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Abstract
Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib) have

been developed to treat Chronic Myeloid Leukemia (CML). Despite an initial response to

therapy, drug resistance remains a problem for some CML patients. Recent studies have

shown that resistance mutations that preexist treatment can be detected in a substantial

number of patients, and that this may be associated with eventual treatment failure. One

proposed method to extend treatment efficacy is to use a combination of multiple targeted

therapies. However, the design of such combination therapies (timing, sequence, etc.)

remains an open challenge. In this work we mathematically model the dynamics of CML

response to combination therapy and analyze the impact of combination treatment sched-

ules on treatment efficacy in patients with preexisting resistance. We then propose an opti-

mization problem to find the best schedule of multiple therapies based on the evolution of

CML according to our ordinary differential equation model. This resulting optimization prob-

lem is nontrivial due to the presence of ordinary different equation constraints and integer

variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of

patient neutrophil counts in response to therapy. We determine optimal combination strate-

gies that maximize time until treatment failure on hypothetical patients, using parameters

estimated from clinical data in the literature.

Author Summary

Targeted therapy using imatinib, nilotinib or dasatinib has become standard treatment for
chronicle myeloid leukemia. A minority of patients, however, fail to respond to treatment
or relapse due to drug resistance. One primary driving factor of drug resistance are point
mutations within the driving oncogene. Laboratory studies have shown that different leu-
kemic mutants respond differently to different drugs, so a promising way to improve treat-
ment efficacy is to combine multiple targeted therapies. We build a mathematical model
to predict the dynamics of different leukemicmutants with imatinib, nilotinib and dasati-
nib, and employ optimization techniques to find the best treatment schedule of combining
the three drugs sequentially. Our study shows that the optimally designed combination

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005129 October 20, 2016 1 / 20

a11111

OPENACCESS

Citation: He Q, Zhu J, Dingli D, Foo J, Leder KZ

(2016) Optimized Treatment Schedules for Chronic

Myeloid Leukemia. PLoS Comput Biol 12(10):

e1005129. doi:10.1371/journal.pcbi.1005129

Editor: Natalia L. Komarova, University of California

Irvine, UNITED STATES

Received: April 13, 2016

Accepted: September 2, 2016

Published: October 20, 2016

Copyright: © 2016 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: JF is supported by NSF grants DMS-

1224362 and DMS-134972. KZL is supported by

NSF grants CMMI-1362236 and CMMI-1552764.

JZ was supported by NSF grant CMMI-1362236.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005129&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


therapy is more effective at controlling the leukemic cell burden than any monotherapy
under a wide range of scenarios. The structure of the optimal schedule depends heavily on
the mutant types present, growth kinetics of leukemic cells and drug toxicity parameters.
Our methodology is an important step towards the design of personalized optimal thera-
peutic schedules for chronicle myeloid leukemia.

Introduction

Chronic Myeloid Leukemia (CML) is an acquired hematopoietic stem cell disorder leading to
the over-proliferation of myeloid cells and an increase in cellular output from the bonemarrow
that is often associated with splenomegaly. The most common drivingmutation in CML is a
translocation between chromosomes 9 and 22 that produces a fusion gene known as BCR-ABL.
The BCR-ABL protein promotes proliferation and inhibits apoptosis of myeloid progenitor
cells and thereby drives expansion of this cell population. By targeting the BCR-ABL oncopro-
tein, imatinib (brand name Gleevec) is able to induce a complete cytogenetic remission in the
majority of chronic phase CML patients. A minority of patients, however, either fail to respond
or eventually develop resistance to treatment with imatinib [1]. It is thought that a primary
driver of this resistance to imatinib is point mutations within the BCR-ABL gene. A recent
study utilizing sensitive detectionmethods demonstrated that a small subset of these mutations
may exist before the initiation of therapy in a significant fraction of patients, and that this sta-
tus is correlated with eventual treatment failure [2]. Second generation agents such as dasatinib
and nilotinib have been developed and each has shown efficacy against various common
mutant forms of BCR-ABL. This leads to the observation that the various mutant forms of
BCR-ABL result in CML that have unique dynamics under therapy, and that combinations of
these inhibitors may be necessary to effectively control a rapidly evolving CML population.
Patients with CML often die due to transformation of the disease into an acute form of leuke-
mia known as blast crisis. It has been shown that blast crisis is due to the accumulation of addi-
tional mutations in CML progenitor cells [3].

The goal of this work is to leverage the differential responses of CMLmutant strains to
design novel sequential combination treatment schedules using dasatinib, imatinib and niloti-
nib that optimally control leukemic burden and delay treatment failure due to preexisting resis-
tance. We develop and parametrize a mathematical model for the evolution of both wild-type
(WT) CML and mutated (resistant) CML cells in the presence of each therapy. Then we formu-
late the problem as a discrete optimization problem in which a sequence of monthly treatment
decisions is optimized to identify the temporal sequence of imatinib, dasatinib and nilotinib
administration that minimizes the total CML cell population over a long time horizon.

There has been a significant amount of work done in the past to mathematically model
CML. For example, in [4] the authors developed a system of ordinary differential equations
(ODEs) that model both the normal progression from stem cell to mature blood cells and
abnormal progression of CML. A hierarchical system of differential equations was used to
model the response of CML cells to imatinib therapy in [5]; this model fit the biphasic nature
of decline in BCR-ABL positive cells during imatinib treatment. In [6] the authors investigated
the number of different resistant strains present in a newly diagnosed chronic phase CML
patient. An optimal control approach was utilized to optimize imatinib scheduling in [7]. Par-
ticularly relevant to our work is [8, 9] where the authors investigated simultaneous continuous
administration of dasatinib, nilotinib and imatinib; in particular, they explored the minimal
number of drugs necessary to prevent drug resistance. In the current work, we focus on
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understanding the optimal administration schedule of multiple therapies to prevent resis-
tance, and studying the impact of toxicity constraints on optimal scheduling. Since several of
the available tyrosine kinase inhibitors (TKI) share similar toxicities (in particular neutrope-
nia, see e.g., [10–12]) combining them together can lead to elevated risk of adverse events.
Thus we consider sequential combination therapies in which only one TKI may be adminis-
tered at a time. Moreover, it has been shown that the risk of treatment failure and blast crisis
are highest within the first 2 years from diagnosis [1]. Therefore it is possible that optimized,
sequential single agent therapy may be sufficient to minimize the risk of treatment failure.
Allowing only one treatment at a time leads to a complex, time-dependent discrete optimiza-
tion problem.

Another line of research closely related to the current work is the use of optimal control
techniques in the design of optimal temporally continuous drug concentration profiles (see,
e.g., review articles [13, 14] and the textbook [15]). In this field the tools of optimal control
such as the Pontryagin principle and the Euler-Lagrange equations are used to find drug con-
centration profiles that result in minimal tumor cell populations under toxicity constraints.
Particularly relevant to the current work is [16] where the authors searched for optimal anti-
HIV treatment strategies. They dealt with the similar problem of treating heterogeneous pop-
ulations with multiple drugs. One major drawback of these works is the fact that it is nearly
impossible to achieve a specific optimal continuous drug-concentration profile in patients,
since drug concentration over time is a combined result of a treatment schedule (e.g.
sequence of discrete oral administrations) and pharmacokinetic processes in the body
including metabolism, elimination, etc. Thus the clinical utility of an optimal continuous
drug concentration profile is limited. In contrast to these previous works, here we model the
optimization problem as a more clinically realistic sequence of monthly treatment decisions.
Imposition of this fixed discrete set of decision times leads to a challenging optimization
problem. Such dynamical systems are referred to as ‘switched nonlinear systems’ in the con-
trol community [17], and our problem additionally imposes fixed switching times. In this
work we will leverage the system structure and tools from mixed-integer linear optimization
[18] to solve this problem numerically, resulting in optimal therapy schedules that are easy to
implement in practice.

Model of CML dynamics

We consider an ODE model of the differentiation hierarchy of hematopoietic cells, adapted
from [5, 19, 20]. Stem cells (SC) on top of the hierarchy give rise to progenitor cells (PC),
which produce differentiated cells (DC), which in turn produce terminally differentiated cells
(TC). This differentiation hierarchy applies to both normal and leukemic cells [21]. We con-
sider in our model leukemicWT cells as well as preexisting BCR-ABL mutant cell types.We
use type 1, type 2, and type i (3� i� n) cells to denote normal, leukemicWT, and (n − 2) leu-
kemic mutant cells; layer 1, 2, 3, 4 cells to denote SC, PC, DC, and TC; and drug 0, 1, 2, 3 to
denote a drug holiday, nilotinib, dasatinib, and imatinib, respectively. Let xl,i(t) denote the
abundance of type i cell at layer l and time t, and x(t) = (xl,i(t)) be the vector of all cell abun-
dance at time t. If drug j 2 {0, 1, 2, 3} is taken frommonth m to month m + 1, then the cell
dynamics are modeled by the following set of ODEs.

_xðtÞ ¼ f jðxðtÞÞ; t 2 ½mDt; ðmþ 1ÞDt�;

xðmDtÞ ¼ xm;

for some function f j, where Δt = 30 days and xm is the cell abundance at the beginning of
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month m. The concrete form of function f j under drug j is described as follows.

SC level _x1;i ¼ ðb
j
1;i�i � dj

1;iÞx1;i; i ¼ 1; . . . ; n

PC level _x2;i ¼ bj
2;ix1;i � dj

2;ix2;i; i ¼ 1; . . . ; n

DC level _x3;i ¼ bj
3;ix2;i � dj

3;ix3;i; i ¼ 1; . . . ; n

TC level _x4;i ¼ bj
4;ix3;i � dj

4;ix4;i; i ¼ 1; . . . ; n:

ð1Þ

See Fig 1 for an illustration of the differentiation hierarchy of hematopoietic cells, including
neutrophils as part of the TC.

Here we describe the function of each parameter of this model. For a detailed discussion of
how these parameters were estimated from biological data, please see SectionA of S1 Text.
Type i stem cells divide at rate bj

1;i per day under drug j. The production rates of type i

Fig 1. The differentiation hierarchy of hematopoietic cells in CML and an ODE model that describes the dynamics of each subpopulation

under drug j (j = 0, 1, 2, 3). The neutrophils (squares) are part of the terminally differentiated cells.

doi:10.1371/journal.pcbi.1005129.g001
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progenitors, differentiated cells and terminally differentiated cells under drug j are bj
l;i per day

for l = 2, 3, 4, respectively. The type i cell at layer l dies at rate dj
l;i per day under drug j, for each

i, l and j. The competition among normal and leukemic stem cells is modeled by the density
dependence functions ϕi(t), where �iðtÞ ¼ 1=ð1þ pi

Pn
i¼1

x1;iðtÞÞ for each i; these functions
ensure that the normal and leukemic stem cell abundances remain the same once the system
reaches a steady state. The parameter p1 (resp. p2) is computed from the equilibrium abun-
dance of normal (resp. leukemicWT) stem cells assuming only normal (resp. leukemicWT)
cells are present, and we set pi = p2 for each i� 3. In particular, p1 ¼ ðb0

1;1
=d0

1;1
� 1Þ=K1 and

p2 ¼ ðb0
1;2
=d0

1;2
� 1Þ=K2, with K1 (resp. K2) being the equilibrium abundance of normal (resp.

leukemicWT) stem cells assuming only normal (resp. leukemicWT) cells are present.

Treatment optimization problem

Assume the initial population of each cell type is known. Our goal is to select a treatment plan
to minimize the tumor size at the end of the planning horizon.We call this the Optimal Treat-
ment Plan problem (OTP). Each treatment plan is completely characterized by a temporal
sequence of monthly treatment decisions over a long time horizon. Between each monthly
treatment decision, the dosing regimen is identical from day to day. The standard regimens for
each drug, which we will utilize throughout the work, are 300mg twice daily for nilotinib,
100mg once daily for dasatinib, and 400mg once daily for imatinib [22]. For example, let 1
denote nilotinib, 2 denote dasatinib, 3 denote imatinib, and 0 denote drug holiday. Then the
sequence {1, 1, . . ., 1} represents that the patient takes the standard nilotinib regimen, 300mg
twice daily, every day, everymonth. The sequence {2, 0, 2, 0, . . .} represents that the patient
alternates between the standard dasatinib regimen, 100mg once daily, and a drug holiday on
alternate months.

We introduce the binary decision variables zm,j to indicate whether drug j is taken in month
m or not, for each j = 0, 1, 2, 3 and m = 0, 1, . . .,M − 1, in an M-month treatment plan. An
assignment of values to all zm,j variables that satisfy all constraints in the optimization model
gives a feasible treatment plan.

The optimization problem

Note the total leukemic cell abundance at day t is given by ∑l�1∑i�2 xl,i(t). The OTP can be for-
mulated as the followingmixed-integer optimization problem with ODE constraints.

min
X

l�1

X

i�2

xl;iðMDtÞ ð2Þ

s:t: _xðtÞ ¼
X3

j¼0

zm;jf
jðxðtÞÞ; t 2 ½mDt; ðmþ 1ÞDt�;m ¼ 0; 1; . . . ;M � 1; ð3Þ

X3

j¼0

zm;j ¼ 1; m ¼ 0; 1; . . . ;M � 1; ð4Þ

zm;j 2 f0; 1g; j ¼ 0; 1; 2; 3;m ¼ 0; 1; . . . ;M � 1; ð5Þ

xð0Þ ¼ x0: ð6Þ
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To summarize the previous display, in eq (2) we state that our objective is to minimize the
leukemic cell population at the end of the treatment horizon. In eq (3) we stipulate that the cell
dynamics are governed by the system of differential equations given by eq (1). Together eqs (4)
and (5) stipulate that during each time periodwe administer either one drug or no drug.

The OTP problem is a mixed-integer nonlinear optimization problem, in which some con-
straints are specifiedby the solution to a nonlinear system of ODEs eq (3). This optimization
problem is beyond the ability of state-of-the-art optimization software. However, if we assume
the TKI therapies do not affect the stem cell compartment, then it is possible to handle the ODE
constraints numerically. This is because the non-linearities in the ODEmodel are only present
in the stem cell compartment, and the remaining compartments are modeled by linear differen-
tial equations. Thus we are able to build a refined linear approximation to the ODE constraints
(see SectionC of S1 Text), and recast the problem as a mixed-integer linear optimization prob-
lem, which can be solved efficiently for the size of our problem (see SectionB of S1 Text).

It should be noted that our model does not explicitly consider the phenomena of TKI resis-
tance acquired during therapy. Ourmodel suggests a method for designing optimized treatment
plans, beyondmonotherapies, at the beginning of treatment. In addition, this optimization pro-
cedure can be re-run and modifiedduring the course of treatment, with updated inputs from
each patient’s response to the treatment—including the presence of acquired mutations.

A quick reference for notation

Below we summarize our notation for the ease of the reader.

• I ¼ f1; 2; . . . ; ng: the set of cell types. Type 1 denotes normal cells, type 2 denotes leukemic
WT cells, and type i (3� i� n) denotes one type of leukemicmutants.

• L ¼ f1; 2; . . . ;Lg: the set of cell layers. We have L = 4, and layer 1, 2, 3 and 4 denotes SC,
PC, DC and TC, respectively.

• J ¼ f0; 1; 2; . . . ; Jg: The set of drugs for CML.We have J = 3, drug 0 refers to a drug holi-
day, and drug 1 to drug 3 refers to nilotinib, dasatinib and imatinib, respectively.

• M ¼ f0; 1; . . . ;Mg: the set of months for treatment.

• Δt: the duration during which a patient takes one drug before deciding to switch to another
drug or take a drug holiday. We set Δt = 30 days.

• K1: the equilibrium abundance of normal stem cells when only normal cells are present.

• K2: the equilibrium abundance of leukemicWT stem cells when only leukemic cells are
present.

• bjl;i: the production rate of type i cell at layer l under drug j.

• djl;i: the death rate of type i cell at layer l under drug j.

Results

In this work we consider the dynamics of CML response to single-agent and combination
schedules utilizing the standard therapies imatinib, dasatinib and nilotinib.

Evolution of preexisting BCR-ABL mutants under standard monotherapy

We first utilize the model to demonstrate the dynamics of CML populations with preexisting
BCR-ABL mutations under monotherapy with the standard therapies imatinib, dasatinib and
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nilotinib. Recall that the standard dosing regimens are 300mg twice daily for nilotinib, 100mg
once daily for dasatinib, and 400mg once daily for imatinib [22]. The birth rate parameters for
each leukemicmutant type under different TKIs (bj

l;i for j = 1, 2, 3, l = 1, 2, 3, 4, and i� 3) in
the model are estimated using in vitro IC50 values reported in [23] for each drug. The initial
cell populations at the start of therapy are derived by running the model starting from clonal
expansion of a single leukemic cell in a healthy hematopoietic system at equilibrium [19] until
CML detection (when the total leukemic burden reaches approximately 1012 cells [24]). At this
point the total cell burden is 2–3 times the normal cell burden in a healthy individual and thus
the total leukemic cells make up approximately 77% of the total cell population; this is consis-
tent with clinical reports [25]. Details on deriving the initial cell abundances at diagnosis are
provided in SectionA of S1 Text.

In the first example we consider a patient harboring a low level of the BCR-ABL mutant
F317L before the initiation of TKI therapy. According to the in vitro IC50 value reported in
[23], F317 is resistant to dasatinib, and moderately resistant to nilotinib and imatinib. The ini-
tial population conditions are given in Table 1 with the leukemicWT and F317L cells taking
up 95% and 5% of the leukemic cells, respectively.

We plot in Fig 2 the cell dynamics over 120 months for four treatment plans: (1) nilotinib
monotherapy (2) dasatinib monotherapy, (3) imatinib monotherapy, (4) no therapy—control.
We observe that as predicted, the disease burden responds well to imatinib and nilotinib; the
percentage of cancerous cells after a 24 month treatment drops to 0.19% with nilotinib and
0.26% with imatinib, respectively. However, the F317L mutant population is fairly resistant to
dasatinib; we observe that the percentage of cancerous cells after 24 months is 58.1% with dasa-
tinib and 95.4% with no treatment. Over the 120 month period dasatinib treatment provides
only modest improvement over the ‘no drug’ option in controlling the F317L population; how-
ever, dasatinib remains quite effective in controlling theWT leukemic population. It is interest-
ing to note that overall, nilotinib is the most effective in controlling both theWT and F317L
leukemic populations. However, nilotinib also negatively impacts the healthy cell population
more severely than imatinib, which is slightly less effective in controlling the leukemic popula-
tions. This suggests that some trade-offs between these drugs exist, and these trade-offsmay be
exploited in designing combination therapies.

In the next example we consider a patient with BCR-ABL mutant typeM351T preexisting
therapy. In contrast to the previous example, this commonly occurringmutant has been found
to be partially sensitive in varying degrees to all three therapies. The initial conditions are given
in Table 2. Once again we have assumed that WT and M351T cells take up 95% and 5% of total
leukemic cells, respectively.

In Fig 3 the cell dynamics over 120 months for the four standard treatment plans are plot-
ted: (1) nilotinibmonotherapy (2) dasatinib monotherapy, (3) imatinib monotherapy, (4) no
therapy—control. Since the M351T mutant is responsive to each drug in contrast to the previ-
ous example, the percentage of cancerous cells after a 24 month treatment drops to 0.18% with
nilotinib, 0.18% with dasatinib, and 0.25% with imatinib, respectively. Without treatment, the

Table 1. The initial cell abundance.

normal cell Wild-type F317L

SC 7.34 × 104 2.80 × 105 1.48 × 104

PC 1.61 × 107 3.87 × 107 2.04 × 106

DC 3.24 × 109 1.03 × 1010 5.40 × 108

TC 3.24 × 1011 1.03 × 1012 5.40 × 1010

doi:10.1371/journal.pcbi.1005129.t001
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percentage of cancerous cells after 24 months is 95.4%. Here, we observe that although niloti-
nib is more effective than dasatinib in controlling the total mutant M351T burden, the effect is
reversed in the progenitor population. Higher levels of stem and progenitor populations will
lead to faster rebound during treatment breaks, suggesting another trade-off to consider in the
combination setting.

Optimization of combination therapies

We next solve the discrete optimization problem to identify sequential combination therapies
utilizing imatinib, dasatinib and nilotinib to optimally treat CML patients with preexisting

Fig 2. Long term dynamics of healthy, WT leukemic and F317L mutant leukemic cell populations

under treatment with standard regimen monotherapy nilotinib (blue), dasatinib (yellow), imatinib

(green) and no drug (orange). The unit of vertical axis is number of cells. The dynamics of healthy normal

PC, DC and TC with imatinib monotherapy (green) and no drug (orange) coincide, since the birth and death

rates of normal PC, DC and TC under imatinib monotherapy happen to be the same as the corresponding

birth and death rates of normal PC, DC and TC with no drug. Initial conditions are provided in Table 1 and

parameter choices are provided in Section A of S1 Text.

doi:10.1371/journal.pcbi.1005129.g002

Table 2. The initial cell abundance.

Normal cell Wild-type M351T

SC 7.34 × 104 2.80 × 105 1.48 × 104

PC 1.61 × 107 3.87 × 107 2.04 × 106

DC 3.24 × 109 1.03 × 1010 5.40 × 108

TC 3.24 × 1011 1.03 × 1012 5.40 × 1010

doi:10.1371/journal.pcbi.1005129.t002
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BCR-ABL mutations. We consider schedules in which a monthly treatment decision is made
between one of four choices: imatinib, dasatinib, nilotinib, and drug holiday. Duringmonths in
which one of the three drugs is administered, the dosing regimen is fixed at 300mg twice daily
for nilotinib, 100mg once daily for dasatinib, and 400mg once daily for imatinib. In the follow-
ing we optimize over feasible treatment decision sequences that result in a minimal leukemic
cell burden after 3 years. Each treatment plan is completely characterized by a temporal
sequence of drugs over a long time horizon.

Optimal therapy for preexistingM351T mutation. We first assume that the mutant
M351T preexists therapy. The initial cell populations are given in Table 2. The remaining
parameters are described in SectionA of S1 Text. Note that WT and M351T leukemic cells
comprise 95% and 5% of leukemic cells, respectively. The optimal schedule we obtain for this
scenario is provided in Table 3. The proposed combination therapy is similar to the monother-
apy using dasatinib, but switches to nilotinib towards the end of the 36-month time horizon.
We note that the optimization result is robust to changes in the initial abundance of the leuke-
mic mutant cells; increasing the frequency of initial M351T mutants to 50% of the leukemic
population results in an almost identical optimal schedule (data not shown).

Fig 3. Long term dynamics of healthy, WT leukemic and M351T mutant leukemic cell populations

under treatment with standard regimen monotherapy nilotinib (blue), dasatinib (yellow), imatinib

(green) and no drug (orange). The unit of vertical axis is number of cells. The dynamics of healthy normal

PC, DC and TC with imatinib monotherapy (green) and no drug (orange) coincide, since the birth and death

rates of normal PC, DC and TC under imatinib monotherapy happen to be the same as the corresponding

birth and death rates of normal PC, DC and TC with no drug. Initial conditions are provided in Table 1 and

parameter choices are provided in Section A of S1 Text.

doi:10.1371/journal.pcbi.1005129.g003
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In Fig 4 we compare the performance of 4 different schedules including the optimized
schedule. Amongst the four schedules tested the optimal schedule provides the lowest leukemic
cell burden at the 36-month mark. It is interesting to see that there is no single best drug. For
monotherapy, it is best to use nilotinib if the treatment horizon is shorter than 12 months, and
dasatinib if the treatment horizon longer than 12 months. The proposed combination therapy
performs better than three monotherapies at the 36-month mark: the leukemic cell population
at the end of 36 months is 2.75 × 107 with the proposed combination therapy and 5.92 × 107

with dasatinib (the best monotherapy). We can see that the proposed optimal treatment sched-
ule leads to more than 50% reduction on final leukemic cell abundances over the best mono-
therapy. Fig 4 also shows that imatinib has less efficacy than nilotinib or dasatinib in reducing
the leukemic cell burden whenWT and M351T are present. An important question is, why
does the optimal schedule take that specific form. In our parameter estimates (see SectionA of
S1 Text) we see that dasatinib is better at killing progenitors than nilotinib, while nilotinib is

Table 3. Optimized treatment schedule for preexisting M351T.

Optimal combination 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

Initial conditions are provided in Table 2. Recall that 0—Drug Holiday, 1—Nilotinib, 2—Dasatinib, and 3—

Imatinib.

doi:10.1371/journal.pcbi.1005129.t003

Fig 4. Plot of cell number versus time for three monotherapies and optimal combination therapy for

preexisting M351T.

doi:10.1371/journal.pcbi.1005129.g004
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better at killing differentiated cells. Thus the optimal schedule uses dasatinib at first to bring
down the progenitor cell population, and then switches to nilotinib near the end of the treat-
ment horizon to decrease the population of differentiated cells.

Optimal schedules robust to varying objective function and treatment length.We also consider
an alternative objective function in which the goal is to minimize the average leukemic cell bur-
den over the whole treatment horizon. Consider the scenario withM351T mutation preexisting
at initiation of therapy again. The altered objective function results in an optimal strategy of
nilotinibmonotherapy. To understand this, we note that for minimizing area under the cell
population curve it is important to decrease the initial tumor population as quickly as possible.
This tends to favor taking nilotinib the entire time since it leads to the quickest reduction in
total tumor cell population, by reducing differentiated cells and therefore terminally differenti-
ated cells.We also ran optimization experiments to evaluate the impact of varying the length of
treatment between 35 and 38 months; these resulted in very similar optimal schedules.

Optimal therapy for preexisting F317L mutation. Next we consider a patient with preex-
isting mutant F317L instead of M351T. The initial cell abundances are given in Table 1; the
mutant leukemic cells make up of 5% of the total leukemic cells as in the baselinemodel except
we replace mutant M351T with F317L. The proposed combination therapy is listed in Table 4,
and for comparison the optimal therapy for the previous example where M351T preexisted
therapy is also provided. Note that dasatinib is used in the first 9 months and nilotinib is used
in the next 27 months in the presence of F317L.

In Fig 5 we show the comparison between proposed schedule and three different mono-
therapies. The final leukemic cell abundances are 7.46 × 107 and 9.48 × 107 under the propose
schedule and monotherapy with nilotinib, respectively. The combination therapy performs
better in reducing final leukemic cell population than three monotherapies, but the improve-
ment is marginal in this case. Again the optimal schedule uses dasatinib to reduce the wild-
type progenitor cell population, but switches to nilotinibmuch earlier to reduce the wild-type
differentiated cell and F317L cell populations.

Multiple mutants preexisting before the initiation of therapy. Lastly we investigate how
much gain can be expected from combination therapy if more than one mutant type preexists
before initiation of therapy. We again consider an optimizationmodel over a 36-month horizon.
We assume mutants M351T and F317L preexist therapy at a low level (each consists of 5% of
the total leukemic cell population); the initial conditions are given in Table 5. The recommended
combination therapy is the same as the recommended therapy when only one mutant F317L is
present. The result is reasonable since the F317L has higher resistance to our therapies, and thus
has a more significant impact on the structure of the optimal treatment schedule.

We now assume that the two mutants present are E255K and F317L. According to the in
vitro IC50 value reported in [23], E255K is resistant to each drug. The recommended combina-
tion therapy is shown in Table 6 below. The combination therapy is different from the combi-
nation therapies proposed in the baselinemodel and the model with M351T and F317L, and is
close to the monotherapy with dasatinib. We also compare the performance of the four differ-
ent schedules in Fig 6. The leukemic cell population is driven down in the first several months,
but increases thereafter due to the increase of E255K population. Since E255K is resistant to
each drug, even with the best therapy the leukemic cells still consist of over 73.5% of the total

Table 4. Optimal combination schedules.

M351T preexisting 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

F317L preexisting 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

doi:10.1371/journal.pcbi.1005129.t004
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cell population after 36 months. These results demonstrate that the optimal combination
schedule is strongly dependent upon the specific type and combination of preexisting
BCR-ABL mutants present at the start of therapy.

The impact of drug toxicity on the optimal theraputic schedule

Toxicity modeling. One of the most common side effects of TKIs in CML is neutropenia,
or the condition of abnormally low neutrophils in the blood. Neutropenia is defined in terms
of the absolute neutrophil count (ANC). To incorporate toxicity constraints we develop a
model of the dynamics of the patient’s ANC in response to each therapy schedule.We then
constrain our optimization problem by considering only schedules during which the patient’s
ANC stays above an acceptable threshold level Lanc. Typically, ANC at diagnosis is within nor-
mal limits (between 1500–8000/mm3); thus we set each patient’s initial ANC to be 3000/mm3.

Fig 5. Plot of cell number versus time for three monotherapies and optimal combination therapy for

preexisting F317L.

doi:10.1371/journal.pcbi.1005129.g005

Table 5. The initial cell abundance.

Normal cell Wild-type M351T F317L

SC 7.34 × 104 2.66 × 105 1.48 × 104 1.48 × 104

PC 1.61 × 107 3.66 × 107 2.04 × 106 2.04 × 106

DC 3.24 × 109 9.72 × 109 5.40 × 108 5.40 × 108

TC 3.24 × 1011 9.72 × 1011 5.40 × 1010 5.40 × 1010

doi:10.1371/journal.pcbi.1005129.t005

Optimal Treatment for CML

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005129 October 20, 2016 12 / 20



Treatment with imatinib, dasatinib and nilotinib all result in reduction of the ANC at varying
rates. Neutropenia is defined as an ANC level below Lanc = 1000/mm3. If a patient’s ANC falls
below the threshold, a drug holiday is required at the next monthly treatment decision stage.
During a drug holiday, ANC level will recover back to safe levels.

To model this process, we assume the patient’s ANC decreases at rate danc,j per month tak-
ing drug j, for j = 1, 2, 3. During a drug holiday, ANC increases at rate banc per month but
never exceeds the normal level of Uanc = 3000/mm3. More specifically, let ym denote the ANC
level at the beginning of month m and the binary variable zm,j indicate whether drug j is taken
in month m or not, i.e., zm,j = 1 (resp. zm,j = 0) indicates drug j is (resp. not) taken in month m.
The kinetics of ANC is modeled through a truncated linear function

ymþ1 ¼ rðym; zm;0; zm;1; zm;2; zm;3Þ

¼ minfym þ banczm;0 �
X

j2f1;2;3g

danc;jz
m;j;Uancg;

ð7Þ

Table 6. The optimal treatment schedules with two mutants.

M351T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

F317L 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M351T & F317L 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F317L & E255K 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1

doi:10.1371/journal.pcbi.1005129.t006

Fig 6. The cell dynamics with F317L and E255K preexisting therapy.

doi:10.1371/journal.pcbi.1005129.g006
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for m = 0, 1, . . .,M − 1. For example, after a patient with ANC level ym takes a drug holiday in
month m, her ANC level at the beginning of month m + 1 becomes ym + banc if ym + banc is not
higher than the normal levelUanc, or Uanc if ym + banc exceedsUanc. If the patient instead takes
nilotinib in month m, then her ANC level at the beginning of month m + 1 becomes ym −
danc,1. The parameters governing ANC rate of change are provided in SectionA of S1 Text.

There is a substantial literature on mathematical modeling of ANC levels, with many
sophisticated nonlinear mathematical models, see e.g. [26]. Given the exploratory and illustra-
tive nature of this subsectionwe instead sought a parsimonious model and arrived at eq (7).
However, in future work we plan to further study the use of more sophisticated ANCmodels.

Incorporating toxicity constraints into the optimization model. We next study how
drug toxicity affects the optimal therapy, in particularwith the drug toxicity constraint intro-
duced in the Toxicity Modeling subsection. Recall that the toxicity constraint prevents ANC
from dipping below a threshold value Lanc. The ANC decreases at a constant rate each month
under each drug, and increases at a constant rate without drug. The ANC never exceeds the
normal level of Uanc. We first assume that nilotinib has a higher toxicity than dasatinib, and
dasatinib has a higher toxicity than imatinib. In particular, the monthly decrease rates of ANC
for nilotinib, dasatinib, and imatinib are 350/mm3, 300/mm3, and 250/mm3, respectively, and
ANC increases by 2000/mm3 with one month drug holiday. Please refer to SectionA of S1 Text
for the estimation of these parameters.

We incorporated the toxicity constraints into the preexistingM351T mutant scenario
describedpreviously, i.e. initial cell populations are given in Table 2. The three monotherapies
and resulting optimal combination therapy are shown in Table 7 below. Note that the proposed
combination therapy is very close to the one describedwithout toxicity constraints (i.e.,
Table 3), except now drug holidays are inserted to maintain the ANC level above Lanc.

The cell dynamics of three monotherapies and the proposed combination therapy are given
in Fig 7. It can be seen that after drug holidays, the total leukemic cell population almost
returns to the level at the beginning of treatment. This indicates that a one month drug holiday
may be too long for the patient.

Since it is not clear whether nilotinib or dasatinib result in higher toxicity effects, we also
switched the monthly ANC depletion rates to nilotinib—300/mm3, dasatinib—350/mm3, and
imatinib—250/mm3, so that dasatinib has the highest toxicity. Other conditions are kept the
same. The recommended combination therapy is shown in Table 8 below. Note that now ima-
tinib is usedmore frequently, due to the increase in toxicity of dasatinib. We also compare the
performance of the four different schedules in Fig 8.

The effect of TKI’s on stem cells

The extent to which TKIs affect leukemic stem cells is currently unknown. Several studies have
demonstrated that these cells may in fact be resistant to TKIs, see e.g. [27] and references
therein. Based on these results we have assumed throughout this work that TKIs do not affect
the leukemic stem cell population. Given that there is uncertainty regarding this issue, in this
subsectionwe investigate how our optimal schedules will perform if we assume TKIs impact

Table 7. Treatment schedules with drug toxicities.

Nilotinib 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1

Dasatinib 2 2 2 2 2 2 0 2 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 2 0 2 2 2 2 2 2

Imatinib 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3 3 0 3

Combination 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 1 1 1 1

doi:10.1371/journal.pcbi.1005129.t007
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the leukemic stem cells. In Tables 9 and 10, we look at the leukemic cell burden after a
36-month treatment with our optimal therapy and the best monotherapy for preexisting
M351T and F317L, respectively, assuming that each TKI reduces the production rate of leuke-
mic stem cells by a certain level. In both tables we observe that the optimized schedule outper-
forms the monotherapy even if leukemic stem cells are susceptible to TKI. These result imply
that the optimal treatment schedules we derive here outperform a traditional monotherapy
regardless of the impact of TKIs on leukemic stem cells.

Discussion

In this work we have considered the problem of finding optimal treatment schedules for the
administration of a variety of TKIs for treating chronic phase CML.We modeled the evolution
of wild-type and mutant leukemic cell populations with a system of ordinary differential equa-
tions. We then formulated an optimization problem to find the sequence of TKIs that lead to a
minimal cancerous cell population at the end of a fixed time horizon of 36 months. The
36-month therapeutic horizon is clinically meaningful since it appears that the risk of

Fig 7. Plot of cell number versus time for three monotherapies and optimal combination therapy for

preexisting M351T, incorporating toxicity constraints.

doi:10.1371/journal.pcbi.1005129.g007

Table 8. The optimal treatment schedules with different drug toxicities.

Nilotinib>Dasatinib 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 2 2 2 2 0 2 2 1 1 1 1

Dasatinib>Nilotinib 2 0 2 2 2 2 2 0 3 2 2 2 2 2 0 3 2 2 2 2 2 0 3 2 2 2 2 2 0 3 3 1 1 1 1 1

doi:10.1371/journal.pcbi.1005129.t008
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therapeutic failure and disease progression to blast crisis is highest within the first two years
from diagnosis [1].

At first glance the optimization problem studied in this work (OTP) is quite challenging. It
is a mixed-integer nonlinear optimization problem, where the nonlinear constraints are speci-
fied by the solution to a nonlinear system of differential equations. However, one factor miti-
gating the complexity of the problem is the assumption that the TKIs do not effect the stem cell
compartment. This has the effect of making the evolution of the stem cell compartment inde-
pendent of the TKI schedule chosen. In addition, the remaining layers in the cellular hierarchy
are modeled by linear differential equations. We can thus numerically solve the differential
equation governing the stem cell layer, and treat this function as an inhomogeneous forcing
term in the linear differential equation governing the progenitor cells. This allows us to approx-
imate the nonlinear constraints specifiedby the differential equations by linear constraints
with high accuracy. Then the OTP problem can be approximated by a mixed-integer linear

Fig 8. Plot of cell number versus time for three monotherapies and optimal combination therapy for

preexisting M351T, incorporating toxicity constraints. Here it is assumed that the ANC reduction rate

during dasatinib treatment is higher than during nilotinib treatment.

doi:10.1371/journal.pcbi.1005129.g008

Table 9. The leukemic cell burden after a 36-month treatment for preexisting M351T assuming TKIs reduce the leukemic stem cell production

rates. We assume that the TKIs reduce the production rate of each leukemic stem cell by a%.

a(%) 0 5 10 20

Combination therapy 2.75 × 107 2.65 × 107 2.56 × 107 2.34 × 107

Best monotherapy (dasatinib) 5.92 × 107 5.70 × 107 5.47 × 107 5.03 × 107

doi:10.1371/journal.pcbi.1005129.t009
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optimization problem, which we are able to solve with state-of-the-art optimization software
CPLEX [28] within one hour.

Importance of minimizing progenitor cell population. We first aimed to minimize leukemic
cell burden at 36 months after initiation of therapy, starting with an initial leukemic population
of wild-typeCML cells and either M351T (sensitive to all three therapies) or F317L (resistant
to dasatinib) mutant leukemic cells. For both startingmutant populations, we observed that
the optimal schedule involves initiating therapy with dasatinib and later switching to nilotinib,
although the timing of the switch differed. To further understand this result, we noted that
within this parameter regime, dasatinib is the most effective of the three TKIs at controlling
leukemic progenitor cells, while nilotinib is the most effective at controlling the differentiated
cells, which comprise most of the total leukemic burden. Thus, we note that controlling the leu-
kemic progenitor cell population is important in long-term treatment outcome. This is further
supported by the observation that blast crisis emerges due the acquisition of additional muta-
tions in CML progenitor cells (not stem cells) [3]. Our approach suggests that using combina-
tion TKI therapies may be a viable method of controlling this population. Our modeling
suggests that it is best to reduce the progenitor cells early and then reduce the differentiated
cells towards the end of the treatment planning horizon. An early reduction in progenitor cells
pays off in later stages of the treatment planning horizon, since a small progenitor cell popula-
tion results in a lower growth rate for differentiated cells which leads to a greater response to
subsequent TKI therapy.

Effects of toxicity constraints. We also imposed a toxicity constraint on therapy optimization
procedure by mandating that patient ANC levels stay above a given threshold that reduces the
risk of infections.We observed that incorporating this toxicity constraint does impact the
structure of the optimal schedules significantly, resulting in mandated treatment breaks as well
as switching some months to imatinib therapy, which has a lower toxicity effect.We also noted
that the choice of treatment breaks occurringalso in one-month intervalsmay result in danger-
ous rebound of leukemic burden to levels close to pre-treatment, suggesting that shorter breaks
to combat toxicity may be recommended. Although the model we have used for describing the
dynamics of the ANC levels is simple, our findings demonstrate that incorporating a mechanis-
tically modeled toxicity constraint into optimization of therapy scheduling is both feasible and
important in determining optimal scheduling.

Multiple preexisting mutant types.While some previous studies have suggested that the
majority of CML patients are diagnosedwith 0 or 1 preexisting BCR-ABL mutations, some
patients do harbor multiple mutants at the start of therapy [2, 6]. Thus we also investigated the
impact of having 2 mutant types present (M351T and F317, or E255K and F317L) at the start
of therapy, on optimal schedules.We observed the number and specific combination of preex-
isting mutants present can significantly impact the optimization results. This points to the
importance of determiningwhich BCR-ABL mutations preexist in patients at diagnosis, before
treatment planning is done.

Throughout this work we have observed that the structure of the optimal therapy depends
heavily on model parameters, e.g., cellular growth rates and ANC decay rates. It is likely that
each individual patients will have unique model parameters, and therefore a unique best

Table 10. The leukemic cell burden after a 36-month treatment for preexisting F317L assuming TKIs reduce the leukemic stem cell production

rates. We assume that the TKIs reduce the production rate of each leukemic stem cell by a%.

a(%) 0 5 10 20

Combination therapy 7.46 × 107 7.33 × 107 7.20 × 107 6.94 × 107

Best monotherapy (nilotinib) 9.48 × 107 9.38 × 107 9.28 × 107 9.09 × 107

doi:10.1371/journal.pcbi.1005129.t010
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schedule. An exciting application of this work would be the development of personalized opti-
mal therapeutic schedules. Determination of (i) the mutant types (if any) present in a patient’s
leukemic cell population, (ii) growth kinetics of their leukemic cell populations, and (iii)
patient ANC level responses under various TKIs, would enable our optimization framework to
build treatment schedules in a patient-specific setting. At the start of treatment for acute lym-
phoblastic leukemia (ALL), Quantitative RT-PCR or similar techniques are sometimes used to
performmutational analysis to identify the preexisting mutant types. Indeed, studies have
demonstrated that BCR-ABL mutants are present at the time of diagnosis in many ALL
patients, and as sequencing technologies improve, smaller and smaller subclones with resistant
phenotypes will likely be discovered [29]. In addition, the ANC level can be tested weekly by a
routine complete blood count and in principle, the growth kinetics of each leukemic cell type
could be analyzed in the laboratory using standard techniques such as flow cytometry or quan-
titative imaging. However, very few laboratories currently have the ability to analyze the growth
kinetics of each type of leukemic cell population in a reproducible way. We believe that the test-
ing procedure needs to be standardized before it becomes helpful for the treatment of CML. If
such a standardized growth kinetic analysis can be realized, during treatment a patient’s
response to various TKIs could be monitored so that the impact of TKI on growth kinetics of
leukemic cell population and ANC levels could be quantified. Then the optimization procedure
could be re-run on the fly with updated patient parameters, providing dynamic feedback into
each patient’s optimal therapy schedule.
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