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Abstract. Pancreatic adenocarcinoma (PAAD) accounts for 
~85% of all pancreatic cancer cases and is associated with 
a less favorable prognosis. Aberrant DNA methylation may 
influence the progression of PAAD by inducing abnormal gene 
expression. Methylation data of PAAD samples with prognosis 
information were obtained from The Cancer Genome Atlas 
(training set) and European Bioinformatics Institute Array 
Express databases (validation sets). Using the limma package, 
the differentially methylated genes in the training dataset were 
screened. Combined with the Weighted Gene Co-expression 
Network Analysis package, the co-methylated genes in 
key modules were identified. Then, a cor.test function in R 
software was applied to explore the functions of key the meth-
ylated genes. Correlation analyses of the expression levels and 
methylation levels of key methylated genes were performed, 
followed by identification of methylated genes associated 
with prognosis using Univariate Cox regression analysis. 
The optimal combination of prognosis related methylated 
genes was determined using a Cox-Proportional Hazards 
(Cox-PH) model. Subsequently, the risk score prognostic 
prediction system was constructed by combining the Cox-PH 
prognosis coefficients of the selected optimized genes. Based 
on the constructed risk score system, samples in all datasets 
were divided into high and low risk samples and the survival 
status was compared using survival curves. Furthermore, the 
correlation between independent prognostic factors and the 
risk score system was determined using the survival package. 
A total of 50 genes associated with prognosis of PAAD and 
a 12-gene optimal combination were obtained, including: 
CCAAT/enhancer binding protein α, histone cluster 1 H4E, 
STAM binding protein-like 1, phospholipase D3, centrosomal 

protein 55, ssDNA binding protein 4, glutamate AMPA receptor 
subunit 1, switch-associated protein 70, adenylate-cyclase acti-
vating polypeptide 1 receptor 1, yippee-like 3, homeobox C4 
and insulin-like growth factor binding protein 1. Subsequently, 
a risk score prognostic prediction system of these 12 genes 
was constructed and validated. In addition, pathological N 
category, radiotherapy and risk status were identified as inde-
pendent prognostic factors. Overall, the risk score prognostic 
prediction system constructed in the present study may be 
effective for predicting the prognosis of patients with PAAD. 

Introduction

Pancreatic cancer (PC) is primarily associated with diabetes, 
obesity, smoking and genetic conditions, such as germline patho-
genic variants and somatic pathogenic variants in DNA damage 
repair (DDR) genes (1,2). Jaundice, weight reduction, back or 
abdominal pain, deep-colored urine, pale-colored stools and 
anorexia are the typical symptoms (3). However, at diagnosis, the 
cancer has usually metastasized (4,5). The mortality rate of PC 
is high and there were 411,600 PC-associated deaths globally in 
2015 (6). Pancreatic adenocarcinoma (PAAD) is a common type 
of PC, accounting for ~85% of all PC cases (7). The survival 
rate of PAAD is very low and the 5-year survival rate was 5% in 
2015 (8). A few prognostic indicators are now available for PC, 
such as C-reactive protein/albumin ratio and neutrophil/lympho-
cytes ratio (9,10). Therefore, it is of great importance to investigate 
the prognostic factors of PAAD for improved prediction.

It has been hypothesized that DNA methylation may 
provide a link between environmental factors contributing to 
cancer development (11). The stability of the genome and gene 
expression levels are primarily maintained by a pre-determined 
pattern of DNA methylation (12). It has been reported that DNA 
hypermethylation has prognostic value and acts as independent 
predictor of survival in other cancer types, such as head and neck 
cancer (13). A previous study reported an association between 
abnormal methylation of the Reprimo gene and genetic insta-
bility and poor survival following surgical resection in patients 
with PC (14). Hypermethylation of Cyclin D2 is also frequently 
observed in PC (15). Meanwhile, another study reported a 
significant difference in the hypermethylation frequency of 
ALX4, BNC1, HIC1, SEPT9V2,SST, TFPI2 and TAC1 between 
PAAD samples of stage I, II, III and IV, and these genes are 
significantly associated with distant metastasis of PAAD (16).
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 A number of clinical markers of PAAD survival have 
been recognized, including stage at diagnosis, grading 
and performance status and the treatment received, such 
as resection versus no resection and chemotherapy vs. no 
chemotherapy (17-20). It has also been reported that obesity 
and smoking are associated with a less favorable prognosis 
of PC (21). Cigarette smoking is associated with the develop-
ment of ~20% of PC cases and is therefore a consistent risk 
factor (22). Bioinformatic databases may serve as a valuable 
tool to further our understanding of the molecular mechanisms 
underpinning the prognosis of patients with cancer.

The present study aimed to explore the aberrant methyla-
tion of genes associated with prognosis of patients with PAAD. 
The methylation data of genes associated with PAAD were 
obtained from The Cancer Genome Atlas (TCGA) database 
and screened for differentially methylated genes (DMGs) 
associated with prognosis. Subsequently, these data were used 
to construct a risk score system, which may be effective in 
predicting the prognosis of patients with PAAD. 

Materials and methods

Datasets. The methylation data for the training dataset was 
obtained from the TGCA database (accessed on 5th June 2018; 
cancer.gov/tcga), which were based on the Illumina Infinium 
Human Methylation 450 BeadChip platform. There were a total 
of 184 samples, 168 of which included prognostic information 
[mean age, 64.89±11.24 years (range: 40-88); male: Female, 
94/75; average overall survival time, 17.09±15.22 months; 
death: Survival, 88/80]. The methylation data for the validation 
training set was obtained from the European Bioinformatics 
Institute ArrayExpress database (ebi.ac.uk/arrayexpress/), 
specifically the E‑MTAB‑5008 and E‑MTAB‑5571 datasets. 
The E-MTAB-5008 dataset consisted of 29 PAAD samples 
with prognostic information and the E-MTAB-5571 dataset 
consisted of 24 PAAD samples which prognostic information. 
Both of these datasets were sequenced on the platform of 
Illumina Infinium Human Methylation 450 BeadChip.

Screening of DMGs. To screen genes associated with PAAD 
prognosis, samples in the TCGA dataset were divided into less 
favorable prognosis (defined as a survival time <6 months and 
death) and more favorable prognosis (defined as survival time 
>24 months or alive) groups based on a previously described 
grouping method (23). The methylation loci of genes associ-
ated with PAAD prognosis were annotated and combined with 
the platform annotation information on the Illumina Infinium 
Human Methylation 450 BeadChip platform and the loci 
within CpG islands of the genes were selected and used for 
the following analysis. Using the limma package in R (version 
3.34.7) (24), the DMGs between the less favorable prognosis 
and more favorable prognosis groups were screened according 
to the following criteria: |log fold change| >0.263 and false 
discovery rate (FDR) <0.05. Then, the Kernel density curve of 
the DMGs was generated by calculating the Log 2 (FC).

Identification of co‑methylated genes based on Weighted Gene 
Co‑expression Network Analysis (WGCNA). Co-methylation 
analysis using the WGCNA package (version 1.63) (25) in R 
was performed on genes located in CpG islands to identify 

differentially methylated CpG genes (DMCpGs). The sets 
of CpG genes with highly related methylation levels under 
the same biological process or in different tissues were 
considered as modules. The modules which had a significant 
association with the methylation levels were identified. The 
DMCpGs were mapped to the modules and the significant 
enrichment parameters and fold enrichment were calculated 
using a hypergeometric test (26). The DMCpGs enriched 
modules were screened under the following criteria: P<0.05 
and a fold enrichment value of >1 was considered to indicate 
a statistically significant difference. Genes in DMCpGs 
enriched modules were recognized as key methylation genes 
and were analyzed using Gene Ontology (GO) enrichment 
analysis (27) using the Database for Annotation, Visualization 
and Integrated Discovery (version 6.8) (28). 

To meet scale-free network distribution, the weighting 
parameter ‘power’ in WGCNA algorithm was explored. When 
the square of the correlation coefficient between log(k) and 
log[p(k)] reached 0.9, the corresponding value of parameter 
‘power’ (power=7) was selected. Under power=7, the mean 
connectivity of genes was calculated to be 1. Subsequently, the 
adjacency matrix elements were serialized, and the topological 
overlap matrix was calculated to evaluate the correlation of 
gene methylation levels and obtain a system clustering tree. 
According to the standards of hybrid dynamic shear tree, 
pruning height (cutHeight) and the minimum number of 
module genes (minSize) separately were set as 0.95 and 50.

Correlation analysis for the expression levels and methylation 
levels of key methylated genes. The expression and meth-
ylation levels of key methylation genes in matched training 
PAAD samples were collected and correlation analysis was 
performed. Pearson correlation coefficients (PCCs) were 
calculated and the cor.test function (stat.ethz.ch/R-manual/
R-devel/library/stats/html/cor.test.html) in R Software was 
used (29,30). PCCs of single genes were also calculated and 
the genes with a negative correlation between expression level 
and methylation level were selected as key methylation genes 
for subsequent analyses. P<0.05 was considered to indicate a 
statistically significant difference. 

Identification of the methylated genes associated with 
prognosis. Key methylation genes with a negative correlation 
between expression level and methylation level were further 
analyzed for prognosis associated genes. Univariate Cox 
regression analysis was performed to identify prognosis asso-
ciated methylation genes using the survival package (version 
2.41‑1) in R (31). P<0.05 was considered to indicate a statisti-
cally significant difference. 

Construction of risk score prognostic prediction system. The 
optimal combination of prognosis related methylation genes 
was screened using the Cox-Proportional Hazards (Cox-PH) 
model using the penalized package (version 0.9-50) in R (32). 
The optimal parameter of ‘lambda’ in the Cox-PH model was 
calculated through 1,000 cross-validation likelihoods (cvl) (33).

The risk score prognostic prediction system was constructed 
combining the Cox‑PH prognosis coefficients and methylation 
levels of the selected optimized genes. The resultant formula 
was: Risk score=∑coef gene x Methylation gene where Coefgene 
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and Methylationgene represented regression coefficient and gene 
methylation levels, respectively.

The risk scores of samples in the TCGA, E-MTAB-5008 
and E‑MTAB‑5571 datasets were calculated and stratified into 
high and low risk groups according to the median risk scores. 
Kaplan-Meier (KM) survival curves (34) of the high and low 
samples were plotted using the survival package, which were 
compared with the prognosis of all samples. The area under 
the receiver operating characteristic (ROC) curve (AUC) was 
compared, also using the survival package.

Correlation analysis between independent prognostic factors 
and risk score prognostic prediction system. Using the Cox 
regression analysis in the survival package (31), independent 
clinical prognostic factors were screened. Next, the relations 
between collected factors and the risk score prognostic predic-
tion system were analyzed using KM curves.

Results

Screening of DMGs. Median survival time of samples in the 
training datasets was 17.09±15.22 months, which is consistent 

with the time reported in PC (35). There were 13,903 methyla-
tion sites containing CpG islands in the training dataset. In 
TCGA training dataset, based on the predefined method for 
grouping, each less favorable and more favorable prognosis 
group had 19 samples, and a total of 1,067 DMGs between the 
two groups were identified (Fig. 1). 

As shown in the Log2 Kernel density curve of the 
DMGs, 74.98% (800/1,067) of DMGs were significantly 
hypomethylated and 25.02% (267/1,067) were significantly 
hypermethylated in the good prognostic group (Fig. 1B). The 
cluster heatmap of the DMGs suggested that the samples with 
different prognoses in the TCGA dataset exhibited different 
methylation levels (Fig. 1C). Furthermore, as the feature 
factors had different weights in the calculation process for 
heatmap analysis, there was a slight crossover between good 
and bad prognosis samples.

Among the CpGs in the 1,067 DMGs, 309, 321, 118, 44, 
185 and 90 CpGs were separately located in transcription start 
site areas, body areas, 5'untranslated regions (UTR), 3'UTR 
regions, promoter regions and the first exon regions (data not 
shown). The top 20 DMGs with smaller FDR values were 
screened and presented in Table I.

Figure 1. Volcano plot, density curve and cluster heatmap of DMGs. (A) Volcano plot showing the FC of each identified gene. Red dots, DMGs; horizontal 
dashed line, FDR <0.05; vertical dashed lines, |log FC| >0.263. (B) Kernel density curve showing that 74.98% of the DMGs are significant hypomethylated 
in the good prognostic group. (C) Bidirectional hierarchical cluster heatmap. Orange and purple samples strips separately represent the samples in good and 
bad prognostic groups, respectively; color changes from green to red represent methylation level changes from low to high, respectively. DMGs, differentially 
methylated genes; FDR, false discovery rate; FC, fold change. 
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Identification of co‑methylated genes based on WGCNA. A 
total of 10 modules were identified (Fig. 2A) and the detailed 
information of each module is listed in Table II. CpG island 
genes in 9 modules showed significant a association with meth-
ylation levels (P<0.05; correlation coefficients, 0.226‑0.729; 
average correlation coefficient, 0.7742; Table II). The identified 
DMGs were mapped into each module and their distribution in 

the modules is shown in Fig. 2B. Two modules were identified 
as differentially expressed CpG gene enriched modules, black 
module (comprised of 90 DMGs) and the turquoise module 
(comprised of 394 DMGs), in which the CpG genes were 
significantly associated with methylations. The DMGs in these 
two modules were significantly enriched in 18 GO_Biology 
Process (BP; such as ‘neuron differentiation’), 7 GO_cellular 

Table II. A total of 10 modules identified by weighted gene co‑expression network analysis. 

Modules Count of CpGs Correlation Pcorr DMGs Enrichment fold (95% CI) Phyper

Black 159 0.703 1.01x10-13 90 3.481 (2.622-4.599) 2.20x10-16

Blue 427 0.587 1.68x10-4 63 0.908 (0.676-1.202) 5.37x10-1

Brown 364 0.551 2.23x10-3 10 0.169 (0.0799-0.317) 4.83x10-13

Green 352 0.616 6.05x10-2 12 0.209 (0.107-0.374) 3.49x10-11

Grey 574 0.226 1.32x10-1 48 0.514 (0.371-0.701) 5.31x10-6

Magenta 90 0.729 9.47x10-16 23 1.572 (0.941-2.529) 7.38x10-2

Pink 138 0.679 1.44x10-8 6 0.267 (0.0961-0.601) 2.88x10-4

Red 191 0.308 6.69x10-7 1 0.0322 (0.000814-0.182) 3.26x10-11

Turquoise 1344 0.687 1.72x10-6 394 1.803 (1.564-2.077) 4.11x10-16

Yellow 359 0.609 4.27x10-6 3 0.0514 (0.0105-0.152) 2.20x10-16

DMGs, differentially methylated genes; CI, confidence interval; Pcorr, P-value for correlation; Phyper, P-value for hypermethylation. 

Figure 2. Results of Weighted Gene Co‑expression Network Analysis. (A) Module partition tree. (B) Mapping results of the DMGs into the identified modules. 
Numbers in the brackets represent genes in this module. (C) Histogram of fold enrichment of the modules. (D) Scatter diagram showing the overall correlation 
between the methylation levels and expression levels of the 484 DMGs. Red line, trend line of point distribution. *Represents the modules with significantly 
enriched methylated genes (P<0.05). DMGs, differentially methylated genes; cor., correlation coefficient.
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component (CC; such as ‘integral to plasma membrane’), and 9 
GO_molecular function (MF; such as ‘sequence‑specific DNA 

binding’) terms (Table III) and were predominantly associated 
with transcriptional regulation.

Table III. Functional terms enriched for the 484 differentially methylated genes involved in black or turquoise modules.

A, Biological process

Term Count P-value FDR

GO:0030182-neuron differentiation 40 1.79x10-10a 3.13x10-7

GO:0006355-regulation of transcription, DNA-dependent 95 4.27x10-10a 7.45x10-7

GO:0051252-regulation of RNA metabolic process 96 6.29x10-10a 1.10x10-6

GO:0007423-sensory organ development 27 1.46x10-9a 2.55x10-6

GO:0007389‑pattern specification process 28 8.94x10-9a 1.56x10-5

GO:0045165-cell fate commitment 20 1.20x10-8a 2.10x10-5

GO:0048568-embryonic organ development 22 1.59x10-8a 2.77x10-5

GO:0048598-embryonic morphogenesis 28 1.66x10-7a 2.90x10-4

GO:0007267-cell-cell signaling 40 9.79x10-7a 1.71x10-3

GO:0006928-cell motion 34 1.66x10-6a 2.90x10-3

GO:0045449-regulation of transcription 111 2.63x10-6a 4.60x10-3

GO:0003002-regionalization 20 3.02x10-6a 5.27x10-3

GO:0007610-behavior 33 3.54x10-6a 6.18x10-3

GO:0048666-neuron development 27 3.76x10-6a 6.57x10-3

GO:0031328-positive regulation of cellular biosynthetic process 42 4.11x10-6a 7.17x10-3

GO:0009891-positive regulation of biosynthetic process 42 5.85x10-6a 1.02x10-2

GO:0016477-cell migration 23 1.16x10-5a 2.02x10-2

GO:0019226-transmission of nerve impulse 26 1.97x10-5a 3.45x10-2

B, Cellular component   

Term Count P-Value FDR

GO:0005887-integral to plasma membrane 59 9.12x10-7a 1.21x10-3

GO:0031226~intrinsic to plasma membrane 59 1.89x10-6a 2.50x10-3

GO:0044459-plasma membrane part 90 2.93x10-6a 3.88x10-3

GO:0034703-cation channel complex 15 6.78x10-6a 8.98x10-3

GO:0034705-potassium channel complex 12 1.11x10-5a 1.48x10-2

GO:0008076-voltage-gated potassium channel complex 12 1.11x10-5a 1.48x10-2

GO:0034702-ion channel complex 18 1.99x10-5a 2.64x10-2

C, Molecular function   

Term Count P-value FDR

GO:0043565‑sequence‑specific DNA binding 58 4.65x10-16a 6.55x10-13

GO:0003700-transcription factor activity 74 4.42x10-15a 6.52x10-12

GO:0030528-transcription regulator activity 85 3.53x10-10a 5.18x10-7

GO:0003677-DNA binding 109 2.11x10-8a 3.09x10-5

GO:0022836-gated channel activity 25 6.95x10-6a 1.02x10-2

GO:0005261-cation channel activity 23 1.01x10-5a 1.48x10-2

GO:0015267-channel activity 29 1.41x10-5a 2.07x10-2

GO:0022803-passive transmembrane transporter activity 29 1.48x10-5a 2.18x10-2

GO:0005216-ion channel activity 27 3.37x10-5a 4.94x10-2

aP<0.001. GO, gene ontology; FDR, false discovery rate.
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Correlation analysis of the expression levels and methyla‑
tion levels of key methylated genes. Overall, the methylation 
levels and expression levels of the 484 DMGs in the black and 
turquoise modules were significantly negatively correlated 
(Cor.=-0.478, P=8.169x10-5; Fig. 2D). A total of 192 DMGs 
exhibited negative correlation between the expression levels 
and methylation levels (Table SI).

Construction of the risk score system. A total of 50 genes 
among the 192 DMGs were found to be associated with 
prognosis. Following this, a Cox-PH model was utilized to 
screen the optimal gene combination. When λ=1.1389, the 
maximum value of cvl was obtained as -458.1914 (Fig. 3A). 
Using λ=1.1389, a 12-gene optimal combination was acquired: 
CCAAT/enhancer binding protein α (CEBPα); histone 
cluster 1 H4E (HIST1H4E); STAM binding protein-like 1, 
(STAMBPL1) phospholipase D3 (PLD3); centrosomal protein 

55 (CEP55); ssDNA binding protein 4 (SSBP4); glutamate 
AMPA receptor subunit 1 (GRIA1); switch-associated protein 
70 (SWAP70); adenylate-cyclase activating polypeptide 1 
receptor 1 (ADCYAP1R1); yippee-like 3 (YPEL3); homeobox 
C4 (HOXC4); and insulin-like growth factor binding protein 1 
(IGFBP1) (Fig. 3B; Table IV). Combined with the prognostic 
coefficients of these 12 optimal genes, the following risk score 
system was constructed (cg is the methylation ID for corre-
sponding genes.).

Risk score=(-0.4701559) x Methylation cg22250546 + 
(1.461097) x Methylation cg23066982 + (-0.1543761) x Methylation 
cg23264429 + (0.2124921) x Methylation cg25509871 + (-0.7063513) 
x Methylation cg25827255+ (0.1268035) x Methylation cg25902939 

+ (-2.4642526) x Methylation cg26343183+ (-0.4583647) x 
Methylation cg26645401 +(0.0652014) xMethylation cg27076139+ 
(0.2566994) x Methylation cg27106909 + (0.7707755) x Methylation 
cg27138204 + (0.172493) x Methylation cg27447599.

Table IV. Information of the 12 optimal genes.

Methylation ID Gene Chr. Position Location Coefficient Hazard ratio P‑value

cg22250546 CEBPA chr19 38483210 Promoter -0.4701559 0.197 2.01x10-2a

cg23066982 HIST1H4E chr6 26312442 Promoter 1.461097 1.228 4.11x10-2a

cg23264429 STAMBPL1 chr10 90631983 5'UTR -0.1543761 0.369 4.53x10-2a

cg25509871 PLD3 chr19 45563397 5'UTR 0.2124921 1.082 4.40x10-2a

cg25827255 CEP55 chr10 95246749 Promoter -0.7063513 0.129 2.04x10-2a

cg25902939 SSBP4 chr19 18405350 Body 0.1268035 1.139 4.45x10-2a

cg26343183 GRIA1 chr5 152988914 Body -2.4642526 0.276 1.33x10-2a

cg26645401 SWAP70 chr11 9643090 Body -0.4583647 0.272 2.02x10-2a

cg27076139 ADCYAP1R1 chr7 31058243 TSS1500 0.0652014 1.014 1.35x10-2a

cg27106909 YPEL3 chr16 30014398 Promoter 0.2566994 1.294 4.32x10-2a

cg27138204 HOXC4 chr12 52732367 5'UTR 0.7707755 1.679 1.58x10-2a

cg27447599 IGFBP1 chr7 45894465 TSS200 0.172493 1.193 2.18x10-2a

aP<0.01. chr, chromosome; coef, correlation coefficient; UTR, untranslated region; TSS, transcription start site. 

Figure 3. Selection curve and coefficient distribution diagram. (A) Selection curve of lambda (the junction indicates that the maximum value of cvl is ‑458.1914 
when λ=1.1389) (B) The coefficient distribution diagram of the genes implicated in the optimal gene combination.cvl, cross validation likelihood; prof$ in 
Y-axis indicated the p value using the predictive model, and in X-axis indicated the lambda value using the predictive model; CEBPA, CCAAT/enhancer 
binding protein α; HIST1H4E, histone cluster 1 H4E; STAMBPL1, STAM binding protein-like 1; PLD3, phospholipase D3; CEP55, centrosomal protein 55; 
SSBP4, ssDNA binding protein 4; GRIA1, glutamate AMPA receptor subunit 1; SWAP70, switch-associated protein 70; ADCYAP1R1, adenylate-cyclase 
activating polypeptide 1 receptor 1; YPEL3, yippee-like 3; HOXC4, homeobox C4; IGFBP1, insulin-like growth factor binding protein 1.
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According to the median of the risk scores of the samples in 
the TCGA dataset, the samples were divided into high and low 
risk groups. For the TCGA dataset, the comparison between 

the actual overall survival and risk score system predicting 
survival of the risk groups was performed and the AUC was 
0.976 (Fig. 4A). Moreover, the risk score system was validated 

Figure 4. KM curves and AUC under the ROC curve. (A) KM curve (left) and ROC curve (right) for TCGA dataset. (B) KM curve (left) and ROC curve (right) 
for E-MTAB-5008 dataset. (C) KM curve (left) and ROC curve (right) for E-MTAB-5571 dataset. KM, Kaplan-Meier; HR, hazard ratio; TCGA, The Cancer 
Genome Atlas; ROC, receiver operating characteristic; AUC, area under the curve.
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in the E-MTAB-5008 (Fig. 4B) and E-MTAB-5571 (Fig. 4C) 
datasets and the AUCs were 0.919 and 0.924, respectively. 
The TCGA, E-MTAB-5008 and E-MTAB-5571 datasets had 
consistent results and all the samples in low risk group had 
improved survival.

Correlation analysis between independent prognostic factors 
and risk groups. The clinical information of 168 samples 
in the TCGA dataset was statistically analyzed, and patho-
logical tumor-node-metastases (TNM) staging system (36), 
radiotherapy and risk status were identified as independent 
prognostic factors (Table V). Survival status of high and low 
risk groups with different pathological N stages (N0 vs. N1) 
and treatment with radiotherapy (treatment with radiotherapy 
vs. without radiotherapy) were compared (Fig. 5).

Discussion

The mechanisms underlying tumor development and progres-
sion of PAAD are complex, and influencing factors include 
epigenetic regulation of gene expression, epigenetic silencing 

of genes, oncogenic/tumor suppressor gene mutation, telomere 
alteration, genomic instability and DNA methylation (37-40). 
The present study aimed to identify potential important key 
methylated genes in PAAD. A total of 1,067 DMGs were 
identified in the less favorable prognosis and more favorable 
prognosis groups. From the 10 modules identified by WGCNA, 
the black (involving 90 DMGs) and turquoise (involving 394 
DMGs) modules, in which the CpG genes were significantly 
associated with methylations, were selected for further 
analysis. For the 484 DMGs involved in the two key modules, 
18 GO_BP, 7 GO_CC and 9 GO_MF terms were enriched. 
There were 192 DMGs associated with prognosis (less favor-
able or more favorable). Correlation analysis indicated that the 
expression levels and methylation levels of 192 DMGs among 
the 484 DMGs were negatively correlated. Furthermore, 50 
prognosis-associated genes were further screened from the 
192 DMGs. After a 12-gene optimal combination (CEBPA, 
HIST1H4E, STAMBPL1, PLD3, CEP55, SSBP4, GRIA1, 
SWAP70, ADCYAP1R1, YPEL3, HOXC4 and IGFBP1) was 
identified, the risk score system was constructed and validated 
in the TCGA, E-MTAB-5008 and E-MTAB-5571 datasets. In 

Figure 5. KM curves for high- and low-risk groups with different TNM stages and radiotherapy treatment status. (A) KM curves showing the correlations 
of pathological N0 (left) and pathological N1 (right) with risk groups. (B) KM curves showing the correlations between without radiotherapy (left) or with 
radiotherapy (right) and risk groups. KM, Kaplan-Meier; HR, hazard ratio; T, tumor stage; N, node stage; M, metastasis stage.
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addition, pathological N category, radiotherapy and risk status 
were found to be independent prognostic factors.

It is demonstrated that upregulation of CCAAT/enhancer 
binding protein (C/EBP) beta (C/EBPβ), encoded by CEBPB, 
could restore the anti-cancer functions of Menin in PC (41) The 
inadequate cytoplasmic localization and abnormal silencing of 
C/EBP results in its dysfunction, and thus, C/EBP may serve 
as a novel suppressor in PC cells (42). Downregulated C/EBPα 
induced by lysine (K)-specific demethylase 6B (KDM6B) 
promotes the aggressiveness of pancreatic ductal adenocarci-
noma (PDAC) cells, indicating that the KDM6B‑C/EBPα axis 
is associated with the progression of PDAC (43,44). Histone 
H3 modification affects the gene expression and promoter 
methylation of MUC2, which may be critical for the prognostic 
prediction of patients with PC (45). The mRNA expression 
levels of histone H4 is lowered by polyamide-chlorambucil 
conjugate (1R-Chl) in the MIA PaCa-2 PC cell line and 
histone H4 genes have elevated histone acetylation in tumor 
cells (46). Therefore, CEBPA and HIST1H4E may be critical 
for the survival of PAAD patients. 

STAMBPL1 affects the activation of NF‑κB through 
mediating the stability and localization of Tax (47) and NF‑κB 
blockade can inhibit the oncogenicity and metastasis of PC 
cells (48). Overexpression of CEP55 can promote PC cell 
aggressiveness via activation of the NF-κB pathway; therefore, 
CEP55 may be a prognostic factor and therapeutic target for 
patients with PC (49). Downregulated expression of YPEL1 
in PAAD samples is associated with perineural invasion and 
survival prognosis, thus YPEL1 may serve a role in the malig-
nant transformation of pancreatic tissues (50). Low IGFBP1 
plasma levels have a more notable influence in non‑smoking 
patients with PC and predicts an increased risk of PC (51). 
These data suggest that STAMBPL1, CEP55, YPEL3 and 
IGFBP1 may be associated with the prognosis of patients with 
PAAD.

Although PLD3, SSBP4, GRIA1, SWAP70 and ADCYAP1R1 
do not have reported associations with PAAD to the best 
of our knowledge, their influence on other types of human 
cancer have been reported. Elevated expression and activity 
of PLD is detected in multiple types of cancer, such as gastric, 
colorectal, renal, stomach, lung and breast cancers (52), and 
PLD serves a role in mediating cell proliferation, cell transi-
tion, survival signaling and tumor progression (53). SSBP2 is a 
tumor suppressor gene and the disruption of SSBP2-associated 
pathways may be involved in the malignant transforma-
tion of various tissues (54). GRIA1 is involved in glutamate 
receptor signaling, which is an epigenetic marker for overall 
mortality rate of basal-like urothelial carcinomas (55). The 
oncogene SWAP70 functions in regulating actin rearrange-
ment in basal-like bladder cancer (55) and serves a role in 
the transformation-associated signaling pathway (56). The 
promoter hypermethylation level of ADCYAP1 is associated 
with cervical cancer development and is considered as a prom-
ising methylation marker for the early detection of cervical 
cancer (57). Therefore, PLD3, SSBP4, GRIA1, SWAP70 and 
ADCYAP1R1 may also be associated with the prognosis of 
patients with PAAD.

In the present study comprehensive bioinformatics analysis 
of PAAD samples was performed to identify prognosis-associ-
ated genes and to construct a risk score prognostic prediction 

system. All findings were obtained from relatively small‑sized 
cohorts and thus require further experimental validation. 
Additionally, the patient cohort samples in the three datasets 
may exert different clinical features, such as disease stage, 
historical treatment and demographics, which should be care-
fully compared in further studies.

In conclusion, 1,067 DMGs were identified and a 12‑gene 
optimal combination consisting of CEBPA, HIST1H4E, 
STAMBPL1, PLD3, CEP55, SSBP4, GRIA1, SWAP70, 
ADCYAP1R1, YPEL3, HOXC4 and IGFBP1 was obtained. 
This 12-gene risk score prognostic prediction system may be 
valuable for predicting the prognosis of patients with PAAD.
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