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A hybrid greedy political optimizer 
with fireworks algorithm 
for numerical and engineering 
optimization problems
Jian Dong, Heng Zou, Wenyu Li & Meng Wang*

This paper proposes a novel hybrid optimization algorithm named GPOFWA, which integrates political 
optimizer (PO) with fireworks algorithm (FWA) to solve numerical and engineering optimization 
problems. The original PO uses subgroup optimal solutions such as party leaders and constituency 
winners to guide the movement of the search agent. However, the number of such subgroup optimal 
solutions is limited, which leads to insufficient global exploration capabilities of PO. In addition, 
the recent past-based position updating strategy (RPPUS) of PO lacks effective verification of the 
updated candidate solutions, which reduces the convergence speed of the algorithm. The proposed 
hybrid algorithm uses the spark explosion mechanism in FWA to perform explosion spark and Gauss 
explosion spark operations on the subgroup optimal solutions (party leader and constituency winner) 
respectively based on the greedy strategy, which optimizes the subgroup optimal solution and 
enhances the exploitative ability of the algorithm. Moreover, Gaussian explosion sparks are also used 
to correct the candidate solutions after RPPUS, which makes up for the shortcomings of the original 
PO. In addition, a new subgroup optimal solution called the Converged Mobile Center (CMC) based 
on two-way consideration is designed to guide the movement of search agents and maintain the 
population diversity. We test the presented hybrid algorithm on 30 well-known benchmark functions, 
CEC2019 benchmark functions and three engineering optimization problems. The experimental 
results show that GPOFWA is superior to many statE−of-thE−art methods in terms of the quality of the 
resulting solution.

Optimization is a numerical process used to determine the decision variables for minimizing or maximizing the 
objective function value while satisfying the constraints of decision-space1. Optimization problems are inevi-
table in many real-world applications, and these problems usually contain non-linear objective functions and 
constraints with multiple local optimum, and low feasible regions2. These complex features make it difficult for 
traditional mathematical programming methods such as conjugate gradient, sequential quadratic programming, 
Newton’s method, and quasi-Newton’s method to find optimum3. Meta-heuristic algorithms (MAs) have become 
prevalent in many applied disciplines in recent decades because of higher performance and lower required com-
puting capacity and time than deterministic algorithms in various optimization problems4–12. As a branch of 
random optimization, meta-heuristic algorithms can find a near-optimal solution by using available resources, 
although it is not always guaranteed to find the global optimum. Most MAs are inspired by human intelligence, 
the social nature of biological groups, and the laws of natural phenomena. Some classic representatives of MAs, 
such as genetic algorithm (GA)13, particle swarm optimization (PSO)14, differential evolution (DE)15, grey wolf 
optimizer (GWO)16, Harris hawks optimizer (HHO)17, bat algorithm (BA)18, whale optimization algorithm 
(WOA)19, salp swarm algorithm (SSA)20, sine cosine algorithm (SCA)21, water cycle algorithm (WCA)22, and so 
on, have been successfully used to solve some complex optimization problems.

However, the No Free Lunch (NFL) theorem states that it is impossible to solve all optimization problems 
by a specific algorithm23, which means an algorithm is suitable for a given optimization problem, but may 
not be suitable for another optimization problem with different characteristics. Therefore, further research on 
MAs is needed to deal with different optimization problems. The research directions of MAs include proposing 
new algorithms, improving existing algorithms, and hybridizing different algorithms. Hybridizing different 
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algorithms has drawn attention because it can highlight their respective advantages and make the algorithms 
have better performance. Various hybrid algorithms have achieved good results, such as hybridizing particle 
swarm optimization with differential evolution proposed by Wang et al.24, hybridizing sine–cosine algorithm 
with differential evolution proposed by Li et al.25, hybridizing particle swarm with grey wolf optimizer presented 
by Zhang et al.26. Fireworks algorithm (FWA) was a newly developed swarm intelligence optimization algorithm, 
which was put forward by simulating the process of real fireworks explosion and generating a large number of 
sparks in 201027. When the fireworks explode, the sparks are everywhere. The explosion process of the fireworks 
can be regarded as the search behavior of the search agent in the local space. The main idea of FWA is to use 
fireworks and sparks as different kinds of solutions to search the feasible space of the optimization function. As 
an excellent algorithm, FWA has been used in hybridization with many other algorithms in recent years. Zhu 
et al.28 hybridized the firework algorithm with the particle swarm algorithm to form DFWPSO, which performed 
competitively and effectively in numerical optimization problems. Yue et al.29 proposed a new hybrid algorithm 
called FWGWO based on gray wolf optimizer and firework algorithm and achieved excellent results in global 
optimization. Guo et al.30 added the differential evolution operator to the firework algorithm and proposed a 
hybrid fireworks algorithm with differential evolution operator (HFWA_DE) in 2019. Zhang et al.31 introduced 
the migration operator of biogeography-based optimization into fireworks algorithm to enhance information 
sharing among populations and presented a hybrid biogeography-based optimization and fireworks algorithm 
for global optimization.

Political Optimizer (PO) is a new meta-heuristic algorithm based on human behavior inspired by the multi-
stage political process. PO simulates all important steps in politics, such as party formation, party vote, constitu-
ency distribution, election campaigns, and party transitions, inter-party elections, and parliamentary affairs after 
the government is formed. In addition, PO has introduced a new position update strategy, called the recent past-
based position updating strategy (RPPUS). The latter represents the behavior that politicians learned from the last 
election32. Compared with traditional optimization algorithms, PO shows better competitiveness. Therefore, lots 
of researchers have applied it in different scientific fields since the PO was proposed. Askari et al.33 employed PO 
for the training of feedforward neural networks to solve the classification and regression problems, and made a 
good achievement. Durmus et al. used PO to improve radiation properties of concentric circular antenna arrays 
(CCAAs) in the far-field such as wireless communication of smart grids and the Internet of things and reached a 
lower sidelobe level (SLL) value than other optimization methods34. Manita et al.35 proposed a binary version of 
PO to solve feature selection problems using gene expression data. Elsheikh et al.36 presented a novel optimized 
predictive model based on PO for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants. Moreover, 
some scholars have made improvements to the shortcomings of PO. Askari et al.37 modified each stage of PO to 
improve the exploration ability and balance of the algorithm because it is found PO prematurely converges for 
complex problems. Zhu et al.38 also found that PO has the problem of poor global exploration capabilities, and 
they integrated PO with quadratic interpolation, advanced quadratic interpolation, cubic interpolation, Lagrange 
interpolation, Newton interpolation, and refraction learning, and proposed a sequence of novel PO variants.

As a novel swarm intelligence algorithm just proposed, PO still has many areas worth improving. It can be 
found that the main idea of PO is to guide the movement of the search agent through subgroup optimal solu-
tions. However, the number of subgroup optimal solutions such as party leaders and constituency winners used 
by PO is limited, because the number of initial populations directly determines the number of party leaders and 
constituency winners. This leads to insufficient global exploration capabilities of PO. In addition, the recent 
past-based position updating strategy (RPPUS) of PO lacks effective verification of the updated candidate solu-
tions, which reduces the convergence speed of the algorithm. Moreover, a new local leader called the Converged 
Mobile Center (CMC) based on two-way consideration is designed to guide the movement of search agents, 
which enhances the exploration ability and maintains the population diversity. Combining the above ideas, we 
propose a novel hybrid greedy political optimizer with fireworks algorithm named GPOFWA and verify its 
effectiveness and superiority through a well-studied set of diverse benchmark functions and three engineering 
optimization problems. In summary, the main contributions of this research are as follows:

1.	 We propose a new hybrid optimization algorithm named GPOFWA, which integrates the Political Optimizer 
(PO) and the Fireworks Algorithm (FWA). Using the spark explosion mechanism in FWA, GPOFWA per-
forms explosion spark and Gaussian explosion spark operations on party leaders and constituency winners 
based on greedy strategy, which enhances exploitation capability of GPOFWA. At the same time, the Gaussian 
explosion spark mechanism of the firework algorithm is used to explore areas with better fitness to ensure 
the effectiveness of RPPUS.

2.	 We adopt a new method called Converged Mobility Center with bi-directional consideration to generate the 
subgroup optimal solution of the current population, which enhances the exploration ability and maintains 
the population diversity.

3.	 We investigate the performance of the proposed algorithm in solving 30 basic benchmark functions in multi-
ple dimensions (30 and 500), CEC2019 benchmark functions and three engineering optimization problems. 
To verify the feasibility and effectiveness of this scheme and the accuracy of the results from different aspects, 
we use experimental and statistical analysis, such as qualitative analysis, quantitative analysis, convergence 
preference, pairwise comparative analysis (Wilcoxon signed-rank test), computational complexity, and sen-
sitivity analysis of parameters.

The remainder of this research is organized as follows: Section 2 reviews the basic political optimizer and fire-
works algorithm. Section 3 proposes a novel hybrid greedy political optimizer with fireworks algorithm. Section 4 
discusses the experiment results of different swarm intelligence optimization algorithms on basic benchmark 
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functions and CEC2019 functions. Section 5 applies the algorithm to three different engineering optimization 
problems. Section 6 presents the conclusions of this work and directions for future work.

Related work
Political optimizer and firework algorithm are novel algorithms with excellent performance proposed in recent 
years, which are inspired by different social natural phenomena and can effectively solve optimization problems. 
The hybrid algorithm proposed in this paper takes the political optimization algorithm as the starting point, and 
the explosion spark and Gaussian mutation spark mechanism of the firework algorithm are added to the search 
process of the political optimization algorithm to enhance the performance of the algorithm. This section will 
briefly introduce these two algorithms.

Political optimizer.  The political optimizer (PO) is a novel intelligent optimization algorithm inspired 
by the political election process of human society. In PO, each party member can be viewed as a candidate 
solution, and the election behavior of party members can be seen as an evaluation function. In addition, the 
votes obtained by party members are mapped to the fitness value of the candidate solution. Unlike traditional 
algorithms based on political elections, PO considers the complete process of political elections, including five 
phases of party formation and constituency allocation, election campaign, party switching, inter-party election, 
and parliamentary affairs. PO seeks the optimal solution through a multi-stage iterative process, and its main 
algorithm flow is shown in Fig. 1. The following will introduce the five main stages of PO.

Party formation and constituency allocation.  At the beginning of PO, the entire population containing n2 indi-
viduals are divided into n parties, and there are n members (candidate solution) in each party. In addition, each 
party member also plays the role of an election candidate, that is, one member from each party is selected to 
form a constituency. As is depicted in Fig. 2, the red dotted line indicates the division of political parties, and the 
blue dotted line indicates the division of constituencies. The mapping of this population division to the math-
ematical model is that the entire population is divided into n political parties as shown in Eq. (1), and each party 
consists of n party members as represented as Eq. (2).

Each party member also plays the role of an election candidate, so the entire population can be regarded 
as n constituencies, which can be represented as Eq. (3). What needs to be emphasized is the members of the 
constituency are also party members, but the logical division is different. The membership of each constituency 
is divided as shown in Eq. (4).

Furthermore, the leader of the ith party after computing the fitness of all members is noted as p∗i  and the 
set of all the party leaders is represented by P∗ as shown in Eq. (5). Similarly, after the election, C∗ regroups the 
winners from all the constituencies named the parliamentarians as shown in Eq. (6), where c∗j  denotes the win-
ner of jth constituency.

Election campaign.  This stage is the core stage of the algorithm and is responsible for the location update of the 
search agent. In the algorithm, the specific performance is that party members change their positions accord-
ing to the leader P∗ of the party they belong to and the winner C∗ of their constituency. In addition, they will 
also learn from the experience of the last election through a novel location update mechanism called recent 
past-based position updating strategy (RPPUS), as formulated in Eqs. (7) and (8). The main idea of RPPUS is to 
predict promising areas through the numerical relationship between subgroup optimal solution (party leader or 
constituency winner) and current fitness and previous fitness of search agent.
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where m∗ indicates the leader of a party or the winner of a constituency, r represents a random number from 0 
to 1, and t  represents the current iteration number.

Party switching.  The party switching phase is mainly to balance exploration and exploitation, which intro-
duces an adaptive parameter � called party switching rate. Each party member may be selected and switched to 
some randomly selected party. The probability of switching is determined by � , which is initially 1 and linearly 
decreases to 0 as shown in Eq. (9).
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Figure 1.   The flowchart of political optimizer.
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Election.  At this stage, the fitness of each candidate solution is determined and the party leaders and constitu-
ency winners are updated by Eqs. (10) and (11).

Parliamentary affairs.  The party switching phase is aimed at the change of the party’s perspective, and the par-
liamentary affairs phase is the change of the constituency’s perspective. The constituency winners interact with 
each other to improve their fitness. Each constituency winner uses the following equation to update its position 
relative to any other randomly selected constituency. It should be noted that the movement will only be applied 
if the fitness of c∗j  becomes better.

Fireworks algorithm.  The firework algorithm (FWA) is a swarm intelligence optimization algorithm pro-
posed in recent years, which is inspired by the explosion of fireworks. We usually celebrate with fireworks. When 
the fireworks explode, the sparks are everywhere. The explosion process of the fireworks can be regarded as the 
search behavior of the search agent in the local space. The firework algorithm is based on this idea, and the flow-
chart of the firework algorithm is shown in Fig. 3.

It should be emphasized that fireworks of different qualities will produce different sparks when they explode. 
High-quality fireworks will produce countless sparks when they explode. The explosion of the fireworks forms 
a circle, and the sparks are concentrated in the center of the explosion. Conversely, a bad firework will produce 
fewer sparks when it explodes, and the sparks will spread out to form irregular shapes. From the perspective 
of swarm intelligence algorithm, a firework is regarded as a candidate solution. A good firework means that a 
candidate solution is located in a promising area and is close to the global optimal solution. Therefore, more 
sparks can be generated near good fireworks to find the global optimal solution, and the search radius is as small 
as possible. A bad firework means that the position of the candidate solution is not ideal, so the search radius 
should be larger, and the number of sparks generated will be reduced accordingly.

As mentioned earlier, good fireworks should produce more sparks, while bad fireworks produce fewer sparks. 
The calculation of the number of sparks produced by each firework is shown in Eq. (12). Good fireworks are 
closer to the global optimum, so the explosion amplitude is smaller, while bad fireworks are just the opposite. 
The amplitude of explosion for each firework is defined as Eq. (13).
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Figure 2.   The population and its logical division in political parties and constituencies.
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where ymin = min(f (xi)) , ymax = max(f (xi)) , Ŝ and Â are constants, which are to control the number of explo-
sion sparks and the size of explosion amplitude, respectively.

What should be noted is FA design two ways of generating sparks, one is explosion sparks for normal search, 
its algorithm is shown in Algorithm 1. The other is Gaussian spark, which is a mutation mechanism, and its 
algorithm is shown in Algorithm 2.

(12)Si = Ŝ · ymax − f (xi)+ ξ
∑n

i=1(ymax − f (xi))+ ξ

(13)Ai = Â · f (xi)− ymin + ξ
∑n
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Select n ini�al loca�ons

Set off n fireworks at n loca�ons

Obtain the loca�ons of sparks

Evaluate the quality of the laca�ons

Op�mal laca�on found

Select n loca�ons

END
Yes

No

Figure 3.   The flowchart of firework algorithm.
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Proposed method
The original PO assigns dual roles to each agent and uses RPPUS to make the algorithm have excellent perfor-
mance, but through careful observation, we can find that the algorithm still has a lot of room for improvement. 
There are the following several points:

1.	 The main idea of PO is to guide the movement of the search agent through the subgroup optimal solution. 
The number of subgroup optimal solutions such as party leader and constituency winner are limited because 
the number of initial populations directly determines the number of party leaders and constituency winners, 
which leads to insufficient global exploration capabilities of PO.

2.	 In RPPUS, member positions are updated based on the positions of members of the previous generation, 
the positions of party leaders or constituency winners, and the current positions of members. Considering 
the numerical relationship between these three indicators, it effectively predicts the favorable area of the 
member’s next move, but this is the future movement trend predicted based on only three indicators, and its 
accuracy needs to be improved. Moreover, after the update is completed, it is not verified whether the fitness 
has improved.

3.	 In the position update process, to consider the influence of the party leader and the constituency winner on 
the position of the members, the members are successively moved around the two subgroup optimal solu-
tions. If the two subgroup optimal solutions themselves are relatively close, the difference between updating 
twice and updating once is not large, and updating twice also means that all dimensions of each member 
must be updated twice, which adds a lot of time consumption.

The proposed algorithm puts forward corresponding solutions based on the above points, and finally forms 
GPOFWA. For the first point, using the spark explosion mechanism in FWA, GPOFWA performs explosion spark 
and Gauss explosion spark operations on party leader and constituency winner respectively based on greedy 
strategy, thereby optimizing the subgroup optimal solution. For the second point, GPOFWA uses the Gaussian 
explosion spark mechanism of the firework algorithm to explore areas with better adaptability to ensure the 
effectiveness of RPPUS. Regarding the third point, this article proposes a new subgroup optimal solution, called 
Converged Mobility Center (CMC) with bi-directional consideration, which not only considers the advantages 
of the party leader and the constituency winner but also maintains the population diversity.

Hybridizing political optimizer with fireworks algorithm.  The most distinctive feature of FWA is 
that the firework explosion operator truly simulates the search process of the search agent. Generating a large 
number of sparks means that a large number of candidate solutions are generated. PO updates the position of 
search agent around subgroup optimal solutions, but the number of subgroup optimal solutions is limited by 
the size of the initial population. At the same time, the individuals performing the explosion operation in FWA 
are selected optimally from the entire population, and subgroup optimal solution of PO has been screened out, 
which can be used for the explosion operation. Moreover, the two explosion methods of FWA correspond to the 
two subgroup optimal solutions of PO, and they complement each other. Here, the party leaders conduct the 
explosion spark operation, and the constituency winners conduct the Gaussian spark operation. The detailed 
process of their explosive operation is shown in Fig. 4. In the figure, each dot represents a candidate solution, 
and each fivE−pointed star represents the spark produced by the explosion. Dots of the same color indicate that 
they belong to the same political party, and the darkest colored dots indicate the leader of the party. Obviously, 
the dots in the same ellipse belong to a constituency, and the dots marked with a “W” letter indicate the winner 
of the constituency. The leader of the party conducts an explosion spark operation (hexagonal firework), while 
the constituency winner conducts a Gaussian explosion operation (pentagonal firework).

Similar to the FWA, the calculation of the number of sparks generated by subgroup optimal solution is shown 
in Eqs. (14) and (15). The difference is that in the process of generating sparks, only the subgroup optimal solu-
tions are considered. A better subgroup optimal solution generates more sparks, and a lower fitness subgroup 
optimal solution generates fewer sparks.
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where Kp
i  indicates the number of sparks generated by the leader of the ith party, Kc

j  indicates the number of 
sparks generated by the winner of the jth constituency, k is a parameter controlling the total number of sparks 
generated by party leaders or constituency winners, p∗max = max

(

f
(

p∗i
))

 ( i = 1, 2, . . . ,N ) is the maximum (worst) 
value of the objective function among the N party leaders, c∗max = max

(

f
(

c∗j
))

 ( j = 1, 2, . . . ,N ) is the maximum 
(worst) value of the objective function among the N constituency winners, and ξ , which denotes the smallest 
constant in the computer, is utilized to avoid zero-division-error.

Since the party leaders conduct the explosion spark operation, it is necessary to calculate the explosion range. 
The calculation formula is shown as Eq. (16).

where Rp
i  represents the explosion range of the leader of the ith party, R denotes the maximum explosion range, 
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 ( i = 1, 2, . . . ,N ) is the minimum (best) value of the objective function among the N party 
leaders.

It should be noted that after the party leaders and the constituency winners perform the explosion operation, 
based on the greedy strategy, they will update themselves if the sparks they generate have better fitness than 
themselves. This process is carried out after party formation and constituency allocation, whose pseudo-code 
is shown in Algorithm 3.

(14)K
p
i = k · p∗max − f

(

p∗i
)

+ ξ
∑N

i=1

(

p∗max − f
(

p∗i
))

+ ξ

(15)Kc
j = k ·

c∗max − f
(

c∗j
)

+ ξ

∑N
j=1

(

c∗max − f
(

c∗j
))

+ ξ

(16)R
p
i = R · f

(

p∗i
)

− p∗min + ξ
∑N

i=1

(

f
(

p∗i
)

− p∗min

)

+ ξ

W

W

W

C1
C2

C3

W

Figure 4.   Party leaders and constituency winners perform explosion operation.
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Gaussian spark for verification of RPPUS.  As mentioned earlier, RPPUS only predicts the favorable 
area where the search agent moves and lacks correctness verification after the update. In some cases, the fitness 
of the candidate solution after the update is worse than the fitness before the update. As shown in Fig. 5, RPPUS 
only roughly predicts based on three reference points. The green area is where we want the candidate solution to 
enter, but the candidate solution may enter the yellow area and cause the fitness to become worse. At this time, 
the candidate solution is regarded as a “problematic” solution and it should be corrected.

In this paper, the Gaussian spark in the FWA is used to correct the candidate solution whose fitness becomes 
worse after the update. The specific method is to generate three sparks around the candidate solution and judge 
whether there is a better solution than the candidate solution before the update among the three sparks, if there 
is, choose the best spark as the new candidate solution. If the fitness of all sparks is worse than that of the candi-
date solution before the update, the candidate solution before the update will be inherited and no change will be 
made. It should be noted that the Gaussian spark here is slightly different from the original firework algorithm 
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Figure 6.   Converged Mobility Center with Bi-directional Consideration.

Table 1.   Detailed information of unimodal benchmark functions.

Function Dim Range Fmin

F1(x) =
∑n

i=1x
2
i 30 [− 100, 100] 0

F2(x) =
∑n

i=1ix
4
i + random[0, 1) 30 [− 1.28, 1.28] 0

F3(x) =
∑n

i=1|xi |i+1 30 [− 1, 1] 0

F4(x) =
∑n

i=1|xi | 30 [− 100, 100] 0

F5(x) = max(|xi |, 1 ≤ i ≤ n) 30 [− 100, 100] 0

F6(x) = 25+∑n
i=1(⌊xi⌋) 30 [− 5.12, 5.12] 25-6n

F7(x) =
∑n

i=1

(

∑i
j=1xj

)2 30 [− 100, 100] 0

F8(x) =
∑n

i=1|xi | +
∏n

i=1|xi | 30 [− 100, 100] 0

F9(x) =
∑n

i=1x
10
i 30 [− 10, 10] 0

F10(x) =
∑n−1

i=1

(

x2i
)

(

x2i+1+1
)

+
(

x2i+1

)x2i +1 30 [− 1, 4] 0

F11(x) = ∑

D
4
i=1(x4i−3 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2 + (x4i−2 − x4i−1)

4 + 10(x4i−3 − x4i)
4 30 [− 4, 5] 0

F12(x) =
∑n

i=1x
2
i +

(
∑n

i=1 0.5ixi
)2 +

(
∑n

i=1 0.5ixi
)4 30 [− 5, 10] 0

F13(x) = exp

(

−∑n
i=1

(

xi
β

)2m
)

− 2exp
(

−∑n
i=1x

2
i

)
∏n

i=1cos
2(xi) 30 [− 20, 20] − 1

F14(x) = 2x21 − 1.05x41 +
x61
6 + x1x2 + x22

2 [− 5, 5] 0

F15(x) = 0.26
(

x21 + x22
)

− 0.48x1x2 2 [− 10, 10] 0
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because we stipulate that the number of sparks generated by the “problematic” solution is three. The pseudo-code 
of this process is shown in Algorithm 4.

Converged mobility center with bi‑directional consideration.  In PO, the party leader and the con-
stituency winner are successively regarded as the center on which the position of the member is moved. If the 
two centers themselves are relatively close, it is not necessary to update twice. In response to this situation, we 
propose a new method to generate a new subgroup optimal solution as a mobile center—Converged Mobility 
Center with Bi-directional Consideration (CMC), which not only uses the advantages of both the party leader 
and the constituency winner but also maintains the population diversity.

In order to improve their performance in the election, candidates not only refer to the advantages of party 
leaders but also compare and analyze with the constituency winners. This action should be carried out at the 
same time, not one after the other. The higher the ranking of the party leader of the candidate’s party among all 
party leaders, the more the candidate wants to be close to the party leader. In the same way, the better the con-
stituency winner of the candidate’s constituency ranks among all constituency winners, the candidate will prefer 
the constituency winner. CMC is proposed based on this consideration. As shown in Fig. 6, P′ means ranking 
first among all party leaders, P′′ means ranking second, P′′′ means ranking third, and C′ , C′′ and C′′′ indicate 
the ranking among the constituency winners. CMC will be generated near the higher-ranked party leader or 
constituency winner. The solution of CMC is shown in Eq. (17).

where PF represents the party weighting factor, CF represents the constituency weighting factor, p∗i,k indicates 
the value of the kth dimension of the party leader p∗i  , and c∗j,k indicates the value of the kth dimension of the 
party leader c∗j .

The party weighting factor PF and the constituency weighting factor CF are calculated as follows:

where r1 and r2 denotes the random value in the interval of [0, 1], N  indicates the total number of parties or 
constituencies.

(17)centerki,j = PF ∗ p∗i,k + CF ∗ c∗j,k

(18)PF = r1 ∗
N − PartyRank

(

p∗i
)

N
, PartyRank = sort(P∗)

(19)CF = r2 ∗
N − ConstituencyRank

(

c∗j
)

N
, ConstituencyRank = sort(C∗)
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Computational complexity.  Time complexity is a key criterion for judging the quality of an algorithm. 
To demonstrate the computational efficiency of GPOFWA, this section analyzes the computational complexity 
of PO and GPOFWA. The time complexity analysis of PO mainly includes three parts:

1.	 The time complexity of the population initialization phase is O(ND) , where N represents the population size 
and D represents denotes the dimensions variables of the problem.

2.	 The fitness value of each candidate is evaluated initially, and the time complexity is O(NTobj) , where Tobj 
denotes the cost of the objective function.

Table 2.   Detailed information of multimodal benchmark functions.

Function Dim Range Fmin

F16(x) = 418.9829n−∑n
i=1 − xisin

(√|xi |
)

30 [− 500, 500] 0

F17(x) =
∑n

i=1

[

x2i − 10cos(2πxi)+ 10
]

30 [− 5.12, 5.12] 0

F18(x) = 1+∑n
i=1sin

2(xi)− 0.1e
(
∑n

i=1 x
2
i

)

30 [− 10, 10] 0.9

F19(x) =
∑n

i=1|xisin(xi)+ 0.1xi | 30 [− 10, 10] 0

F20(x) =
∑n

i=1ǫi |xi |i 30 [− 5, 5] 0

F21(x) = −20exp

(

−0.2
√

1
n

∑n
i=1 x

2
i

)

− exp
(

1
n

∑n
i=1 cos(2πxi)

)

+ 20+ e 30 [− 32, 32] 0

F22(x) =
∑n

i=18sin
2
[

7(xi − 0.9)2
]

+ 6sin2
[

14(x1 − 0.9)2
]

+ (xi − 0.9)2 30 [− 500, 500] 1

F23(x) = 1− cos

(

2π
√

∑n
i=1 x

2
i

)

+ 0.1
√

∑n
i=1 x

2
i 30 [− 100, 100] 0

F24(x) = 1
2

∑n
i=1

(

x4i − 16x2i + 5xi
)

30 [− 5, 5] − 39.16599 ×n

F25(x) = 1/4000
∑n

i=1x
2
i −

∏n
i=1cos

(

xi/
√
i
)

+ 1 30 [− 100, 100] 0

F26(x) =
(

∑n
i=1 sin

2(xi)− e−�n
i=1x

2
i

)

e−
∑n

i=1 sin
2
√|xi | 30 [− 10, 10] − 1

F27(x) =
(
∑n

i=1 |xi |
)

exp
(

−∑n
i=1sin

(

x2i
))

30 [− 2 π , 2 π] 0

F28(x) = x2 + y2 + 25
(

sin2(x)+ sin2(y)
)

2 [− 5, 5] 0

F29(x) = −0.0001

(∣

∣

∣

∣

sin(x)sin(y)exp

(∣

∣

∣

∣

100−
√

x2+y2

π

∣

∣

∣

∣

)∣

∣

∣

∣

+ 1

)0.1

2 [− 2, 2] 3

F30(x) = −200e−0.2
√

x2+y2 + 5ecos(3x)+sin(3y) 2 [− 32, 32] − 195.629

Table 3.   Parameter settings of the algorithm used for comparison.

Algorithm Parameters Value

GPOFWA

Number of parties/constituencies 8

Lambda (initial party switching rate) 1

Parameter k 50

Parameter R 40

PO
Number of parties/constituencies 8

Lambda (initial party switching rate) 1

HHO Hawks numbers 42

GWO
Wolf numbers 42

a (area vector) [0, 2]

SCA
Solution numbers 42

a (constant) 2

SSA Salp numbers 42

WCA​

Solution numbers 42

Parameter C 2

Parameter µ 0.1

WOA

Whales number 42

Parameter A [0, 2]

Parameter A2 [0, 2]

LSA
Projectiles number 42

Channel time 10
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3.	 The main loop of the algorithm is the main time consumption. The time complexity of the election campaign 
stage is O(2ND) , O(N) is the time complexity of party switching phase, O(NTobj) is the time complexity of 
the election stage, and the time complexity of parliamentary affairs stage is O

(√
ND

)

 , and Tmax with each 
component is for the main loop. Therefore, the time complexity of the basic PO for Tmax loops can be com-
puted as follows:

O(PO) = O(ND)+ O(NTobj)+ Tmax ×
(

O(2ND)+ O(N)+ O(NTobj)+ O
(√

ND
))

Table 4.   Unimodal function test results of all selected algorithms. Significant values are in bold.

Fn Stats HHO GWO SCA SSA WCA​ WOA LSA PO GPOFWA

F1

Mean 3.27E−112 3.06E−36 0.852131 1.11E−08 7.12E−18 2.91E−92 5.24E−19 0.0E+00 0.0E+00

Best 1.64E−113 1.63E−36 0.55677 1.02E−08 4.43E−19 7.07E−94 2.02E−19 0.0E+00 0.0E+00

Std 4.39E−112 2.02E−36 0.417704 1.23E−09 9.44E−18 4.02E−92 4.55E−19 0.0E+00 0.0E+00

F2

Mean 4.15E−05 0.000649 0.02464 0.082534 0.006701 0.004491 0.021349 0.000171 1.64E−05

Best 6.18E−05 0.0004 0.012528 0.049885 0.005301 0.000352 0.015262 4.48E−05 1.07E−05

Std 4.99E−05 0.000352 0.017129 0.046173 0.001981 0.005854 0.008609 0.000179 8.11E−06

F3

Mean 9.61E−132 1.59E−127 5.57E−06 2.11E−07 7.20E−28 5.72E−143 3.96E−66 0.0E+00 0.0E+00

Best 2.11E−138 6.77E−130 3.74E−07 1.67E−07 1.08E−32 1.60E−143 2.71E−69 0.0E+00 0.0E+00

Std 1.36E−131 2.24E−127 7.35E−06 6.16E−08 1.02E−27 5.83E−143 5.60E−66 0.0E+00 0.0E+00

F4

Mean 1.40E−52 3.84E−09 24.5126 5.2992 0.137835 31.5447 0.507328 4.98E−192 0.0E+00

Best 1.22E−59 7.25E−10 8.34198 1.1729 0.02232 0.005592 0.063907 9.23E−202 0.0E+00

Std 7.17E−52 3.20E−09 11.3727 2.79292 0.135222 29.6858 0.379579 6.29E−200 0.0E+00

F5

Mean 0.000967 26.4269 4289.73 103.807 9.45568 27.2305 38.0473 4.80E−192 0.0E+00

Best 0.000813 25.7264 246.468 75.9896 0.125462 27.1183 0.85238 6.20E−203 0.0E+00

Std 0.000218 0.990773 5718.04 39.3403 13.1949 0.158699 52.6016 0.0E+00 0.0E+00

F6

Mean 2.99E−05 0.000983 0.050684 0.040825 0.012511 0.000726 0.019903 0.000258 2.84E−05

Best 2.40E−05 0.000634 0.049177 0.021008 0.006514 0.00054 0.015872 0.000193 2.99E−06

Std 8.26E−05 0.000494 0.002131 0.028026 0.00848 0.000264 0.005701 9.23E−05 3.60E−05

F7

Mean 1.62E−89 1.13E−09 5628.35 290.083 0.001705 21,356.7 21.1357 0.0E+00 0.0E+00

Best 4.31E−113 1.74E−12 1159.88 100.405 0.000135 4970.73 2.89647 0.0E+00 0.0E+00

Std 8.27E−89 1.84E−09 3643.7 208.889 0.003003 9330.73 13.258 0.0E+00 0.0E+00

F8

Mean 3.56E−50 4.14E−20 0.022274 2.49E+14 158.893 3.76E−54 7.72498 1.15E−215 0.0E+00

Best 8.29E−60 3.17E−21 0.000181 216.132 1.44E−10 1.02E−59 1.72E−08 2.12E−227 0.0E+00

Std 1.95E−49 5.35E−20 0.034437 1.09E+15 237.738 9.92E−54 20.9239 0.0E+00 0.0E+00

F9

Mean 0.0E+00 1.17E−119 138,063 2.02E−16 2.12E−47 1.15E−260 6.73E−57 0.0E+00 0.0E+00

Best 0.0E+00 3.01E−131 2.39E−05 5.90E−34 8.58E−66 0.0E+00 1.15E−62 0.0E+00 0.0E+00

Std 0.0E+00 6.01E−119 573,729 7.72E−16 1.09E−46 0.0E+00 1.95E−56 0.0E+00 0.0E+00

F10

Mean 5.12E−104 7.67E−39 0.000546 3.86E−11 8.27E−19 2.96E−92 1.31E−15 0.0E+00 0.0E+00

Best 9.89E−124 2.32E−40 1.73E−06 1.88E−11 1.53E−24 2.25E−101 1.16E−22 0.0E+00 0.0E+00

Std 2.78E−103 1.18E−38 0.000752 1.17E−11 2.87E−18 1.56E−91 6.95E−15 0.0E+00 0.0E+00

F11

Mean 3.45E−103 1.00E−05 4.13447 1.51361 2.81E−05 2.08E−06 0.007704 0.0E+00 0.0E+00

Best 2.55E−119 8.83E−07 0.004147 0.271445 7.52E−06 8.41E−93 0.000348 0.0E+00 0.0E+00

Std 1.72E−102 8.82E−06 9.23443 1.26208 2.06E−05 5.89E−06 0.031663 0.0E+00 0.0E+00

F12

Mean 6.73E−74 8.87E−14 16.2 6.19244 4.07989 539.19 0.685463 2.83E−264 0.0E+00

Best 1.77E−97 5.87E−16 0.609656 0.541016 0.006203 386.573 0.08349 1.39E−314 0.0E+00

Std 3.19E−73 1.42E−13 9.63937 4.27787 7.39854 105.514 0.454347 0.0E+00 0.0E+00

F13

Mean − 1.0E+00 5.05E−140 3.91E−187 6.18E−182 4.34E−232 − 0.6 6.87E−136 − 0.23333 − 1.0E+00

Best − 1.0E+00 3.46E−194 1.02E−204 3.56E−202 4.34E−232 − 1.0E+00 1.20E−192 − 1.0E+00 − 1.0E+00

Std 0.0E+00 2.76E−139 0.0E+00 0.0E+00 0.0E+00 0.498273 3.76E−135 0.430183 0.0E+00

F14

Mean 1.44E−116 1.04E−260 2.22E−80 4.56E−15 5.50E−40 2.72E−103 1.25E−261 0.0E+00 0.0E+00

Best 2.71E−134 4.23E−321 1.41E−92 7.52E−17 7.86E−46 3.46E−125 1.12E−269 0.0E+00 0.0E+00

Std 7.89E−116 0.0E+00 7.99E−80 5.48E−15 8.28E−40 1.49E−102 0.0E+00 0.0E+00 0.0E+00

F15

Mean 1.08E−136 2.28E−160 2.75E−66 8.87E−16 2.20E−40 4.98E−247 1.71E−159 0.0E+00 0.0E+00

Best 9.19E−180 3.49E−181 3.70E−80 5.20E−18 1.23E−43 4.84E−277 1.33E−178 0.0E+00 0.0E+00

Std 4.43E−136 9.15E−160 1.44E−65 1.22E−15 5.55E−40 0.0E+00 8.04E−159 0.0E+00 0.0E+00
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Figure 7.   Qualitative results of some unimodal functions in 30 dimensions.
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In contrast, GPOFWA introduced the search strategy of the fireworks algorithm and adopted the Converged 
Mobility Center with bi-directional consideration. The time complexity of these two algorithms is different in 
the main loop. GPOFWA performs explosion spark and Gaussian explosion spark operations on party leaders 
and constituency winners to optimize subgroup optimal solutions. The time complexity of this process is 
O
(

2
√
NDK

)

 , where K represents the number of sparks generated by the subgroup optimal solution. Gaussian 
spark for verification of RPPUS and CMC are applied in the election campaign stage, the time complexity is 
O(ND) . Therefore, the time complexity of the GPOFWA for Tmax loops can be computed as follows:

We can conclude from the detailed analysis that they are of the same order of magnitude.

Experiments and discussion
The performance of GPOFWA is evaluated on 30 basic benchmark functions in multiple dimensions (30 and 
500), CEC2019 benchmark functions and three engineering optimization problems against a good combination 
of some advanced swarm intelligence algorithms. These test cases include various types (linear, nonlinear, and 
quadratic) of objective functions with the different number of decision variables and a range of types (linear 
inequalities, nonlinear equalities, and nonlinear inequalities), and the number of constraints. All simulation 

O(GPOFWA) = O(ND)+O(NTobj)+Tmax×
(

O(ND)+ O(N)+ O(NTobj)+ O
(√

ND
)

+ O
(

2
√
NDK

))

F7

F8

F12

Figure 7.   (continued)
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experiments are conducted on a computer with a Win10 operating system and Intel(R) Core (TM) i7-10750H 
GHz with 16 GB RAM. The proposed algorithm is coded in MATLAB R2020a.

Comparison with other algorithms in low‑dimensional functions.  To verify the good performance 
of GPOFWA, we first used thirty benchmark functions for testing which are equally divided into two groups: 
unimodal function and multimodal function. The unimodal function (F1–F15) with the unique global optimal 
solution can reveal the exploitative capabilities of different algorithms, while the multimodal function (F16–F30) 
can be used to test the ability of the algorithm to avoid falling into the local optimal solution. It should be noted 
that the multimodal function test set also contains some fixed-dimensional functions, which show some optimi-
zation problems in the real world.

Table 5.   Multimodal function test results of all selected algorithms. Significant values are in bold.

Fn Stats HHO GWO SCA SSA WCA​ WOA LSA PO GPOFWA

F16

Mean 0.00392 234.851 291.308 165.807 85.3049 65.1877 155.304 59.2192 0.000155

Best 0.003725 226.485 281.702 161.268 75.7705 0.054689 134.24 1.27E−05 4.58E−05

Std 0.000275 11.8308 13.5841 6.4189 13.4837 92.1121 29.7894 83.7485 0.000154

F17

Mean 0.0E+00 1.15682 28.1853 39.3008 42.7932 1.89E−15 62.9476 0.994959 0.0E+00

Best 0.0E+00 0.0E+00 0.006467 13.9294 16.9143 0.0E+00 42.7832 0.0E+00 0.0E+00

Std 0.0E+00 2.59919 27.8158 16.2666 14.015 1.04E−14 16.7692 5.44962 0.0E+00

F18

Mean 0.9E+00 1.49474 5.86083 1.0E+00 1.0E+00 1.07092 1.0E+00 0.933333 0.9E+00

Best 0.9E+00 1.03939 2.53771 1.0E+00 1.0E+00 0.9E+00 1.0E+00 0.9E+00 0.9E+00

Std 4.52E−16 0.853118 1.2096 3.01E−11 6.75E−16 0.228393 1.66E−11 0.047946 4.52E−16

F19

Mean 3.51E−55 2.26E−19 0.061249 0.809466 1.43E−09 6.65E−58 7.81E−06 1.57E−202 0.0E+00

Best 9.24E−61 8.44E−21 0.036909 0.674069 5.28E−10 1.92E−58 2.26E−06 2.38E−221 0.0E+00

Std 4.97E−55 3.08E−19 0.034423 0.191481 1.28E−09 6.69E−58 7.85E−06 0.0E+00 0.0E+00

F20

Mean 1.35E−14 3.10E−34 0.109068 0.67503 4.75E−08 20,117.7 5.81E−25 1.32E−231 0.0E+00

Best 4.50E−73 2.38E−54 3.88E−06 0.00029 1.28E−10 5.79E−30 4.64E−32 2.38E−248 0.0E+00

Std 7.42E−14 1.65E−33 0.306688 1.25076 1.20E−07 110,189 1.57E−24 0.0E+00 0.0E+00

F21

Mean − 8.88E−16 3.55E−14 10.9147 2.03485 0.000415 3.02E−15 1.75891 − 8.88E−16 − 8.88E−16

Best − 8.88E−16 2.75E−14 0.014726 0.931305 4.26E−12 − 8.88E−16 8.16E−11 − 8.88E−16 − 8.88E−16

Std 0.0E+00 3.81E−15 9.82257 0.605984 0.001602 1.43E−15 1.16894 0.0E+00 0.0E+00

F22

Mean 1.00022 22.4015 261.62 123.734 8.35551 57.9046 51.2548 1.0E+00 1.0E+00

Best 1.0E+00 15.5343 104.113 61.313 1.0E+00 11.4593 16.2528 1.0E+00 1.0E+00

Std 0.00028 4.58991 180.526 35.0562 12.7251 24.5662 20.2151 0.0E+00 0.0E+00

F23

Mean 9.88E−55 0.199873 0.629963 0.999873 0.549873 0.199873 0.499873 1.69E−202 0.0E+00

Best 1.71E−56 0.199873 0.601173 0.799873 0.499873 0.099873 0.499873 2.48E−221 0.0E+00

Std 1.37E−54 1.91E−11 0.040715 0.282843 0.070711 0.141421 2.34E−08 1.57E−223 0.0E+00

F24

Mean − 1174.98 − 935.519 − 610.207 − 1011.47 − 1015.24 − 1135.68 − 1065.66 − 1174.98 − 1174.98

Best − 1174.98 − 1036.94 − 689.914 − 1090.16 − 1076.03 − 1174.96 − 1104.3 − 1174.98 − 1174.98

Std 0.002945 50.8735 42.3432 37.9842 36.2134 76.7754 31.2673 2.31E−13 4.59E−15

F25

Mean 0.0E+00 0.001342 0.35926 0.010515 0.012955 0.001388 0.025707 0.0E+00 0.0E+00

Best 0.0E+00 0.0E+00 0.000214 1.49E−08 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00

Std 0.0E+00 0.004322 0.259761 0.00864 0.015486 0.007602 0.028341 0.0E+00 0.0E+00

F26

Mean − 1.0E+00 4.51E−16 1.84E−10 6.20E−23 2.51E−30 − 0.16667 1.89E−22 − 0.86667 − 1.0E+00

Best − 1.0E+00 2.17E−16 6.27E−11 2.93E−23 1.90E−37 − 1.0E+00 3.42E−34 − 1.0E+00 − 1.0E+00

Std − 1.0E+00 1.52E−16 1.10E−10 3.38E−23 9.31E−30 0.379049 1.04E−21 0.345746 − 1.0E+00

F27

Mean 3.51E−12 1.72E−08 4.51E−10 3.46E−11 1.73E−11 3.69E−12 5.99E−12 3.51E−12 3.51E−12

Best 3.51E−12 1.44E−11 9.00E−11 1.52E−11 1.64E−11 3.51E−12 4.43E−12 3.51E−12 3.51E−12

Std 5.58E−15 3.43E−08 2.34E−10 2.52E−11 3.16E−13 3.39E−13 8.78E−13 4.33E−27 5.61E−30

F28

Mean 5.52E−120 8.19E−286 4.22E−81 5.16E−14 5.73E−38 1.71E−153 2.65E−265 0.0E+00 0.0E+00

Best 9.47E−138 0.0E+00 2.15E−91 1.52E−15 1.33E−47 2.26E−183 5.65E−272 0.0E+00 0.0E+00

Std 2.08E−119 0.0E+00 1.38E−80 4.56E−14 2.29E−37 6.53E−153 0.0E+00 0.0E+00 0.0E+00

F29

Mean 3.0E+00 3.00001 3.00003 3.0E+00 3.0E+00 3.00001 3.0E+00 7.24095 3.0E+00

Best 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00 3.0E+00

Std 3.51E−08 7.58E−06 6.02E−05 9.09E−14 1.68E−15 1.44E−05 1.02E−15 7.55564 4.82E−09

F30

Mean − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629

Best − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629

Std 7.05E−09 2.93E−08 9.87E−05 7.90E−13 5.78E−14 2.63E−08 5.78E−14 5.78E−14 7.10E−15
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Figure 8.   Qualitative results of some multimodal functions in 30 dimensions.
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Figure 8.   (continued)
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Figure 9.   Qualitative results of F2, F4, F8, F16 and F20 functions in 500 dimensions.
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The detailed information of the unimodal function is shown in Table 1, including mathematical expressions, 
test dimensions, search ranges, and theoretical optimal values. The same details of multimodal functions are 
presented in Table 2. Moreover, in order to reflect the superiority of GPOFWA, we compare it with the existing 
advanced optimization algorithms, including HHO, GWO, SCA, SSA, WCA, WOA, LSA, and the original PO. 
The algorithms used for comparison and their parameter settings are all shown in Table 3. It is worth mentioning 
that parameter settings are based on the parameters used by the original author or the parameters widely used 
by various researchers. To ensure the fairness of the experiment, we compare the performance of the algorithms 
after running each experiment independently 30 times and the maximum number of objective function evalu-
ations for all algorithms is set to 30,000.

First of all, we tested the performance of all selected algorithms on F1–F15. And used three different statistics 
to start the first step of the evaluation. These statistics are the best fitness value (Best), the average fitness value 
(Mean), and the standard deviation (Std). Table 4 outlines the obtained results using these measures where the 
best ones are highlighted in bold text. It can be seen from the table that the proposed algorithm GPOFWA is 
superior to the original PO, and performs better than other advanced optimization algorithms. Especially for 
F4–F8 and F12, GPOFWA can find the theoretical optimal value of the function, while other algorithms are far 
different in terms of optimization accuracy. For the remaining unimodal functions, the performance of GPOFWA 
is also better than other algorithms. Not only does it converge faster, but it also achieves the best results in finding 
global optimal values. In order to reflect the superiority of GPOFWA in convergence speed, we also drew some 
convergence curves as shown in Fig. 7 based on the average fitness value of each generation in 30 experiments, 
and show the stability of the algorithm through the corresponding box plot. It can be seen from the figure that 
for most unimodal functions, GPOFWA can find the optimal value in a few iterations, which shows that its global 
optimization ability is stronger than other algorithms.

By testing the unimodal function F1–F15, we can find the powerful exploitative capability of GPOFWA. To 
evaluate the exploration capability of GPOFWA, we used the multimodal function set F16–F30 for testing. As 
with the unimodal function test, we also use the best fitness value (Best), the average fitness value (Mean), and 
the standard deviation (Std) three statistics to illustrate the experimental results. The experimental results are 
shown in Table 5. It can be seen from the table that GPOFWA performs better on the multidimensional func-
tion test set than other advanced optimization algorithms. For example, in functions such as F16–F20 and F23, 
GPOFWA has higher optimization accuracy than other optimization algorithms. Secondly, we can find that the 
variance corresponding to the running results of GPOFWA is very small, most of which are 0 or close to 0, which 
means that GPOFWA is relatively stable in 30 runs. In addition, we also drew the convergence curve as shown in 
Fig. 8 based on the results of 30 runs and show the stability of the algorithm through the corresponding box plot. 
It can be seen from the figure that the convergence speed and optimization accuracy of GPOFWA are superior. 
Considering the performance of GPOFWA on the unimodal function and multimodal function test sets, we can 
find that GPOFWA not only has good exploitation capability but also performs well in exploration capability.

Comparison with other algorithms in high‑dimensional functions.  To test the performance of 
the GPOFWA algorithm on high-dimensional problems, we tested unimodal and multimodal functions of 500 
dimensions. It should be noted that the test function used in 4.1 contains some fixed dimension functions, so we 
chose F1–F10, F16–F25 for testing. For each function, the parameters are the same as those mentioned above. 
Figure 9 shows the qualitative analysis of functions in 500 dimensions. We also use the best fitness value (Best), 
the average fitness value (Mean), and the standard deviation (Std) three statistics to illustrate the experimental 
results. The experimental results are shown in Table  6. Similar to the low-dimensional case, GPOFWA also 
exhibits superior performance in high-dimensional functions. As shown in Fig. 9, it can be clearly seen that for 
unimodal functions such as F2, F4, and F8, GPOFWA has faster convergence speed and higher convergence 
accuracy, while for multimodal functions such as F16, GPOFWA shows its ability to avoid local optimal. From 
the results, the scalability of the proposed algorithm in terms of the number of variables of the optimization 
problem can be seen.

Figure 9.   (continued)
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Fn Stats HHO GWO SCA SSA WCA​ WOA LSA PO GPOFWA

F1

Mean 1.38E−101 6.70E−05 192,795 46,116.9 782.025 1.02E−83 58.0799 0.0E+00 0.0E+00

Best 9.26E−119 2.67E−05 70,773 41,245.9 451.696 7.84E−96 52.0459 0.0E+00 0.0E+00

Std 5.52E−101 1.98E−05 72,415.1 3117.24 224.549 5.60E−83 2.54923 0.0E+00 0.0E+00

F2

Mean 8.11E−05 0.023221 14,699.5 75.9363 4.04729 0.001671 455.103 0.000236 4.78E−05

Best 3.93E−06 0.012287 6096.39 59.572 2.52734 0.000105 327.357 4.53E−06 1.84E−06

Std 9.41E−05 0.005217 3276.52 10.3166 0.553167 0.002025 65.1496 0.000186 4.91E−05

F3

Mean 2.95E−134 2.77E−07 1.60909 4.73E−07 1.01E−14 1.46E−137 2.57E−09 0.0E+00 0.0E+00

Best 3.95E−148 1.30E−19 0.553188 1.35E−08 3.43E−17 1.97E−158 2.97E−12 0.0E+00 0.0E+00

Std 7.53E−134 9.94E−07 0.399443 6.38E−07 3.57E−14 5.41E−137 4.57E−09 0.0E+00 0.0E+00

F4

Mean 3.41E−52 0.017427 938.128 3763.77 390.817 6.89E−52 169.327 5.23E−209 0.0E+00

Best 2.99E−60 0.01276 284.762 3440.05 279.354 1.45E−60 145.075 4.31E−224 0.0E+00

Std 1.35E−51 0.002987 443.239 150.906 55.9311 2.82E−51 21.9515 0.0E+00 0.0E+00

F5

Mean 5.22E−52 55.7736 98.7412 29.3284 23.5218 75.3936 80.9725 8.36E−182 0.0E+00

Best 1.09E−59 43.3828 97.2443 25.3468 19.6904 0.056031 77.3959 1.04E−201 0.0E+00

Std 2.34E−51 5.22121 0.455195 2.09579 1.82314 25.3531 1.63515 0.0E+00 0.0E+00

F6

Mean − 2975 − 1094.53 − 735.067 − 1178.23 − 2795.37 − 2975 − 1455.63 − 2975 − 2975

Best − 2975 − 1171 − 866 − 1333 − 2935 − 2975 − 1564 − 2975 − 2975

Std 0.0E+00 39.4136 38.9145 90.3311 74.0636 0.0E+00 63.9722 0.0E+00 0.0E+00

F7

Mean 0.000441 84.9981 180,891 45,500.9 836.426 13.1285 58.2665 0.0E+00 0.0E+00

Best 5.99E−07 79.7633 33,046.2 40,400.4 546.971 7.28153 53.6144 0.0E+00 0.0E+00

Std 0.000498 2.06337 74,563 3087.91 183.717 2.97662 1.9892 0.0E+00 0.0E+00

F8

Mean 4.91E−27 193,425 5.81E+06 615,504 79,634.2 2.84E+07 1.53E+06 4.49E−253 0.0E+00

Best 1.60E−90 82,263.3 4.17E+06 245,354 53,562.8 1.65E+07 1.16E+06 1.04E−254 0.0E+00

Std 2.69E−26 57,070.1 1.11E+06 341,055 15,655.1 8.59E+06 223,555 1.25E−201 0.0E+00

F9

Mean 7.97E−53 3.40E−20 0.035994 2.03E+13 87.5152 1.20E−54 1.8042 4.07E−218 0.0E+00

Best 2.24E−61 5.00E−21 0.000528 257.593 1.67E−10 1.38E−62 3.16E−08 5.18E−227 0.0E+00

Std 4.12E−52 2.51E−20 0.051 1.09E+14 205.512 3.04E−54 5.10198 0.0E+00 0.0E+00

F10

Mean 0.0E+00 1.68E−11 1.76E+11 121,177 6.90548 1.86E−245 2.34E−05 0.0E+00 0.0E+00

Best 0.0E+00 1.73E−17 1.42E+11 35,850.9 0.554854 4.18E−320 2.79E−06 0.0E+00 0.0E+00

Std 0.0E+00 6.55E−11 1.79E+10 65,964.2 11.007 0.0E+00 2.14E−05 0.0E+00 0.0E+00

F16

Mean 0.003771 293.832 385.996 280.997 175.47 64.8972 189.028 15.7918 0.000998

Best 2.24E−05 274.155 378.749 262.217 151.633 0.157407 175.006 1.35E−05 1.27E−05

Std 0.005274 9.07825 2.36353 11.1739 14.3605 59.507 9.79229 40.9496 0.001788

F17

Mean 0.0E+00 46.8127 1183.56 2609.97 773.186 3.03E−14 2283.1 0.0E+00 0.0E+00

Best 0.0E+00 22.2264 455.69 2427.45 548.655 0.0E+00 1933.33 0.0E+00 0.0E+00

Std 0.0E+00 18.2103 429.877 108.618 127.924 1.66E−13 146.664 0.0E+00 0.0E+00

F18

Mean 0.9E+00 14.3207 173.587 90.9618 2.27417 0.9E+00 4.35765 0.973333 0.9E+00

Best 0.9E+00 4.0936 167.937 84.4045 1.16922 0.9E+00 3.89337 0.9E+00 0.9E+00

Std 4.52E−16 37.6994 2.07128 3.70901 1.42388 4.97E−16 0.266574 0.044978 3.51E−16

F19

Mean 2.06E−35 0.044025 144.858 228.849 8.67805 1.15E−54 173.972 8.34E−214 0.0E+00

Best 4.73E−63 0.03166 35.3217 200.308 4.9412 2.33E−60 69.4252 0.0E+00 0.0E+00

Std 1.13E−34 0.007583 69.8559 13.3428 3.7008 3.23E−54 59.0763 0.0E+00 0.0E+00

F20

Mean 3.42E−14 3.87E−35 0.08697 2.13557 0.000683 0.001337 1.69E−25 9.06E−232 0.0E+00

Best 1.68E−60 8.98E−59 6.10E−06 0.000428 3.16E−10 8.27E−47 4.32E−34 9.62E−249 0.0E+00

Std 1.87E−13 1.86E−34 0.200318 8.80287 0.00351 0.004847 5.35E−25 0.0E+00 0.0E+00

F21

Mean − 8.88E−16 0.000377 19.281 11.956 7.05866 2.19E−15 17.4668 − 8.88E−16 − 8.88E−16

Best − 8.88E−16 0.00026 7.60267 11.3273 4.82403 − 8.88E−16 16.5547 − 8.88E−16 − 8.88E−16

Std 0.0E+00 7.57E−05 3.53528 0.270896 4.38871 2.59E−15 0.406831 0.0E+00 0.0E+00

F22

Mean 1.0071 1544.27 4.37E+06 1.21E+06 49,205.5 1103.26 3543.23 1.0E+00 1.0E+00

Best 1.00002 1366.25 1.24E+06 1.01E+06 29,072.8 857.55 3070.82 1.0E+00 1.0E+00

Std 0.00978 153.919 1.92E+06 75,423.3 12,739.5 187.365 325.554 0.0E+00 1.13E−05

F23

Mean 1.01E−51 0.833207 43.8876 27.3299 14.3978 0.126553 6.94915 0.0E+00 0.0E+00

Best 3.12E−61 0.699873 28.8171 25.8999 11.9999 1.43E−45 3.70026 0.0E+00 0.0E+00

Std 5.14E−51 0.06609 8.62566 0.740061 1.18148 0.069125 2.46732 0.0E+00 0.0E+00

Continued
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Comparison with other algorithms on CEC2019 benchmark functions.  By testing 30 classic 
benchmark functions in low and high dimensions, we can already find the excellent performance of GPOFWA. 
To further explore the effectiveness of the proposed method, we also use the CEC2019 benchmark function for 
testing. The CEC2019 benchmark function contains a number of shifted rotated functions to test the stabil-
ity of the algorithm against function shifts. It is worth mentioning that the comparison algorithms we use in 
this section are some advanced and hybrid algorithms, not the basic algorithm used above. These algorithms 
are FWHHO39, PPSO40, CLPPSO40, HHOHGSO41, DE15 and CMA-ES42. The algorithms used for comparison 
and their parameter settings are based on the parameters used by the original author or the parameters widely 
used by various researchers. To ensure the fairness of the experiment, we compare the performance of the algo-
rithms after running each experiment independently 30 times. Figure 10 shows a qualitative analysis of some 
CEC2019 benchmark functions and Table 7 shows results of CEC2019 benchmark functions. From the experi-
mental results, GPOFWA can achieve better scores on F3, F6, F7, F8 of CEC2019, and it can be seen from the box 
plot that GPOFWA is more stable than other algorithms. Although not optimal on other functions, the results 
obtained using GPOFWA can be as close to optimal as possible.

Statistical analysis.  To evaluate the proposed algorithm fairly and accurately, we perform statistical tests 
on the experimental results. To better determine whether the optimization results of GPOFWA were signifi-
cantly different from those of other algorithms, a Wilcoxon nonparametric test was performed at a significance 
level of 0.05. A significance level p-value below 0.05 will be considered sufficient proof of the null hypothesis. 
The Wilcoxon tests for low dimensions (30 or less), 500 dimensions and CEC2019 are given in Tables 8, 9 and 
10. In Tables 8, 9 and 10, values with p greater than 0.05 are shown in bold, and NaN indicates that the result 
of the sum-of-values test is not a number. The last line shows the total counts in ( +/ ≈ /− ) format, where “ + ” 
indicates that the proposed GPOFWA outperforms the comparison algorithms at the 95% significance level 
(α = 0.05), ‘ − ’ indicates that the proposed GPOFWA algorithm exhibits poor performance in comparison, and 
“ ≈ ” indicates that there is no significant statistical difference between the proposed GPOFWA algorithm and 
the comparison algorithm. From the last row, we can more intuitively compare the differences between different 
algorithms from a statistical point of view. From the last row of Table 8, it can be seen that GPOFWA outper-
forms other algorithms. We can conclude that from a statistical point of view, the performance of GPOFWA for 
low-dimensional function optimization is significantly different compared to other algorithms. Table 9 shows 
the Wilcoxon test results for the 500-dimensional function, and it is not difficult to see that the vast majority of 
p-values are less than 0.05 compared to other algorithms. It also shows that GPOFWA still has a statistically sig-
nificant advantage on high-dimensional problems compared to other algorithms. Table 10 shows the Wilcoxon 
test results for the CEC2019 functions. It can be seen that except PPSO and HHOHGSO, GPOFWA still has 
obvious advantages compared with other algorithms.

Convergence analysis.  In original PO, the balance between the exploration and exploitation is attained 
through party switching, which uses a parameter λ to control the diversity, and the interaction between the 
constituency winners in the phase of parliamentary affairs ensures the convergence of PO32. CPOFWA adds 
many mechanisms on the basis of PO to enhance the performance of the algorithm. First, GPOFWA performs 
explosion spark and Gaussian explosion spark operations on party leaders and constituency winners based on 
greedy strategy, and the Gaussian explosion spark mechanism of the firework algorithm is used to explore areas 
with better fitness to ensure the effectiveness of RPPUS. The greedy strategy enhances exploitation capability of 
GPOFWA, and Gaussian spark for verification of RPPUS prevents excluding good solutions. In addition, Con-
verged Mobility Center with bi-directional consideration enhances the exploitation ability and maintains the 
population diversity, avoiding local optima. We can also analyze the convergence of GPOFWA by observing the 
convergence curves of numerous test functions. It can be observed that GPOFWA has a faster convergence rate 
to produce accurate solutions in most cases compared to the comparison algorithms.

Parameter sensitivity analysis.  The GPOFWA mainly includes 4 parameters, which are the parameter 
k that controls the number of sparks generated, the parameter R that controls the radius of the spark explosion, 
the number of parties(constituencies) and initial party switching rate � . Among them, the parameter k and 
the parameter k are unique to the GPOFWA. Therefore, we need to analyze the influence of parameters k and 
R on the performance of GPOFWA algorithm. Experiments were conducted under four sets of parameters in 
Table 11. The number of parties (constituencies) is set to 8 and the initial party conversion rate λ is set to 1. We 
selected several unimodal functions (F2 and F6), multimodal functions (F16 and F23), and fixed dimension 

Fn Stats HHO GWO SCA SSA WCA​ WOA LSA PO GPOFWA

F24

Mean − 1174.98 − 935.519 − 610.207 − 1011.47 − 1015.24 − 1135.68 − 1065.66 − 1174.98 − 1174.98

Best − 1174.98 − 1036.94 − 689.914 − 1090.16 − 1076.03 − 1174.96 − 1104.3 − 1174.98 − 1174.98

Std 0.002945 50.8735 42.3432 37.9842 36.2134 76.7754 31.2673 2.31E−13 4.59E−15

F25

Mean 0.0E+00 0.002372 50.611 12.4213 1.13144 0.0E+00 0.292623 0.0E+00 0.0E+00

Best 0.0E+00 8.31E−08 18.5269 10.7749 0.892625 0.0E+00 0.237605 0.0E+00 0.0E+00

Std 0.0E+00 0.009047 18.0174 0.859874 0.089444 0.0E+00 0.029358 0.0E+00 0.0E+00

Table 6.   Results of unimodal and multimodal functions in 500 dimensions. Significant values are in bold.
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Figure 10.   Qualitative results of F3, F6, F7 and F8 in CEC2019 benchmark functions.
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functions (F28 and F29) as representatives to test the performance of the algorithm under different parameters. 
The statistical results of GPOFWA are shown in Table 11, and the best results are shown in bold. According to 
Table 9, when k = 50 and R = 50 , the number of optimal values obtained is 5, which is greater than the number 
of other cases. Hence, k = 50 and R = 50 , is the best choice of parameters.

Engineering optimization problems
In this section, we apply GPOFWA to three well- known constrained engineering problems: welded beam design 
problem, spring design problem and three bar truss problem to demonstrate its performance in solving practical 
problems. For the fairness and rationality of the experiment, each experiment is independently run 30 times and 
the number of iterations is 500. These engineering problems are abstracted from various scenes in the real world, 
which are composed of an objective function and multiple constraints. Therefore, we need a suitable method 
to deal with these constraint conditions in these engineering problems. In this section, we employ the penalty 
function method. In this approach, solutions which violate any of the constraints are penalized by a large fitness 
value (in case of minimization). The penalty function is defined as follows:

where � is penalty factor, and it is initialized to 1010 in this section.

Welded beam design problem.  The goal of the welded beam design problem is to determine the best cost 
of welding beams with strong members. As shown in Fig. 11, there are four parameters that can be optimized for 
welded beam: height (h), length (l), weld thickness (t) and thickness (b). Its constraints consist of shear ( τ ), beam 
blending stress ( σ ), bar bucking load ( Pc ) and beam end deflection ( δ ) and side constraints. The mathematical 
expression of WBD problem is given by:

(20)F(x) = f (x)+ � ∗
p
∑

i=1

{

max
[

0, gi(x)
]}

+ � ∗
q
∑

i=1

{

max
[

0,
∣

∣hj(x)
∣

∣

]}

Table 7.   Results of CEC2019 benchmark functions. Significant values are in bold.

Fn Stats PO FWHHO PPSO CLPPSO HHOHGSO DE CMA-ES GPOFWA

Mean 1.0E+00 90.1385 9152.03 3.01E+06 1.0E+00 4.36E+06 6.86E+06 1.0E+00

F1 Best 1.0E+00 1.0E+00 1.0E+00 67,550 1.0E+00 1.04E+06 23,668.3 1.0E+00

Std 0.0E+00 209.967 28,810.4 1.87E+06 0.0E+00 2.18E+06 2.20E+07 0.0E+00

Mean 5.0E+00 36.6877 77.2991 2557.8 4.93033 3565.89 7593.51 5.0E+00

F2 Best 5.0E+00 4.28317 4.78953 1264.85 4.24097 1660.37 1711.56 5.0E+00

Std 7.22E−15 98.8404 121.05 671.586 0.213082 571.946 4715.88 6.31E−12

Mean 3.40324 6.49062 1.86345 5.50316 2.9452 7.57566 8.44484 1.6224

F3 Best 1.40916 5.35713 1.40913 3.84899 1.40917 5.64986 7.03099 1.40913

Std 2.00073 0.811524 1.3427 0.80288 1.42588 0.549887 0.892922 0.45333

Mean 10.4785 73.6007 41.5939 13.3899 35.859 15.6882 66.7327 41.0633

F4 Best 5.9748 58.3051 22.8891 9.46962 15.0433 10.867 46.0116 19.9042

Std 3.64122 5.4947 13.3308 2.14732 8.37975 2.77638 8.80164 13.522

Mean 1.01822 19.6206 1.61928 1.15534 1.54582 1.16497 5.87262 1.55077

F5 Best 1.0E+00 8.2182 1.16243 1.07674 1.14981 1.08251 1.0E+00 1.0E+00

Std 0.01086 8.9269 0.366588 0.05815 0.296937 0.041463 13.2225 0.349958

Mean 1.83053 8.39525 6.58118 2.20568 5.74986 6.52952 8.7627 1.82294

F6 Best 1.00043 5.91488 3.60448 1.6921 2.8824 3.55587 1.0E+00 1.0E+00

Std 1.30848 1.06214 1.72892 0.31843 1.69673 1.37074 3.38269 0.465247

Mean 1268.01 1944.58 1084.19 1040.65 1086.12 716.955 1743.74 653.691

F7 Best 302.563 1489.48 349.742 549.339 481.84 470.187 1404.12 379.138

Std 770.064 156.459 357.151 292.692 293.65 124.894 192.019 139.449

Mean 5.05634 4.99653 4.29272 4.19395 4.34553 3.94024 4.627 3.81781

F8 Best 4.3575 4.76059 3.57905 3.00511 3.80226 3.60785 3.82306 3.44735

Std 0.14473 0.12244 0.347452 0.416771 0.287821 0.167446 0.285393 0.185168

Mean 1.11521 1.69237 1.37116 1.17887 1.3216 1.23611 1.11851 1.34592

F9 Best 1.03935 1.44267 1.14939 1.11338 1.11658 1.17482 1.07468 1.03585

Std 0.047201 0.143125 0.124139 0.034882 0.127138 0.03588 0.017764 0.153126

Mean 20.9988 21.3193 21.0069 21.0233 19.7636 21.1326 21.5252 20.9625

F10 Best 20.9802 21.1258 20.9958 20.9967 1.14733 20.6561 21.3316 17.7093

Std 0.0739 0.116301 0.030266 0.0037 4.78486 0.113267 0.089198 0.714634
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Decision variable interval values:

Consider �l = [l1l2l3l4] = [hltb] = [x1x2x3x4],

minimize f
(

�l
)

= l21 l2 ∗ 1.10471+ 0.04811 ∗ l3l4 ∗ (14.0+ l2),

Subject to s1

(

�l
)

= τ

(

�l
)

− τmax ≤ 0,

s2

(

�l
)

= σ

(

�l
)

− σmax ≤ 0,

s3

(

�l
)

= δ

(

�l
)

− δmax ≤ 0,

s4

(

�l
)

= l1 − l4 ≤ 0,

s5

(

�l
)

= P− Pc

(

�l
)

≤ 0,

s6

(

�l
)

= 0.125− l1 ≤ 0,

s7

(

�l
)

= 1.10471 ∗ l21 + 0, 0481 ∗ l3l4(14.0+ l2)− 5.0 ≤ 0,

0.1 ≤ l1 ≤ 2,

0.1 ≤ l2 ≤ 10,

0.1 ≤ l3 ≤ 10,

0.1 ≤ l4 ≤ 2,

Table 8.   Statistical results of the Wilcoxon rank-sum test for low-dimension functions. Significant values are 
in bold.

Fn HHO GWO SCA SSA WCA​ WOA LSA PO

F1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F2 6.28E−06 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.69E−11 3.02E−11 1.47E−07

F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F4 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F5 9.83E−08 9.83E−08 9.83E−08 9.83E−08 9.83E−08 9.83E−08 9.83E−08 9.83E−08

F6 NaN 1.17E−12 1.18E−12 1.19E−12 NaN NaN 1.19E−12 NaN

F7 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F8 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F9 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F10 7.60E−07 3.02E−11 3.02E−11 3.02E−11 5.57E−10 3.02E−11 3.02E−11 4.56E−11

F11 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F13 NaN 1.21E−12 1.21E−12 1.21E−12 1.69E−14 5.98E−05 1.21E−12 1.83E−08

F14 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F15 1.79E−11 8.48E−09 0.27719 3.02E−11 1.21E−12 5.57E−10 1.21E−12 3.16E−12

F16 1.87E−05 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 2.47E−08

F17 NaN 3.87E−10 1.21E−12 1.21E−12 1.21E−12 0.33371 1.21E−12 0.33371

F18 NaN 1.21E−12 1.21E−12 1.21E−12 1.03E−12 8.86E−07 1.11E−12 1.43E−06

F19 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11

F20 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.27E−05

F21 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F22 NaN 4.98E−13 0.33371 1.21E−12 1.21E−12 3.14E−08 1.21E−12 NaN

F23 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.69E−09 3.02E−11 3.02E−11 1.21E−12

F24 1.21E−12 1.21E−12 1.21E−12 1.21E−12 6.24E−13 1.17E−12 1.20E−12 1.20E−12

F25 2.39E−08 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.01E−11 1.21E−12

F26 NaN 0.021577 1.21E−12 1.21E−12 1.21E−12 0.33371 4.56E−12 NaN

F27 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 5.77E−11 1.21E−12 0.041774

F28 1.21E−10 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 2.84E−11

F29 1.41E−09 3.02E−11 3.02E−11 1.25E−07 3.02E−11 3.02E−11 0.18577 1.21E−12

F30 4.57E−09 3.02E−11 3.02E−11 3.02E−11 3.34E−11 3.02E−11 0.12967 1.21E−12

+/ ≈ /− 22/8/0 30/0/0 29/0/1 30/0/0 29/1/0 27/1/2 28/0/2 21/8/1
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Table 9.   Statistical results of the Wilcoxon rank-sum test for high-dimension functions. Significant values are 
in bold.

Fn HHO GWO SCA SSA WCA​ WOA LSA PO

F1 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F2 0.000201 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.46E−10 3.02E−11 7.77E−09

F3 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F4 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F5 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F6 1.96E−10 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.21E−12

F7 NaN 1.21E−12 0.33371 1.21E−12 1.21E−12 NaN 1.21E−12 NaN

F8 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12

F9 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

F10 7.60E−07 3.02E−11 3.02E−11 3.02E−11 5.57E−10 3.02E−11 3.02E−11 4.56E−11

F16 0.002891 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.24E−09

F17 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 0.33371 1.21E−12 0.16074

F18 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 0.041774 1.21E−12 5.88E−08

F19 4.50E−11 3.02E−11 3.02E−11 3.02E−11 0.001953 3.02E−11 3.02E−11 3.02E−11

F20 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 2.93E−05

F21 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 9.83E−08 1.21E−12 NaN

F22 4.50E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 1.21E−12

F23 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN 1.21E−12 1.17E−12

F24 1.25E−05 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 4.56E−11

F25 NaN 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 1.21E−12 NaN

+/ ≈ /− 14/6/0 20/0/0 19/0/1 20/0/0 20/0/0 17/2/1 20/0/0 13/6/1

Table 10.   Statistical results of the Wilcoxon rank-sum test for CEC2019 functions. Significant values are in 
bold.

Fn PO CLPPSO FWHHO PPSO HHOHGSO DE CMA-ES

F1 NaN 1.21E−12 2.93E−05 1.70E−08 NaN 1.21E−12 1.21E−12

F2 0.59719 1.72E−12 0.0607 9.74E−10 0.01996 1.72E−12 1.72E−12

F3 2.92E−09 5.49E−11 3.02E−11 0.003339 1.10E−08 3.02E−11 3.02E−11

F4 3.02E−11 3.02E−11 6.07E−11 0.95873 0.10869 4.08E−11 3.50E−09

F5 2.37E−10 3.02E−11 2.03E−07 0.98231 0.005555 3.02E−11 0.000446

F6 0.047928 4.50E−11 0.04553 1.60E−07 0.46427 4.42E−06 2.37E−10

F7 3.02E−11 2.20E−07 3.02E−11 0.5106 0.97052 4.80E−07 3.73E−07

F8 3.02E−11 1.86E−06 3.02E−11 1.39E−06 3.20E−09 0.013272 2.61E−10

F9 5.46E−09 7.09E−08 3.20E−09 0.44642 0.5106 6.36E−05 7.77E−09

F10 9.89E−08 4.12E−06 2.20E−07 2.78E−07 4.44E−07 0.83026 3.02E−11

+/ ≈ /− 8/1/1 10/0/0 8/0/2 6/0/4 5/1/4 9/0/1 10/0/0

Table 11.   Statistical results with different k and R values. Significant values are in bold.

Fn k = 50&R = 40 k = 50&R = 50 k = 40&R = 40 k = 40&R = 50

F2 5.20E−06 5.54E−06 8.87E−05 1.58E−05

F6 5.35E−08 1.15E−07 6.59E−08 1.27E−07

F16 6.95E−05 1.05E−04 2.34E−04 1.76E−05

F23 5.28E−216 4.52E−215 4.15E−215 4.46E−215

F28 0.0E+00 2.35E−265 3.58E−265 0.0E+00

F29 3.0E+00 7.84025 3.00001 3.00003

Number of winners 5 0 0 2
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Figure 11.   Welded beam design problem.

Table 12.   Comparison of GPOFWA with other algorithms for the welded beam design problem. Significant 
values are in bold.

Algorithm h l t b Mean Best SD

GPOFWA 0.2057 3.2530 9.0366 0.2057 1.69524 1.69524 1.78E−09

PO 0.2058 3.2529 9.3040 0.2059 1.70073 1.69625 4.85E−03

HHO 0.1984 3.3952 9.0113 0.2097 1.87785 1.72912 0.12328

GWO 0.2051 3.2647 9.03 0.2057 1.69856 1.69622 2.14E−03

SCA 0.1991 3.4173 9.3313 0.2066 1.84615 1.76477 0.04143

SSA 0.2016 3.3195 9.0697 0.2056 1.81378 1.70251 0.11945

WCA​ 0.2057 3.2530 9.0366 0.2057 1.69524 1.69524 5.46E−08

WOA 0.2023 3.1573 9.6389 0.2035 2.20313 1.76203 0.46774

LSA 0.2085 3.1913 9.3928 0.2085 1.90137 1.69524 0.19221

x2

x3

x1

Figure 12.   Speed reducer beam design problem.

Table 13.   Comparison of GPOFWA with other algorithms for the spring design problem. Significant values 
are in bold.

Algorithm d D N Mean Best SD

GPOFWA 0.1391 1.3000 11.8924 3.66189 3.66189 1.63E−15

PO 0.1391 1.3000 11.8924 3.67894 3.66189 2.53E−07

HHO 0.1391 1.3000 11.8924 3.69192 3.66189 0.02796

GWO 0.1391 1.3000 11.8924 3.66191 3.66189 1.44E−05

SCA 0.1392 1.3000 11.9196 3.68802 3.66244 0.02071

SSA 0.1392 1.3000 11.9035 3.67936 3.66285 0.01743

WCA​ 0.1391 1.3000 11.8924 3.66825 3.66189 2.11E−15

WOA 0.1392 1.3000 11.9063 3.69615 3.68346 0.02911

LSA 0.1391 1.3000 11.8924 3.66189 3.66189 2.20E−15



28

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13243  | https://doi.org/10.1038/s41598-022-17076-4

www.nature.com/scientificreports/

where

where σmax = 30000 psi, P = 6000  lb, L = 14 in, δmax = 0.25 in, E = 3× 106 psi, τmax = 13600 psi and 
G = 12× 106 psi.

We compare the statistical results of 30 independent executions of GPOFWA with some other excellent algo-
rithms, and show the values of the design variables obtained, the mean, best value and variance of the optimal 
solution in Table 12. The results show that the performance of GPOFWA is better than other algorithms.

Spring design problem.  This constrained engineering problem is to design a tension/compression spring 
with minimum weight, the structure of which is shown in Fig. 12. There are three variables that can be opti-
mized, including the diameter of the wire (d), coil (D) and the number of the active coil (N). The Spring design 
problem is mathematically formulated as follows:

τ
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Figure 13.   Three bar truss design problem.

Table 14.   Comparison of GPOFWA with other algorithms for threE−bar truss design problem. Significant 
values are in bold.

Algorithm A1 A2 Mean Best SD

GPOFWA 0.7867 0.2880 186.3859 186.3859 3.57E−14

PO 0.7868 0.2884 186.3860 186.3859 3.42E−05

HHO 0.7879 0.2939 186.3976 186.3860 0.0235

GWO 0.7869 0.2879 186.3860 186.3860 3.89E−05

SCA 0.7821 0.2970 186.8456 186.4058 2.4609

SSA 0.7868 0.2880 186.3859 186.3859 2.69E−08

WCA​ 0.7869 0.2880 186.3860 186.3859 2.31E−10

WOA 0.7901 0.2896 186.7263 186.3940 0.2165

LSA 0.7868 0.2898 186.4503 186.3922 5.08E−09
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Decision variable interval values:

We also compare the statistical results of 30 independent executions of GPOFWA with some other excellent 
algorithms, and show the values of the design variables obtained, the mean, best value and variance of the optimal 
solution in Table 13. The results show that GPOFWA can get better results than other algorithms. GPOFWA has 
performed well in these two engineering application problems, which shows that the algorithm better balance 
the relationship between exploration and exploitation.

Three bar truss design problem.  The threE−bar truss design problem is a classic design problem in the 
field of engineering structure. The optimization goal of this design problem is to design a truss as light as pos-
sible, which must meet the three constraints of stress, deflection and buckling. This problem aims to minimize 
the volume of the truss structure subject to 3 stress constraints. The structural model and parameters of the 
threE−bar truss design problem are shown in the Fig. 13 and the mathematical formulation of this problem is 
given below:

Decision variable interval values:

We compare the statistical results of 30 independent executions of GPOFWA with other excellent algorithms, 
and show the values of the design variables obtained, the mean, best value and variance of the optimal solution 
in Table 14. The results show that the optimal values of GPOFWA and PO, SSA and WCA are consistent, but 
the average and variance of GPOFWA are the smallest among all algorithms, which indicates that the proposed 
GPOFWA is feasible and effective for solving the design problem of threE−bar truss.

Conclusions
As an emerging swarm intelligence algorithm, PO has good exploration capability, exploration capability, and 
convergence speed, but the subgroup optimal solution used by the original PO is limited, and PO’s recent past-
based position updating strategy (RPPUS) has loopholes. The explosion search mechanism of the firework 
algorithm has certain potential and unique advantages. In this paper, the explosion search mechanism of the 
firework algorithm is used to expand and optimize the subgroup optimal solution in the political optimization 
algorithm. At the same time, the Gaussian explosion spark of the firework algorithm is used to make up for some 
of the shortcomings of RPPUS. In addition, a new local leader called Converged Mobile Center (CMC) based 
on two-way consideration was designed to guide the movement of search agents.

Based on these, a hybrid algorithm called GPOFWA is obtained. In order to verify the good performance of 
GPOFWA, we conducted a two-part experiment. In the first part, we selected a set of well-researched different 
benchmark functions and compared them with new swarm intelligence optimization algorithms including the 
original HHO, GWO, SCA, SSA, WCA, WOA, LSA, PO. Compared with PO, this algorithm has significantly 
improved accuracy, convergence curve, stability, and robustness when solving functions that are unimodal or 
multimodal. Compared with other methods, GPOFWA also shows significant advantages. In the second part, 
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we apply GPOFWA to three constrained engineering problems, because of the improvement of the explosion 
search mechanism, GPOFWA can achieve the best results in all engineering design problems. The results show 
that GPOFWA has excellent performance for engineering design problems, and it is believed that GPOFWA can 
expect the same performance for other more complex engineering problems.

In addition to the qualities mentioned above, PO has some limitations that need to be highlighted. The 
limitations of GPOFWA are as follows: Due to the addition of the explosive search mechanism, the algorithm 
time overhead has increased, although CMC has reduced this newly added time overhead as much as possible. 
Second, the algorithm has a total of 4 parameters, which is relatively complex and needs to be improved in the 
future. In future work, the GPOFWA algorithm can also consider a binary version to solve discrete practical 
problems, such as antenna design, feature selection, etc. At the same time, we can also combine CMC with other 
swarm optimization algorithms to further test its performance.

Data availability
All data generated or analyzed during this study are included in this article.

Code availability
The code used to evaluate the proposed algorithm GPOFWA is available with the paper. Full codes are available 
from the authors upon reasonable request.
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