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ABSTRACT Gastric endoscopy is a golden standard in the clinical process that enables medical practitioners
to diagnose various lesions inside a patient’s stomach. If a lesion is found, a success in identifying the
location of the found lesion relative to the global view of the stomach will lead to better decision making
for the next clinical treatment. Our previous research showed that the lesion localization could be achieved
by reconstructing the whole stomach shape from chromoendoscopic indigo carmine (IC) dye-sprayed images
using a structure-from-motion (SfM) pipeline. However, spraying the IC dye to the whole stomach requires
additional time, which is not desirable for both patients and practitioners. Our objective is to propose an
alternative way to achieve whole stomach 3D reconstruction without the need of the IC dye. We generate
virtual IC-sprayed (VIC) images based on image-to-image style translation trained on unpaired real no-IC
and IC-sprayed images, where we have investigated the effect of input and output color channel selection for
generating the VIC images. We validate our reconstruction results by comparing them with the results using
real IC-sprayed images and confirm that the obtained stomach 3D structures are comparable to each other.
We also propose a local reconstruction technique to obtain a more detailed surface and texture around an
interesting region. The proposed method achieves the whole stomach reconstruction without the need of real
IC dye using SfM. We have found that translating no-IC green-channel images to IC-sprayed red-channel
images gives the best SfM reconstruction result. Clinical impact We offer a method of the frame localization
and local 3D reconstruction of a found gastric lesion using standard endoscopy images, leading to better
clinical decision.

INDEX TERMS Endoscopy, stomach, 3D reconstruction, structure-from-motion, generative adversarial
network.

I. INTRODUCTION
Gastric endoscopy is a well-applied clinical process that
enables medical practitioners to find a gastric lesion, such
as an ulcer and cancer, inside the patient’s stomach. The
accurate localization of a found malignant lesion is very
important to decide the next clinical procedure. For example,
if laparoscopic gastroectomy for early cancer needs to be
performed, the target cancer location relative to the global
view of the stomach should be known to decide the operative
procedure. The successful localization of a found malignant
lesion leads to better and more effective decision making
by the doctors. However, accurately recognizing the lesion’s
3D location only from 2D endoscopic images is difficult for

gastric surgeons, especially when the images are captured by
another endoscopist.

To address the difficulty of the lesion localization in gas-
tric endoscopy, previous studies propose some 2D or 3D
approaches. The examples of the 2D approach are X-ray
barium radiography [1] which is able to reveal various char-
acteristics of the stomach tract and view expansion [2], [3]
which provides panoramic views for broader sight. However,
they only provide 2D information which is not sufficient for
the localization of a lesion with morphological change. As a
more sophisticated approach, 3D computed tomography [4]
performs the 3D reconstruction of a whole stomach which
provides bettermorphological information. However, the lack
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FIGURE 1. A visual comparison between the stomach surface images
without IC-dye and with IC-dye sprayed. The image (a) shows a very
smooth and texture-less surface which makes feature extraction and
matching processes difficult, while the image (b) shows more visible
textures which can be extracted for SfM.

of color and texture information in the 3D computed tomog-
raphy makes the lesion inspection and localization difficult,
especially for flat lesions without morphological change.

Various vision-based organ 3D reconstruction meth-
ods based on Shape-from-shading (SfS) [5]–[7], Visual
Simultaneous Localization and Mapping (SLAM) [8]–[10],
Structure-from-Motion (SfM) [11]–[13], and monocular
depth estimation [14], [15], which are able to recover both
3D structure and color-texture information, have also been
proposed. However, existing works mainly focus on the par-
tial surface reconstruction of a target organ, aiming for lesion
inspection and surgery applications (see [16]–[18] for sur-
veys). The research of whole organ 3D reconstruction from
endoscopy images is still limited for the lesion localization in
endoscopy.

In our previous study, we tackled the drawbacks of the
previous studies for lesion localization by reconstructing the
color-textured 3D model of a whole stomach from an endo-
scope video based on an SfM pipeline [19], [20]. Although
the stomach 3D reconstruction by SfM is very challeng-
ing because of texture-less stomach surfaces as shown in
Figure 1(a), we found that the whole stomach shape can
be reconstructed by using red-channel images of chromoen-
doscopy with indigo carmine (IC) blue dye, where the IC
dye acts as an enhancement substance to bring up more
textures to the stomach surface as shown in Figure 1(b).
However, though the IC dye is commonly used in gastric
endoscopy [21], [22], spraying it on the whole stomach
surface requires additional procedure time, labor, and cost,
which is not desirable for both patients and medical practi-
tioners. Furthermore, the IC dye may hinder the visibility of
the reconstructed stomach surface because of its dark color
tone.

In this paper, we propose a novel SfM-based approach
for whole stomach 3D reconstruction that does not require
to capture chromoendoscopic image sequences. Instead of
spraying the IC dye during endoscopy, we generate vir-
tual IC-dye-sprayed (VIC) images from no-IC images based
on image-to-image style translation with a cycle-consistent
generative adversarial network (CycleGAN) [23]. The SfM
pipeline is then applied using the generated VIC images.

With the rise of deep learning, image-to-image style trans-
lation, in which the goal is to learn the mapping between
one style of images to another, is attracting attention from
researchers. The style translation has been proven to be
useful for endoscopy applications such as in colonoscopy
depth estimation [24]–[26]. It is also reported that generating
VIC images improves the lesion detection and classifica-
tion performance in colonoscopy [27]. Inspired by the study
in [27], we propose VIC image generation for stomach 3D
reconstruction, which is, to the best of our knowledge, firstly
reported in this paper.

In our experiments, we trained several CycleGANs for
the style translation using different input and output color
channel pairs and found that CycleGAN translating the no-IC
green-channel images to the IC-sprayed red-channel images
gives the best VIC images for SfM. Using the generated VIC
images, we were able to reconstruct the whole stomach 3D
model without the need of real IC-sprayed images. We also
confirmed that, using the reconstructed 3D model and the
estimated camera poses, image frame localization can be
performed to identify the 3D location of an interesting region.

This paper is an extended version of our previous
work published in [28]. In this paper, we provide more
detailed explanation on the image-to-image translation pro-
cess. We also explain a new frame localization and local
3D mesh refinement pipeline. Furthermore, we demon-
strate additional experimental results for both subjective and
objective evaluation showing the advantages of our pro-
posed approach. Finally, we demonstrate additional valida-
tion results of our 3D models reconstructed using generated
VIC images by comparing them with the 3D models recon-
structed using real IC-sprayed images.

The rest of this paper is organized as follows. Section II
details our endoscope video dataset and proposed pipeline.
Section III shows our experimental results and provides the
discussion on them. Finally, Section IV concludes the paper.

II. MATERIALS AND METHODS
Figure 2 illustrates the overview of our proposed whole stom-
ach 3D reconstruction pipeline. In this section, we explain the
detail of the proposed pipeline including our endoscope video
dataset (Section II-A), CycleGAN model (Section II-B),
VIC generation (Section II-C), 3D reconstruction pipeline
(Section II-D), and local 3D mesh refinement pipeline
(Section II-E).

A. ENDOSCOPE VIDEO DATASET
In this work, we used exactly the same endoscope video
dataset from our previous work [20]. Seven videos captured
from seven subjects undergoing general gastroendoscopy
procedure are included in the dataset. To account for the
patient body and stomach peristalsis movement, a sedative
drug and antispasmodic were used. Each video contains
two different image type sequences: no-IC and IC-sprayed
sequences. We extracted the image frames from each video
and divided them into no-IC images and IC-sprayed images
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FIGURE 2. The overview of our proposed pipeline. Our proposed pipeline consists of the VIC images generation using a separately
trained CycleGAN and the whole stomach 3D reconstruction using generated VIC red-channel images. In this work, we trained three
CycleGANs illustrated in Figure 3 and investigated which domain pair produces better 3D reconstruction results.

to obtain training image data for VIC images generation.
We also extracted test no-IC image sequences for the 3D
reconstruction. Each of the test no-IC image sequences is a
one-pass sequence which means that one-way trajectory of
the endoscope covering top-to-bottom or bottom-to-top of the
stomach is included in the sequence. The number of input
no-IC image frames for the 3D reconstruction can be found
in Table 1 of the experimental result section.

Ethics. This study was conducted in accordance with the
Declaration of Helsinki and approved by the Institutional
ReviewBoard at NihonUniversity Hospital onMarch 8, 2018
(Identification No.: 180302) and Tokyo Institute of Tech-
nology on March 30, 2018 (Identification No.: 2017125).
Informed consent was obtained from all enrolled subjects.
This study was registered with the University Hospital Medi-
cal Information Network (UMIN) Clinical Trials Registry on
March 17, 2018. (Identification No.: UMIN000031776).

B. CYCLE-CONSISTENT IMAGE-TO-IMAGE
TRANSLATION (CycleGAN)
Since the capture time of the no-IC and IC-sprayed sequences
are different, it is impossible to obtain the exact pair
between those types of images. Because of that, we apply
CycleGAN [23] as our image-to-image translator because
CycleGAN works with unsupervised and unpaired training
data. Let A and B be two different image domains. Cycle-
GAN consists of two sets of generator and discriminator pair,
(GA,DA) and (GB,DB). The generator’s task is to generate a
virtual image by translating an input image from one domain
to another and fool its opposite domain’s discriminator. On
the other hand, the discriminator’s task is to distinguish the
generated and the real images. For example, the generator
GA’s task is to translate an image from domain A to domain
B and fool the discriminator DB.
The total loss of CycleGAN consists of two least-square

GAN losses [29], cycle consistent loss, and identity loss. The
total loss can be expressed as:

L(GA,GB,DA,DB) = LGAN (GA,DB,A,B)
+LGAN (GB,DA,A,B)
+λcycLcyc(GA,GB)
+λidtLidt (GA,GB) (1)

The GAN loss describes the competition between a pair of
a generator and a discriminator. The first GAN loss, which
expresses the generator-discriminator competition in A→ B
direction, can be formulated as follows:

LGAN (GA,DB,A,B) = Eb∼pdata(b)[(DB(b)− 1)2]

+Ea∼pdata(a)[(DB(GA(a)))
2] (2)

In this translation direction, the generator GA tries to gen-
erate image b′ = GA(a) from a randomly sampled image
a ∼ pdata(a). The discriminator DB then tries to distinguish
between the generated image b′ and a randomly sampled real
image b ∼ pdata(b). Based on the loss of (2), the discriminator
DB is trained to give a high score for the real image b and a
low score for the generated image b′, while the generator GA
is trained to fool the discriminator DB. The same principle
also applies for the opposite direction, i.e., B→ A direction.
Therefore, CycleGAN has two GAN losses.

The consistency loss makes sure that CycleGAN is able
to generate an image that is as close as possible to its input
image when translating it circularly, i.e., a ≈ GB(GA(a)).
Following the previous notation, the cycle consistency loss
can be formulated as follows:

Lcyc(GA,GB) = Ea∼pdata(a)
[∥∥GB(GA(a))− a∥∥1]

+Eb∼pdata(b)
[∥∥GA(GB(b))− b∥∥1] (3)

The consistency loss enables CycleGAN to be trained on the
unpaired set of images for image-to-image style translation.

Finally, the identity loss is added to prevent the mapping
when a real sample from the target domain is fed as an input
to the generator. The identity loss is expressed as follows:

Lidt (GA,GB) = Eb∼pdata(b)
[∥∥GA(b)− b∥∥1]

+Ea∼pdata(a)
[∥∥GB(a)− a∥∥1] (4)

In the training time, the degrees of importance for the
cycle consistency and the identity losses are determined by
λcyc and λidt .

C. VIC IMAGES GENERATION USING CycleGAN
Figure 3 shows our CycleGAN training overview. We train
CycleGAN to learn the mapping between no-IC images
(domain A) and IC-sprayed images (domain B) for VIC
images generation. For the CycleGAN training, we use both
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FIGURE 3. The overview of our CycleGAN training. We train three
CycleGANs with different domain pairs, i.e., (a) No-IC RGB↔IC-sprayed
RGB, (b) No-IC red↔IC-sprayed red, and (c) No-IC green↔IC-sprayed red.
We then investigate which domain pair gives the best 3D reconstruction
result for SfM. We describe detailed explanation about the domain pair
selection in Section II-C.

real no-IC and real IC-sprayed images extracted from the
endoscope video dataset.

In our previous research, we observed that there is a color
channel misalignment, which means that R, G, and B channel
images of one RGB image are not perfectly aligned. This
is caused by the imperfection of the color image genera-
tion by the endoscope system, which combines sequentially
captured R, G, and B images to form one RGB image. The
color channel misalignment causes some texture patterns
to appear duplicated and disturbs the SfM pipeline (See
Figure 1 in [20]). Because of that, we used single-channel
images for SfM and investigated which color channel gives
the best 3D reconstruction result. It was found that the whole
stomach can be reconstructed using IC-sprayed red-channel
images because the red channel of IC-sprayed images has the
best contrast and the most visible textures among the other
channels. It was also found that, for the case of no-IC images,
the green channel gives the best 3D reconstruction result,
though only partial stomach could be reconstructed. The blue
channel was not preferable for the 3D reconstruction due to
low contrasts.

Based on the above findings, we use the VIC red-channel
images as SfM inputs for the 3D reconstruction. To effec-
tively generate the VIC red images, we investigate the results
of three CycleGANs with different channel domain pairs.
Specifically, we set the domain pair, A and B, for each Cycle-
GAN to the following pairs: (i) No-IC RGB and IC-sprayed
RGB image domain pair (Figure 3(a)). This pair is considered
because the RGB-to-RGB translation is the common practice
for the image-to-image translation. Since we use the VIC red

images for SfM inputs, we extract the red-channel images
from the RGB-to-RGB translation results in the subsequent
processes. (ii) No-IC red and IC-sprayed red image domain
pair (Figure 3(b)). This pair uses the red channel for both
input and output domains, which can be cosidered as one
of the most straightforward ways to generate the VIC red
images. (iii) No-IC green and IC-sprayed red image domain
pair (Figure 3(c)). This pair uses the green channel for the
input domain because no-IC green images achieve the most
complete SfM result for the no-IC case. In this domain pair
setting, we pair the color channels that achieve the best 3D
reconstruction for no-IC and IC-sprayed image sequences,
respectively. For the rest of this paper, we will refer to
each CycleGAN as cGANrgb2rgb, cGANr2r, and cGANg2r
respectively. After the training process, the VIC red images
are generated from no-IC images using each of the trained
CycleGANs.

D. 3D RECONSTRUCTION USING THE GENERATED
VIC RED IMAGES
Using the generated VIC red images, we follow the 3D recon-
struction pipeline presented in our previous research [20].
It consists of point cloud reconstruction, outlier removal, and
mesh and texture generation. The point cloud reconstruction
follows the general flow of SfM [32]. It starts with detecting
and extracting the Scale Invariant Feature Transform (SIFT)
features [33] from all of the input images. Then, exhaustive
feature matching across the input frames is performed using
the extracted SIFT features. Those steps are then followed by
features triangulation, poses estimation, and bundle adjust-
ment [34] in parallel. It is then followed by random sample
consensus (RANSAC)-based plane-fitting outlier removal to
remove apparent outlier 3D points. After removing the out-
lier points, Poisson surface reconstruction [35] is applied to
obtain a triangle mesh model. Finally, the triangle mesh is
textured using the original no-IC RGB images by the method
of [30], [36]. As the final result, our entire pipeline produces
a textured triangle mesh of the stomach.

E. LOCAL MESH REFINEMENT FOR A LOCALIZED FRAME
After we reconstruct the whole stomach 3D model, we per-
form the frame localization of an interesting frame and local
mesh refinement for the localized region. Figure 4 illustrates
our proposed frame localization and local mesh refinement
pipeline. Our frame localization accepts a selected frame
from the reconstructed frames list as an input. Then, the frame
localization is performed by retrieving the camera pose of the
selected frame and projecting the no-IC RGB image texture
to the corresponding reconstructed mesh.

After the selected frame is localized, it is desirable to
acquire a more focused view of the stomach surface. To pro-
vide a more detailed local reconstruction result, we pro-
pose a new local mesh refinement pipeline that makes use
of the already reconstructed whole stomach model. To per-
form refined local reconstruction, we first obtain the 3D
points from the point cloud that originate from the selected
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FIGURE 4. The flow of our proposed frame localization and local mesh refinement fot the localized region. Firstly, the frame of interest
is selected from the list of reconstructed frames. After the selected reference frame is localized by the camera pose retrieval process,
the selected frame texture is projected to the reconstructed mesh. After that, local mesh refinement is performed by retrieving N
number of the RGB images with the camera poses that see the same 3D points originated from the reference frame. Using the retrived
RGB images and camera poses, MVS [30] and MVIR [31] are applied for the mesh refinement.

reference frame. To obtain a higher quality mesh, we then
retrieve N number of frames connected from the reference
frame using the track information of the obtained local 3D
points. The corresponding RGB images of the connected
cameras are then retrieved from the set of the reconstructed
frames. Instead of applying Poisson surface reconstruc-
tion [35], we use the locally connected camera poses and
the corresponding RGB images as the inputs for Multi-View
Stereo (MVS) [30], [37]. Then we further refine the MVS
result withMultiv-View Inverse Rendering (MVIR) [31]. The
output mesh of MVIR is used for the texturing using no-IC
RGB images.

III. RESULTS AND DISCUSSION
A. IMPLEMENTATION DETAILS
We individually trained each CycleGAN using a single
NVIDIA GeForce GTX 1080Ti GPU. Following the original
CycleGAN [23], we used 9 blocks of ResNet [38] for our
generator network and three layers of PatchGAN [39] for our
discriminator network. We set the weights for cycle consis-
tency and identity losses in (1) to λcyc = 10 and λidt = 5,
respectively. The network was trained for 100 epochs for
each domain pair setting, i.e., cGANrgb2rgb, cGANr2r, and
cGANg2r using the training data of 7978 no-IC images and
7453 IC-sprayed images. Due to the GPUmemory limitation,
we resized the original 1155 × 1003 images to 600 × 524
pixels and trained the CycleGANs with randomly cropped
image patches of 510 × 510 pixels. The training for each
domain pair took around 100 hours to complete. For the 3D
reconstruction pipeline, we used the same setup and imple-
mentation as our previous research [20]. For the local mesh
refinement, we extracted N = 22 connected images from the
global reconstruction as the inputs for the refinement.

B. VIC IMAGE GENERATION RESULTS
We first show the example results of generated VIC images
using cGANrgb2rgb, cGANr2r, and cGANg2r. Figure 5 shows
the comparison between the input no-IC images and the
generated VIC images using each of the trained Cycle-
GAN. As we can see from the results, all CycleGANs were
able to generate VIC image by transferring the pattern and
contrast styles of the IC-sprayed image to the input no-IC
image. However, if we see the no-IC red-channel images (top
row of the second and fifth columns), we can observe that
the stomach surface is fairly texture-less. Even for con-
volutional neural networks, it is hard to extract features
from this kind of texture-less images. On the other hand,
the no-IC green images (top row of third and sixth columns)
show more textures, enabling slightly better style transfer.
We also show the examples of the generatedVICRGB images
using cGANrgb2rgb on the first and fourth columns. From
the RGB-to-RGB translation examples, we can observe that
the color channel misalignment problem is carried out by the
network, which makes the translation is not ideal. In the fol-
lowing subsection, we discuss the effect of the input channel
selection on feature matching for SfM.

C. FEATURE MATCHING RESULTS
After generating the VIC images of all sequences from
the seven subjects, we calculated the average number of
extracted SIFT features per image. For the VIC image from
cGANrgb2rgb, we extracted its red-channel for the feature
extraction. The VIC red images from cGANr2r, cGANg2r, and
cGANrgb2rgb have the average number of 3401.70, 3346.94,
and 4218.19 extracted features, respectively. As the base-
lines, we also calculated the average numbers of extracted
features of no-IC red and no-IC green images, which are
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FIGURE 5. Example results of the generated VIC images. The top row shows the input no-IC images and the bottom row shows the
corresponding generated VIC images. From left to right in each group, we show the translation results of no-IC RGB → VIC RGB with
cGANrgb2rgb, no-IC red → VIC red with cGANr2r, and no-IC green → VIC red with cGANg2r, respectively. We can see that each of
CycleGAN successfully generates the VIC image which has more visible textures compared to the texture-less surface of the no-IC
image.

FIGURE 6. The example of inlier feature matching results for two frames (t and t + 9). The red marks represent the locations of
extracted SIFT features. The color lines represent the matched features. It is clear that the number of feature matches in (b) and (c)
is much fewer than that in (d), even though the number of extracted features in (b) and (c) significantly increases from (a). This
result implies that the generated VIC red images from cGANg2r have better pattern consistency between the frames.

614.06 and 889.66 features, respectively. It is clear that the
VIC images have more extracted features compared to the
no-IC images by more than four times.

However, solely increasing the number of features is not
sufficient. Since SfM relies on the consistency of extracted
features across multiple images, we also tested the feature
matching performance of the generated VIC images. For
this purpose, we extracted 11 consecutive images from a
sequence. We then used the first image as an anchor, t , and
performed feature matching to all of its consecutive images,
t + 1, t + 2, . . . , t + 10.
Figure 6 shows the example feature matching results.

Even though cGANrgb2rgb has the highest average number of
extracted SIFT features, it can be seen that the feature match-
ing performance is similar to the no-IC green image case.

It is because that there is color channel misalignment in the
RGB image. Figure 7 shows the average number of feature
matches between the anchor frame and each of its consecutive
frames taken from group-of-11-consecutive-images samples,
which were extracted from the Subject A, B, D, E, and G.
We also show the average number of feature matches for
all seven subjects used in our experiment. It can be seen
that the VIC red images from cGANg2r has a higher num-
ber of matches across frames compared to the other four
image types. We can also see that even the VIC images from
cGANr2r results has a high number of matches for t vs t + 1,
the number of matches drops significantly for the following
frames. It implicitly means that the VIC red images from
cGANg2r has better temporal pattern consistency between
frames.
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FIGURE 7. Comparison of the average number of feature matches between the anchor frame and its 10 consecutive frames. The x-axis
represents the relative time stamp and the y-axis represents the average number of feature matches calculated for every 10 consecutive
frames. It is clearly shown that the VIC images from cGANg2r has a higher number of feature matches across the frames.

FIGURE 8. The SfM reconstruction results of Subject B (top) and Subject D (bottom) using no-IC green images (first column), VIC red
images from cGANrgb2rgb (second column), VIC red images from cGANr2r (third column), and VIC red images from cGANg2r (fourth
column). The gray dots represent the reconstructed 3D points and the red pyramids represent the estimated camera poses. Significant
improvements from the baseline results of (a) and (e) are shown by the results of (d) and (h) using the VIC red images from cGANg2r.

D. 3D RECONSTRUCTION RESULTS
Since our proposed pipeline is based on SfM [32], all the
input frames should be available prior to the start of the
reconstruction. In other words, our reconstruction pipeline
can only work in an offline manner. Figure 8 shows the
SfM reconstruction results for Subject B and D using

four different image types, i.e., no-IC green images, VIC red
images from cGANrgb2rgb, VIC red images from cGANr2r,
and VIC red images from cGANg2r. Since all the men-
tioned types of images were extracted and generated from
the same source RGB sequence, the comparison can be
fairly performed. Using those types of images, 49.43%,
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TABLE 1. The objective evaluation of SfM results. The no-IC green case is the baseline compared to VIC red cases.

FIGURE 9. The point cloud reconstruction results with outlier removal obtained using the VIC red images from cGANg2r. We can confirm
that all the obtained point clouds resemble the shape of a stomach.

37.81%, 88.84%, and 99.77% images of Subject B and
34.74%, 11.82%, 81.69%, and 99.28% images of Subject D
were reconstructed, respectively. In Figure 8(a) and (e),
the stomach shape cannot be reconstructed using no-IC
green images. In Figure 8(b) and (f), the results using VIC
red images from cGANrgb2rgb also shows incomplete recon-
struction results. Moreover, these results are worse than
the baseline no-IC green case, which can be considered
by the channel misalignment problem in the RGB images.
In Figure 8(c) and (g), the results using VIC red images from
cGANr2r only show partially reconstructed stomach shapes.
In Figure 8(d) and (h), we can confirm that the results using
VIC red images from cGANg2r achieve the best point cloud
quality and completeness.

Table 1 shows the objective evaluation of SfM reconstruc-
tion results on all seven subjects. It shows that the generated
VIC red images from cGANg2r achieve better results on all
subjects compared to the baseline no-IC green images. Using
theVIC red from cGANg2r for SfM significantly improves the
number of reconstructed images, especially for Subject B to F.
All reconstruction results using the VIC red from cGANg2r
achieve more than 95% of reconstructed images. Since the
number of feature matches that can be maintained across
multiple frames are higher in VIC red from cGANg2r, it leads
to the increase of features that could be triangulated, as shown
by ‘‘Avg. observation’’ in the table.

Figure 9 shows the point cloud results obtained with the
whole stomach reconstruction pipeline using the VIC red
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FIGURE 10. Visual comparison of the obtained mesh and texture models using VIC red images from cGANg2r (bottom row) and using real
IC red images (top row). Since the input image sequences for each subject were captured at different time, there may be change in the
stomach shape. In overall, the shapes and the characteristics are close to each other.

images from cGANg2r. We can see that the resulting point
clouds are well reconstructed and resemble the shape of a
stomach. Unfortunately, it is difficult to obtain ground-truth
stomach 3D models for validation. While it is technically
possible to obtain the 3D CT scan model of the stomach,
the CT scan and endoscopy cannot be performed at the
same time. Hence, the stomach could have significant dif-
ference in shapes. Because of that, we validate our recon-
struction results by comparing them with the reconstruction
results obtained using real IC red images as in [20] since
the real IC and no-IC sequences were captured at the same
endoscopy operation. Figure 10 shows the comparison of
the reconstructed 3D mesh models obtained using VIC red
images from cGANg2r and real IC red images. Since the input
sequences used for each model reconstruction were captured
at different time, some stomach movements were inevitable
and the coverage area alsomay be different for each sequence.
Even though this may cause some differences of the obtained
3D stomach models, we can see that the obtained mod-
els using VIC red images from cGANg2r capture the same
overall structures as the models obtained using real IC red
images.

One of the advantages of reconstructing the whole stomach
using VIC images is that the texturing can be performed
using either the original no-IC or the VIC RGB images.
Figure 11 illustrates the difference between no-IC, VIC, and
IC image texturing results on two subjects. Since there is no
IC dye when capturing the real no-IC images, the textured
mesh displays the gastric mucosa with natural color tone.
Since the basic and general inspection to screen the whole
stomach for lesion detection are performed using white light
endoscopy, no-IC texture, in which there is no accumulated
IC dye that hinders the visibility, is preferred for general

FIGURE 11. The images of (a) show the texturing results using no-IC
images, the images of (b) show the texturing results using VIC images
from cGANrgb2rgb, and the images of (c) show the texturing results using
real IC-sprayed images for comparison. Our proposed method allows us
to use either no-IC or VIC texturing depending the purpose of the
inspection.

screening. If there is any detected lesion, VIC texture can be
used to enhance the lesion border and feature to investigate
the lesion in more detail.
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FIGURE 12. Two examples of the frame localization. An input reference
image was selected from the list of reconstructed images. Then,
the selected image’s camera pose (shown by the green pyramid) was
obtained and the image texture was projected to the reconstructed mesh.
We can see that, the relative position of the selected image to the whole
stomach can effectively be identified and visualized.

FIGURE 13. The result of our local refinement pipeline.
Images (a)–(c) show the comparison between the initial and refined
meshes for localized rugae fold using the input image in Figure 12(a).
Images (d)–(f) show the comparison between the initial and refined
meshes for localized gastric ulcer using the input image in Figure 12(b).
We can see that while the initial mesh only produces a flat and low
resolution mesh, our refined mesh has more refined details.

E. FRAME LOCALIZATION AND LOCAL REFINEMENT
Figure 12 shows two frame localization examples for
Subject B and Subject G, where we used the real no-IC RGB
image as an input to our frame localization. Figure 12(a)
shows the frame localization of a rugae fold region.
Figure 12(b) shows the frame localization of a gastric ulcer
region. In Figure 12, we can see that the selected reference
images are projected correctly to the reconstructed mesh
and the relative position of the selected image to the whole
stomach can be effectively identified and visualized.

Figure 13 illustrates the results of our local mesh refine-
ment. It shows the comparison between the low-resolution
initial mesh generated by applying Poisson surface recon-
struction and the refined mesh. Since our local refinement
extracts the camera poses and the 3D points information from
the global reconstruction, the obtained local structure is con-
sistent with the global structure. We can see that the refined
mesh by our proposed pipeline has better details compared to

the initial mesh. It is clear that the rugae fold is visible in the
refined mesh (Figure 13(b)) while it is not visible in the initial
mesh (Figure 13(a)). The refined mesh has more detailed
morphological information compared to the the initial mesh
only showing the flat surface.

IV. CONCLUSION
In this paper, we have presented a new approach to recon-
struct a whole stomach 3D shape from a gastric endoscopy
video without the need of IC dye spraying. We have applied
CycleGAN as an image-to-image style translator to generate
VIC red images from no-IC images for the stomach 3D
reconstruction and shown that the generated VIC images
significantly increase the number of extracted SIFT feature
points. Furthermore, we have found that input color channel
selection for the style translation affects the feature matching
performance of the VIC images. Based on the investigation,
we have found that the translation from no-IC green-channel
images to IC-sprayed red-channel images gives significant
improvements to the SfM reconstruction quality and com-
pleteness.We have experimentally demonstrated that our new
approach can reconstruct the whole stomach shapes of all
seven subjects and showed that the estimated camera poses
can be used for the frame localization purpose. To validate
our reconstruction results obtained using VIC red-channel
images, we compared them with the reconstruction results
obtained using real IC red-channel images and have shown
that reconstructed stomach structures are similar to each
other. In addition, we also presented a new local mesh refine-
ment pipeline that is able to obtain a high-resolution textured
mesh of an interesting local region for better inspection. For
future works, we will be focusing on real-time whole stomach
reconstruction by combining our VIC image generation and
real-time depth and pose prediction as performed in deep-
learning-based SLAM methods. We are also considering to
combine our image-to-image translation with feature extrac-
tion and matching network learning for better image genera-
tion for the 3D reconstruction purpose. Finally, the videos of
the reconstruction results can be accessed from the following
link (http://www.ok.sc.e.titech.ac.jp/res/Stomach3D/).
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