depression, or in certain animal models of depres-
sion. In this way, brain lateralization effects of depression
are electrophysiologically evident. The brain-rate param-
eter may serve as an effective integral indicator of these
changes (Pop-Jordanova and Pop-Jordanov, [12]). Neuronal
models and other approaches for electroencephalograph-
ically identifying/quantifying depression may act comple-
mentarily. In order to refine the treatment procedure,
we may suggest more specified electrocortical stimulations
in an animal model, and various analyses in complex-
ity of acquired electrical brain signals by multichannel
chronic recording techniques with telemetry technology
(Culic, [13]).

5. EEG Signals and Complexity Measures:
An Example of Non-Linear Analysis

In EEG signals, the classical statistical approach of inter-
preting measurement errors as generators of uncertainty
is not valid. For EEG, most of the noise seems due to
model error, which cannot be considered to be random.
We have not seen any EEG model where residuals are
completely randomly distributed around a fitted model.
This may be due to dependence structures but it is not
clear how to estimate this dependency in non-stationary
series. Therefore, it is reasonable that when studying EEG
completely different tools than classical statistical ones are
advantageous. For example, non-linear dynamic models
may play an important role. Moreover, the number of
used electrodes is important. With many electrodes we can
analyze spatio-temporal models, that is, brain-maps. Below,
a non-linear method of complexity analysis is presented. For
references to other non-linear methods for studying complex
EEG signals, see Freeman [14] and Perlovsky and Kozma,
[15].

Methods that assess signal complexity, like fractal and
symbolic methods, may be suitable. For example EEG-signal
complexity measured by Higuchi’s fractal dimension in time
domain, Df (t), is proposed in assessing BLT for treatment
of SAD (cf. Klonowski [16]). Df (t) is calculated for EEG-
signal on each electrode on the scalp and then a spatio-
temporal map of complexity measured by fractal dimension
can be made. The term ‘fractal dimension’ may have different
meanings, so it is necessary to emphasize thatDf (t) measures
local complexity of the curve representing the given signal—
a simple curve has always a dimension equal to 1, while a
plane has a dimension equal to 2, so local complexity of a
curve on a plane may be characterized by a number between
1 and 2, with 2 corresponding to pure noise (the curve “filling
up” the whole plane). For assessing signal complexity using
Higuchi’s Df in time domain it is not important if the signal
is “really” chaotic (which makes the curve that represents the
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signal showing fractal properties), and neither deterministic
nor random.

6. Example 1: An Example Where
Complexity is Studied

To illustrate a non-linear analysis technique, the EEG from 10
patients suffering of SAD and treated with BLT, was analyzed.
The data were collected before and 2 weeks after BLT was
applied. It was demonstrated that in patients suffering of
SAD, the mean Df of the EEG-signal was smaller than in
healthy subjects—BLT increased the mean value of Df in
those suffering of SAD (cf. Klonowski et al. [17]). For every
patient epochs with a duration of approximate 20 seconds
length, starting about 5 seconds before eyes-opening and
ending about 5 seconds after eyes-closing were analyzed.
When an eyes-opening event occurred, the fractal dimension
of the EEG-signal (based on windows of 100 observations)
increased from 1.1–1.3 to 1.5-1.6 in the occipital channels
and even to 1.8 in the frontal channels. This increase is
denoted by Δo. When the eyes remained open, the fractal
dimension diminished, and rose again when an eyes-closing
event occurred; when the eyes remained closed, it diminished
again. This decrease is denoted by Δc.

The open-/closed-eyes fractal dimension ratio (FD-
ratio), that is, Δo/Δc was investigated. For a clinical assess-
ment of the patients the Hamilton Depression Rating Scale
(HDRS), [18] was used It was observed that in EEG of
healthy subjects the FD-ratio was close to 1, while for patients
with high HDRS the FD-ratio differed from 1.0. For SAD
patients the FD-ratio was compared with HDRS before and
after BLT. For those patients for whom HDRS diminished
after BLT the FD-ratio “normalized”—it became closer to
1.0.

In the material mentioned above, there was a focus on
possible BLT effects on the EEG. One of the main problems
of studying depression is that patient groups are very inho-
mogeneous with a strong individual component of response.
Besides this, there are covariables such as age, gender and
body height/weight which influence the measured response.
Moreover, patients may have used medicines which even after
wash-out periods may have an effect on the results.

As a complement, one can consider ADHD children.
They constitute an interesting group, since they usually have
not undergone pharmacological treatment, and therefore
could be used as a control group (Zorcec et al. [19]).
However, in order to propose initial theories, the best is
probably to start with animal models.

7. Animal Models for Developing
Antidepressive Treatment:
A Short Introduction

The overall goal is to understand the interplay between
structural, chemical, and electrical signals in the brain,
which gives rise to a depressed behaviour in humans. In
particular, studies of animal models of depression may be

important for performing screening tests to discover and
develop new antidepressant drugs. Moreover, animal models
are used to simulate and elucidate neurobiological aspects of
depressive illness—to induce anhedonia as a core symptom
of depression, or to a particular subtype of depression, and to
examine mechanisms of depressive syndromes and of various
acute and chronic antidepressive treatments (Mitchell and
Redfern [20]; Harro [21]; Sarbadhikari and Sankar [22];
Willner [23, 24]; Porsolt et al. [25]). For instance, disruption
of neurochemistry of the noradrenergic locus coeruleus (LC)
is at least one aspect of the pathophysiology of major
depression (Klimek et al. [26]). The mutual role of LC and
cerebellum is also bringing new information about motor
and non-motor cerebellar processing (Culic et al. [27]).
The fitness of an animal model depends on the similarity
with the human disorder with respect to symptomatology,
etiology, biochemistry, electrophysiology and response to
antidepressive treatment. It is of vital importance to fully
recognize the limitations of such models.

Certain behavioural or physiological responses, which
are supposed to be important for depression, are measured
in animal assay models. Examples of assay models are: muri-
cide, potentiation of yohimbine lethality or amphetamine-
induced hyperactivity, antagonism of apomorphine-induced
hypothermia, preferential reduction of kindled seizures initi-
ated from the amygdale, and facilitation of circadian rhythm
readjustment. Such models focus on the predictive value
for screening of new drugs and other treatments, without
trying to create a human disorder in the animal. On the
other hand, homologous animal models place less emphasis
on correlative approaches and rely more on construct and
face validity. They are based on resemblance to symptoms
of human depression although some symptoms can never
be mimicked in animals. Homologous examples include:
forced swim test, tail suspension test, electrolytic lesioning
of the dorsomedial amygdala, exhaustion stress, and chronic
mild/variable stress-induced anhedonia.

8. Example 2: An Example with
Experimental Neurosis in Cats

That EEG correlates of motivation and short term mem-
ory (STM) in cats during an approach-avoidance delayed
differentiation task were studied several decades ago (Psatta
[28, 29]). The preparatory (cue) stimuli were tone and
intermittent light stimulation (ILS), the delay of ten seconds,
and reinforcement was either food or pain. Under these con-
ditions, motivation changed from one trial to another. EEG
activity varying with motivation during the delayed period
was statistically confirmed. Changes occurred only in the
amygdaloidal and the hypothalamic nuclei. Changes signif-
icantly related to STM (either prolonged desynchronization
or ILS memory traces during the delay period) occurred
only in the cortical cognitive areas (Ectosylvius medius or
Marginalis posterior in cats). The electrical activity in the
Hippocampus had complex relationships. A prolonged theta
activity in the Dorsal Hippocampus (DH) accompanied by
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fast activity in the Ventral Hippocampus (VH) occurred
when STM was successful, attention sustained and the
motor response delayed. Occurrence of theta activity in
VH systematically accompanied the motor response. It was
concluded that hippocampus exerts a complex sensory-
motor integration. DH intervenes in the sensory processing
of information, by closing the thalamic gates. Any fast
activity (even short) in DH was accompanied by the loss of
STM correlates (weak, fast stimulations of DH also blocked
STM). VH exerts an inhibitory motor control on the frontal
cortex (by uncial fibers).

Depression occurred in five out of 13 investigated
animals, when the approach-avoidance conflict induced
manifestations of experimental neurosis (Psatta [30, 31]).
The most characteristic electrical change in these animals was
the constant occurrence of a mid-amplitude very fast rhythm
in both DH and VH. Thus depression was attributed to the
exaggerated inhibitory control of hippocampus induced by
the emotional conflict imposed. The experiment permitted
an exploration of the adrenergic/cholinergic ratio contri-
bution to the deviated behaviour. Administration of small
doses of Reserpine, reducing the cerebral amount of free
catecholamines, induced a reoccurrence of the theta rhythm
in the hippocampus and of the coordinated motor responses.
Further administration resulted in change in the appearance
of higher amplitude fast rhythms in the hippocampus and of
exhaustion type of depression.

It was concluded that there is an optimal monoamine
level (a narrow window) for which hippocampus acts nor-
mally. Administration of Nialamide after Reserpine restored
first theta activity and eventually the original aspect of mid
amplitude fast rhythms in the hippocampus (the anxious
type of depression). A choline-estherase inhibitor (eserine)
in small doses restored in the depressed animals both
the DH theta activity and the EEG correlates of STM
(the memory traces). In higher doses, Eserine induced
instead an extreme agitation of those animals (on a high
level cholinergic/adrenergic equilibrium). Atropine after
Reserpine induced a release of motor behaviour, but no
signs of performing STM. These experiments reveal the
difficulty of controlling depression by psychotropic drugs
administration. It is also outlined the difficult extrapo-
lation of these results in animals to experimentation in
humans in whom subcortical EEG investigation is not
possible.

In order to replicate the described experiment, the
authors tried the effects of Go-NoGo STM performances
in humans (using auditory click cue stimuli and slightly
delayed motor finger responses). They considered that
the rolandic reaction evidenced by EEG Spectral Reaction
Mapping was the equivalent of the cognitive cortical areas
response encountered in animals, whereas the N220/P300
components of the Auditory Reponses evoked by the click
stimuli, are the equivalent of the fast and slow rhytms
occuring in the Hippocampus in animals. N220 is larger
in NoGo, P300 is deeper in Go situations. Both these EEG
manifestations disappear in case of Temporal Lobe Epilepsy
(and Neurosis), and are enhanced in case of Frontal Lobe
Epilepsy (Psatta and Matei, [32, 33]).

9. Example 3: Exposure Experiments

Finally, we mention two different exposure treatment/
experiments which also indicate that EEG is appropriate to
study when investigating mental disorders.

Electroconvulsive therapy (ECT) is a treatment in which
seizures are electrically induced in anesthetized patients for
therapeutic purposes. ECT is most often used as a treat-
ment for severe major depression, where patients have not
responded to other treatments. Seizures may be monitored
by EEG, electrocardiogram (ECG) and electromyogram
(EMG). The course can be summarized as three events
of distinct and sequential phase patterns. The first event
contains high-voltage “sharp waves and spikes,” the second
rhythmical “slow-waves” and the third event an abrupt and
well-defined ending.

Most ECT studies have investigated the physiological
mechanism of action in relation to clinical response [34]. A
typical study runs as follows: subjects with unilateral elec-
trode placement according to the d’Elia method [35] receive
bi-directional pulse ECT; ECT is routinely administrated
three times a week for a period of 2–4 weeks; each time EEG is
recorded it covers the above mentioned three distinct phases.
Studies consist often of about 30 patients who are followed
5–9 times. This results in a huge data set with a possibility
to test several interesting hypothesis, for example “can one
subgroup depressive disorder with the aid of seizure data?”
Moreover, one problem with ECT is that it is not known
what happens in the brain during or after treatment. In order
to test various hypotheses of ECT effects (e.g., on neural
network connectivity by stimulation of nerve sprouting or
nerve deletion), computational models of cortical neural
networks may be useful (Gu et al. [36–38]).

Microwave exposure is a method in which the elec-
tromagnetic radiation at field power densities is much
lower than used in ECT is applied for treatment of mental
disorders. For example, mood improvement in patients with
bipolar depressive disorder has been reported at the field
power density within clinical magnetic resonance system
limits [39]. Exposure to 450 MHz microwave radiation
modulated at 1000 Hz frequency at the field power density
0.9 mW/cm2 has been shown to cause short-term alteration
in mood of major depressive disorder [40]. The experiments
were carried out on a group of depressive patients (18
females) and a control group of healthy volunteers (18
females) exposed by microwave radiation during 30 minutes.
Subjects with nonpsychotic major depressive disorder are
defined by ICD-10 criteria and determined by the 17-item
HDRS score (as in Example 1). The average HDRS score
for the group was 21 (s.d. 3.3). All the subjects passed two
experimental procedures—with exposure and sham. As a
subjective criteria of microwave effect, the Brief Affect Scale
(BAS) and Visual Analogue Scale (VAS) before and after
each exposure and sham procedure were used. The resting
9 channel EEG was recorded during the experiment.

As a measure for evaluation of the mood improvement
the spectral asymmetry index (SASI) as a combination of
the EEG beta and theta power was selected [41]. The BAS
revealed a minor improvement (11 subjects) in subjective
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mood score after exposure and VAS test revealed significant
change between scores before (average 33.3) and after (aver-
age 40.2) treatment for exposed subjects and no significant
change for sham exposed subjects.

The EEG analysis detected objective effects of the
treatment. The calculated SASI values were positive for
depressive and negative for healthy subjects. Correlation
between HDRS score and SASI values was 0.67. Exposure
to microwave during 30 minutes reduced SASI values for
depressive patients: average SASI value was 0.16 for exposed
and 0.19 for sham exposed recordings. The analysis revealed
statistically significant differences between exposed and sham
exposed patients. These preliminary results are promising
and the SASI method of EEG analysis for mood evaluation
as well as microwave exposure for treatment of mental
disorders need further investigations. Variations between
individuals and within individuals should be investigated
and experiments on different groups should be performed.

10. Concluding Remarks

In this paper we have focused on the neural understanding
of depression. The aim is to find a link between physiology
and mental disorders. There are several indications for such
links, for example between hormone levels and SAD. Also
EEG analysis reveals connections with SAD. In the future, we
hope to have found models that would manifest connections
between depression and bio-markers, bio-signals, and bio-
maps, such as hormone levels, EEG, fMRI, and so forth. To
achieve this goal statistical/mathematical theory has to be
developed together with experimental designs. In particular,
we have to learn how to take into account between and within
subject variations in spatio-temporal, parametric or semi-
parametric models.
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