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Cerebral small vessel disease (CSVD) refers to a spectrum of clinical and imaging
findings resulting from pathological processes of various etiologies affecting cerebral
arterioles, perforating arteries, capillaries, and venules. Unlike large vessels, it is a
challenge to visualize small vessels in vivo, hence the difficulty to directly monitor
the natural progression of the disease. CSVD might progress for many years during
the early stage of the disease as it remains asymptomatic. Prevalent among elderly
individuals, CSVD has been alarmingly reported as an important precursor of full-
blown stroke and vascular dementia. Growing evidence has also shown a significant
association between CSVD’s radiological manifestation with dementia and Alzheimer’s
disease (AD) pathology. Although it remains contentious as to whether CSVD is a cause
or sequelae of AD, it is not far-fetched to posit that effective therapeutic measures of
CSVD would mitigate the overall burden of dementia. Nevertheless, the unifying theory
on the pathomechanism of the disease remains elusive, hence the lack of effective
therapeutic approaches. Thus, this chapter consolidates the contemporary insights from
numerous experimental animal models of CSVD, to date: from the available experimental
animal models of CSVD and its translational research value; the pathomechanical
aspects of the disease; relevant aspects on systems biology; opportunities for early
disease biomarkers; and finally, converging approaches for future therapeutic directions
of CSVD.

Keywords: cerebral small vessel disease (CSVD), animal models, biomarkers, systems biology, therapeutic

INTRODUCTION

Cerebral small vessel disease (CSVD) refers to a diverse range of clinical and neuroimaging findings
resulting from pathological changes of various etiologies affecting the cerebral small vessels,
particularly small veins, venules, capillaries, arterioles, and small arteries (Pantoni and Gorelick,
2014). More prevalent in the elderly, CSVD doubled the risk of stroke (Bernick et al., 2001; Vermeer
et al., 2007) and has been shown to be responsible for about 30% of ischemic strokes (Warlow et al.,
2003; Pantoni, 2010; Bath and Wardlaw, 2015). Importantly, CSVD is recognized as an important
cause of cognitive dysfunction, dementia, and functional disability among the sufferers (Pantoni
and Gorelick, 2014; Zwanenburg and van Osch, 2017). In fact, a recent systematic review had
concluded that some neuroimaging features of CSVD are associated with an increased risk of
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Alzheimer’s disease (AD), a disease clinically characterized by
cognitive dysfunction and dementia. However, the causal link
between the two diseases remains inconclusive (Liu et al., 2018).

Notably, the inconsistency in terms of the definition,
unstandardized neuroimaging reporting, and silent nature of the
disease at the early stage hampers a deeper understanding of
its pathogenesis and subsequent effective therapeutic measures
(Wardlaw et al., 2013a). These challenges had instigated efforts
among researchers to establish a standard framework in the
CSVD research field. In a recent development, a standard
approach in reporting neuroimaging findings had been proposed
in CSVD based on the Standards for Reporting Vascular changes
in neuroimaging (STRIVE) (Wardlaw et al., 2013b). In particular,
the STRIVE collaborative group had advised the minimum
standard requirement for image acquisition and analysis, a
scientific reporting standard technique for neuroimaging features
of CSVD, and suggested common terms and definitions for
neuroimaging changes found in CSVD, namely (i) white matter
hyperintensity of presumed vascular origin; (ii) lacunae of
presumed vascular origin; (iii) recent small subcortical infarct;
(iv) perivascular space; (v) cerebral microbleed; and (vi) brain
atrophy (Wardlaw et al., 2013b). Nonetheless, notably, due to the
current limitation of standard neuroimaging techniques, the term
CSVD reflects only the neuroradiological changes of the brain
parenchyma rather than the small vessels of interest (Pantoni and
Gorelick, 2014). Meanwhile, postmortem examinations of the
diseased small vessels revealed distinct histopathological changes,
such as fibrinoid necrosis, arteriosclerosis, and atherosclerosis
(Lammie, 2002; Pantoni and Gorelick, 2014).

In view of the social and healthcare burden it may incur,
contemporary and collaborative efforts are necessary to generate
and expand our current understanding of CSVD from the aspects
of its pathomechanism, systems biology, opportunities for early
disease biomarkers, and potential therapeutic approaches. This
chapter summarizes these core topics from the perspectives of
numerous experimental animal models of CSVD.

CEREBRAL SMALL VESSEL DISEASE
(CSVD) – CLASSIFICATION AND
PATHOGENESIS

One of the predominant types of strokes resulting from the
occlusion (ischemia) of small blood vessels deep within the brain
is an ischemic stroke (Rouhl et al., 2009; Smith, 2017). About 30%
of ischemic or lacunar strokes are thought to be due to CSVD
(Rouhl et al., 2009; Patel and Markus, 2011; Heye et al., 2015).

Definition
The definition of CSVD remains contentious due to its complex
and overlapping pathophysiological mechanism. However, it
is generally accepted that CSVD is mainly due to the
pathological consequences of small vessel disease on the brain
parenchyma rather than the underlying diseases of the vessels
(Wardlaw et al., 2013c).

Therefore, the term CSVD is preferred to describe a brain
parenchyma injury that is associated with distal leptomeningeal

and intracerebral vessel pathology that resides in poorly
collateralized subcortical gray and deep white matter. Moreover,
it is mainly due to several vasculo-pathological processes that
affect and cause occlusion to the small perforating cerebral
capillaries (of sizes 50–400 µm), small arteries (mostly branches
of middle cerebral arteries [MCAs]), arterioles, and venules
that penetrate and supply the brain subcortical region (Pantoni,
2010; Novakovic, 2010; Hinman et al., 2015; Benjamin et al.,
2016) (Figure 1). Several manifestations of CSVD can be seen
through clinical, radiological, or pathological phenomena with
various etiologies (Ogata et al., 2014; Sorond et al., 2015;
Yakushiji et al., 2018).

Classification
There are several etiopathogenic classifications of CSVD.
However, the most prevalent forms of CSVD are amyloidal
CSVD (sporadic and hereditary cerebral amyloid angiopathy
[CAA]) and non-amyloidal CSVD (age-related and vascular
risk-factor-related small vessel, i.e., arteriolosclerosis) (Pantoni,
2010). Other less common forms of CSVD include inherited
or genetic CSVD that is recognizably different from CAA (i.e.,
Fabry’s disease and cerebral autosomal dominant arteriopathy
with subcortical ischemic strokes and leukoencephalopathy
[CADASIL]), inflammatory and immunologically mediated
CSVD, venous collagenosis, and other CSVD (i.e., non-amyloid
microvessel degeneration in AD and post-radiation angiopathy).
Table 1 describes the two major etiopathogenic classes of CSVD
based on clinical and neuroimaging characteristic differences.

Dynamic Pathological Processes of
CSVD
In general, the various pathological changes of CSVD not only
resulted in cerebral parenchyma damage, that is, axonal injury,
neuronal apoptosis, demyelination, and oligodendrocyte damage
(see Table 1) but also gave rise to neurological symptoms and
signs, and diverse findings on neuroimaging (Li et al., 2018).

Nonetheless, the underlying pathomechanism of CSVD
remains contentious despite the growing insights from
histopathological, epidemiological, and physiological studies.
Moreover, there is increasing evidence that advanced age and
the presence of chronic hypertension may reduce the ability to
self-regulate cerebral blood flow (cBF) in response to various
systemic blood pressure levels and increased arterial stiffness,
hence the increased speed and flow pulsatility in cerebral
arterioles (Cuadrado-Godia et al., 2018). These hemodynamic
changes may lead to endothelial damage in the blood–brain
barrier (BBB) and alter its permeability through an increase of
the shear stress (Zhang et al., 2017). Hence, the BBB breakdown
is thought to be one of the major features of CSVD (Huisa et al.,
2015; Wardlaw et al., 2017; Zhang et al., 2017).

Another key factor thought to contribute to the pathogenesis
of CSVD is endothelial dysfunction, with elevated biomarkers
being reported (Farrall and Wardlaw, 2009; Poggesi et al.,
2016). In addition to the endothelium, cross-talk among cellular
components of the BBB, such as pericytes, astrocytes, and
oligodendrocyte precursor cells (OPCs), may be involved in
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FIGURE 1 | Illustration of cerebral vasculature and vasculo-pathological process of CSVD. (A) Different branches of cerebral arteries and their territories that supply
cerebral white matter. (1) represent cortical arteries, (2) pial arterioles that supply deep white matter, (2.1) short branches, (3) anterior choroidal arteries that branch
into sub-ependymal arteries, (4) arterioles of sub-ependymal, (5) MCA branches into thalamic and lenticulostriate perforating arteries that supply basal ganglia (Image
source: Martorell et al., 2012). (B) Illustration of general aetiophatogenic features of CSVD. The picture shows branches of MCA that penetrate the subcortical region
of white matter and gray matter. Embolus or thrombus may accumulate and cause occlusion (atheroma) upon the parent MCA and penetrating arteriolar. The
occlusion of perforating arteriolar can cause ischemia and eventually a lacunar infarct may be formed. The core infarcts might affect surrounding tissue (penumbra).
Diffused disruption of the BBB following intrinsic CSVD also occurred at the arteriolar level (Image source: Shi and Wardlaw, 2016).

the microvascular damage as precursors for the onset and
progression of CSVD (Ihara and Yamamoto, 2016; Rajani
and Williams, 2017). In relation to this, reduced white
matter integrity due to changes in oligodendrocytes has been
shown in CSVD, whereby the endothelial cell (EC)–OPC
signaling became compromised and altered the ECs’ ability
to secrete the releasing factor crucial for the growth and
survival of OPCs to eventually cause oligodendrocytes prone
to damage (Rajashekhar et al., 2006). Therefore, the interaction
of multiple BBB components may play a crucial role in
the discovery and development of new prevention steps and
therapies for CSVD.

On the other hand, hypoperfusion or reduced cBF in
CSVD has been hypothesized to be involved with endothelial
dysfunction (Armulik et al., 2005). Generally, the regulation
of cBF is mediated by nitric oxide (NO) signaling; thus, NO
serves as a marker for endothelial dysfunction (Deplanque et al.,
2013). Moreover, endothelial dysfunction was also associated
with increased BBB permeability, which led to brain parenchyma
lesions and worsened white matter lesions due to the reduced
integrity of ECs (Young et al., 2008). Therefore, increased BBB
permeability, reduced cBF, and impaired cerebral autoregulation
are thought to be the major precursors to the development and
progression of CSVD, although another/other potential player/s
is/are still being sought.

Moreover, a group of genetically inherited forms of CSVD
with an increasing prevalence has been widely investigated for
the past decade (Hara et al., 2009; Pantoni, 2010). Although
the molecular mechanisms underlying this form of CSVD are
unclear, a multitude of studies on the monogenic form of CSVD
(i.e., CADASIL) and sporadic CSVD offer new insights into the
CSVD pathomechanism. Chronic cerebral hypoperfusion (CCH)
and reduced cBF that lead to vascular reactivity alterations and
white matter metabolic vulnerability were reported previously as
markers of the inherited form of CSVD (Itoh et al., 2001; Moore
et al., 2003; Hilz et al., 2004; Li et al., 2018).

Interestingly, the impaired function of the extracellular matrix
(ECM) has been linked as a common disease pathomechanism
between different types of monogenic CSVD, largely from
proteomic and biochemical studies on postmortem monogenic
CSVD in humans and animals. Moreover, increasing evidence
from genetic studies supports the fact that CSVD can be highly
heritable, especially among patients with early onset CSVD
and young patients with stroke, and that common variants
in monogenic CSVD genes may contribute to the disease
pathomechanism in certain CSVD forms (Tan et al., 2017; Li
et al., 2018). In addition, the increased expression of the mutated
NOTCH3 gene (a genetic determinant of CADASIL) in pericytes
was found to contribute to CSVD pathogenesis due to abnormal
cross-talk between ECs and pericytes (Armulik et al., 2005).
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TABLE 1 | Etiopathogenic classification based on clinical and neuroimaging characteristic differences in two major classes of CSVD (Vinters, 1987; McCarron and Nicoll,
2004; Love et al., 2009; Pantoni, 2010; Biffi and Greenberg, 2011; Charidimou et al., 2012; Charidimou and Jäger, 2014; Cuadrado-Godia et al., 2018; Li et al., 2018).

Classification Characteristics Pathology Neuroimaging features Clinical syndromes

Form 1 • Non-amyloidal CSVD
• Arteriolosclerosis (age-related

and vascular risk-factor-related
small vessel diseases)

• Advances with age
• Degenerative microangiopathy

• Loss of smooth muscle cells
from the tunica media (i.e.,
arteriolosclerosis)

• Deposit of fibro-hyaline material
(i.e., lipohyalinosis)

• Narrowing of lumen (i.e.,
microatheroma)

• Thickening of vessel wall (i.e.,
microaneurysms)

• Segmental arterial
disorganization

• Deep cerebral microbleeds
• Rare cortical superficial siderosis
• Basal ganglia perivascular space
• Non-specific cerebral region of

WMHs

• Lacunar strokes
• Often deep (basal ganglia,

thalamus, pons, cerebellum ICH)
• Cognitive impairment and

dementia

Form 2 • Amyloidal CSVD
• Sporadic and hereditary CAA
• Advances with age

• Accumulation of amyloid-β (Aβ)
in the cortical walls (type 1) and
leptomeningeal small arteries,
but not capillaries (type 2) due to
vascular occlusion and rupture

• Vasculopathy (i.e., fibrinoid
necrosis, loss of smooth muscle
cells, wall thickening,
perivascular blood breakdown,
and microaneurysm)

• APOE gene polymorphism (i.e.,
APOE ε2 and APOE ε4 allele
related to types 2 and 1,
respectively)

• Lobar cerebral microbleeds
• Most significant feature (marker of

CAA): cortical superficial siderosis
• Centrum semiovale perivascular

space
• Posterior dominance WMHs

• Lobar ICH
• Non-lacunar strokes
• Transient focal neurological

episodes, cognitive impairment,
and dementia

• Hallmarks of AD

AD, Alzheimer’s disease; APOE, apolipoprotein E; CAA, cerebral amyloid angiopathy; CSVD, cerebral small vessel disease; ICH, intracerebral hemorrhage; WMHs, white
matter hyperintensities.

Further deliberation of the current various pathogenesis
of CSVD as highlighted in the foregoing paragraphs will
be discussed in the later section. Our current knowledge of
the natural history of CSVD had been based largely on our
neuroimaging findings, although it is limited. Recognizing
the heterogeneous manifestations of CSVD, from silent to
symptomatic, implies that our apparent detection of the disease
is made possible through the imaging of the brain white matter.
Therefore, neuroimaging remains the key modality in assessing
and diagnosing CSVD.

Neuroimaging Correlates of CSVD
The ischemic consequences of several manifestations of CSVD,
such as white matter hyperintensities (WMHs), lacunar strokes,
cerebral microbleeds, enlarged perivascular spaces, and small
subcortical infarcts, can be detected using magnetic resonance
imaging (MRI) (Sorond et al., 2015; Lambert et al., 2015;
Yakushiji, 2016; Yakushiji et al., 2018). Wardlaw and colleagues
proposed what is known as STRIVE for the methods of visual
identification and classification of the CSVD spectrum (Wardlaw
et al., 2013b) (Table 2 and Figure 2). The most common imaging
spectrum of CSVD is WMHs, which is commonly recognized
as small “lacunes” (Latin: for lake) in an aging brain or as
bright areas of small non-cavitated high signal intensity on
fluid-attenuated inverse recovery (FLAIR) and T2-weighted MRI
parameters. The lesion increases with age because it evolves
over a few months to years (Ovbiagele and Saver, 2006; Valdés
Hernández et al., 2015; Wharton et al., 2015).

In addition, WMHs are also regarded as an ischemic white
matter demyelination and can manifest as symptomatic or silent
(asymptomatic) brain parenchyma lesions. Interestingly, this so-
called “silent” manifestation of CSVD is frequently reported as
an incidental finding from brain images of individuals who never
experienced any symptom of stroke, which is more frequent
among the elderly (Valdés Hernández et al., 2015). It has
also been proposed as a prognostic marker following the first
symptomatic CSVD presentation, for instance, acute lacunar
stroke (Van Norden et al., 2011).

About 95% of asymptomatic manifestations of CSVD are
lacunar silent brain infarcts (SBIs) (as seen as WMHs on
MRI) and are arguably more prevalent than symptomatic
manifestations. The two major contributors to the onset and
progression of SBI include age and hypertension (Norrving,
2015). The key differences between SBI and symptomatic
lacunar infarcts are their location and size. This is because
both SBI and symptomatic lacunar infarcts have similar and
overlapping pathological appearances (Bailey et al., 2012).
For example, most asymptomatic SBIs are located within the
white matter periventricular space (periventricular lesion) and
centrum semiovale (deep subcortical lesions) (Kaiser et al.,
2014; Wharton et al., 2015), whereas a symptomatic lacunar
ischemic stroke affects mostly the sensory and motor tracts
(Valdés Hernández et al., 2015).

In addition, healthy white matter is more myelinated than
white matter of patients with AD (Bartzokis et al., 2003) and
has a higher content of long-chain fatty acids and lower content
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TABLE 2 | STRIVE for the methods of visual identification and classification of the CSVD spectrum (Wardlaw et al., 2013b).

Neuroimaging marker STRIVE features Aspect in CSVD Comments

Recent small subcortical infarct • Recent infarction in one perforating
arteriole and its territory

• Increased DWI, FLAIR, T2-weighted
signal

• Decreased T1-weighted signal
• Iso-intense T2∗-weighted GRE signal

• Infarct can be symptomatic or silent
• Number, size, shape and location
• Delay from stroke to imaging

• Usual diameter of infarct can be
≤20 mm

• Best identified in DWI
• Identified symptomatic lesion or

imaging features occurred in past
weeks hence referred as “recent”

WMHs • Increase intensity or hyperintensity
on T2-weighted, T2∗-weighted GRE
and FLAIR signal

• Iso-intense on DWI and T1-weighted
signal

• Decrease intensity or hypointense on
T1-weighted signal

• Variable location, size, shape, and
number

• Mainly located in white matter
• Subcortical hyperintensities includes:

deep gray matter and brainstem but
not include in WMHs

• Best identified in FLAIR

Lacune • Round or ovoid fluid filled cavity
mostly in subcortical region

• Hyperintensity on T2-weighted signal
• Decreased signal in FLAIR and

T1-weighted images
• Signal similar to CSF
• Decreased or iso-intense signal on

DWI

• Inclusive of subcortical deep gray
matter and brainstem

• Usual diameter around 3–15 mm
• Ovoid cavity usually has

hyperintense rim
• Consistent with previous acute small

subcortical infarct or hemorrhage in
one perforating arteriole and its
territory

• Best identified in FLAIR

Perivascular Space • Fluid-filled spaces that follow the
typical course of a vessel as it goes
through gray or white matter

• Similar signal intensity with CSF
• Decrease FLAIR and T1-weighted

signal
• Increased T2-weighted signal
• DWI and T2∗-weighted GRE signal

seems iso-intense

• Can be found in basal ganglia or
centrum semiovale

• Usual diameter around ≤ 2 mm
• Mostly linear without hyperintense

rim if the image seen parallel to the
course of vessel, and rounded if
perpendicular

Cerebral Microbleed • Small, rounded areas of signal void
• Iso-intense DWI, FLAIR, T2- and

T1-weighted signal
• Best seen in T2∗-weighted GRE with

decreased signal

• Number and distribution are
characterized based on lobar, deep
and infratentorial (cerebellum ad
brainstem)

• Usual diameter around ≤10 mm
• Signal void associated with blooming

detected on GRE sequence

CSF, cerebrospinal fluid; CSVD, cerebral small vessel disease; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; GRE, gradient recalled echo;
STRIVE, Standards for Reporting Vascular changes on neuroimaging; WMHs, white matter hyperintensities.

of water (by 12%) than gray matter. A previous study reported
that SBIs are consistently related to age, hypertension, and
other cardiovascular risk factors (Prabhakaran et al., 2011).
Therefore, individuals with extensive SBIs are at high risk
for a future stroke, that is, WMHs serve as a prognostic
marker. Nevertheless, it is estimated that SBIs (seen as WMHs)
occur in around 30% of healthy subjects over 60 years
of age, and with a linear prevalence increment with age
(de Leeuw et al., 2001).

Reduced cBF, endothelial dysfunction, oxidative stress,
and focal neurological signs are related to cerebral lesions
and have been found to correlate with imaging markers,
that is, the number and volume of WMHs (Poggesi et al.,
2016; Bahrani et al., 2017). Furthermore, WMHs are also
associated with cognitive impairment, with the notion
that a certain threshold must be achieved before this
becomes clinically apparent (Debette and Markus, 2010).
Alarmingly, WMHs have also been linked as precursors to
developing neuropsychiatric disorders such as schizophrenia
(Berlow et al., 2010).

EXPERIMENTAL ANIMAL MODEL FOR
CSVD

Investigations using animal models are becoming routine,
involving rats and mice or even larger animals such as rabbits and
non-human primates, to better understand the development and
progression of CSVD. By using animal models, the pathological
process of CSVD, such as ischemic white matter lesions following
reduced BBB integrity and endothelial dysfunction, can be
evaluated. However, as discussed in the previous section of this
chapter, CSVD has several different and overlapping pathological
features. So the models used ideally should have similar (if not
all) CSVD characteristics, that is, diffuse white matter damage,
small vessel arteriopathy, and small discrete infarcts, with and/or
without cognitive impairment (Edrissi, 2015). Moreover, specific
gene expression profiles had been shown in the brain tissues and
blood samples from animal models of an ischemic stroke (Jickling
and Sharp, 2011). To date, several approaches and animal models
have been identified to reflect different aspects of CSVD, and
hence mimic the arterial lesion of CSVD and/or brain injury, such
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FIGURE 2 | Neuroimaging classification of CSVD based on STRIVE. (A) Recent small subcortical infarct on DWI (arrow). (B) Lacune on FLAIR (arrow). (C) WMHs on
FLAIR (arrow). (D) Perivascular spaces on T1-weighted imaging (arrow). (E) Cerebral microbleeds on T2∗-GRE (arrow).

as lacunar infarcts and WMHs (Hainsworth and Markus, 2008),
as summarized in Table 3. To illustrate this point, this chapter
elaborates on the use of rodents as a model for CSVD.

Hypoperfusion-Based Injuries
The approach used most frequently is bilateral common carotid
artery occlusion (BCCAO) or two-vessel occlusion, which reflects

TABLE 3 | Different approaches used in animal models to reflect certain aspects
of CSVD.

Aspects of CSVD Approaches

Hypoperfusion/ischemic injury • BCCAO and stenosis striatal
• Endothelin-1 injection
• Striatal mitotoxin 3-NPA

Hypertension-based injuries • SHRSP
• Surgical narrowing of the aorta
• Genetic mutations, usually in the

renin–angiotensin system

Blood vessel damage • Injected proteases
• Endothelium targeting viral infection
• Genetic mutations affecting vessel walls

BCCAO, bilateral common carotid artery occlusion; CSVD, cerebral small
vessel disease; NPA, nitropropionic acid; SHRSP, stroke-prone spontaneously
hypertensive rats.

the hypoperfusion and/or ischemic injury aspect of CSVD (Choi
et al., 2011; Kwon et al., 2015). A previous study has shown that
increased white matter degeneration due to hypoperfusion in rats
with CCH using the BCCAO approach was also accompanied
by an increased loss of oligodendrocytes and neuroinflammation
(Choi et al., 2016). Moreover, a recent study supports the fact
that a larger number of WMHs (from gadolinium-contrast MRI)
found in subcortical brain regions of BCCAO rats is suggestive of
the BBB’s perturbed permeability (Arena et al., 2019). Another
example of a hypoperfused model is low-density lipoprotein
receptor knockout mice to demonstrate the relationship between
hypercholesterolemia and CSVD (Hainsworth and Markus, 2008;
Tiwari et al., 2018). Besides that, other approaches have also
utilized endothelin-1 injection (Capone et al., 2012; Cipolla et al.,
2013) and striatal mitotoxin 3-nitropropionic acid (McCracken
et al., 2001) to exhibit the impact of hypoperfusion-based injury.

Hypertension-Based Injuries
Alongside the BCCAO approach, there is another well-
established and valid animal model for CSVD – the
spontaneously hypertensive stroke prone (SHRSP) rat model
(Hainsworth and Markus, 2008; Bailey et al., 2009; Wardlaw
et al., 2013c). Selective breeding from the Wistar-Kyoto parent
strains produce SHRSP rats, with high arterial blood pressure
and incidence of stroke (Yamori and Horie, 1977). This approach
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reflects the hypertension-based injuries aspect of CSVD.
Although the molecular and genetic causes of SHRSP are still
elusive, there is evidence of the involvement of renin–angiotensin
or the NO signaling system (Bailey et al., 2011b; Hainsworth
et al., 2012). The thickening and narrowing of the arterial
wall (i.e., in large arteries) are thought to contribute to the
hypertensive state in SHRSP rats, and hence the unpredictable
cerebral lesions (Baumbach et al., 1988). In another finding,
cerebral microangiopathy (due to the BBB breakdown) is present
in SHRSP rats using 3-T MRI. Further refinement on detecting
microvascular dysfunction related to CSVD in this rat’s model
may be achieved by using a higher MRI field strength (i.e., 7T and
above) in future research (Mencl et al., 2013). The same group
also reported the presence of small but significant perivascular
lesions and small vessel thromboses in the histopathological
study of the SHRSP rat model (Mencl et al., 2013).

Blood Vessel Damage–Based Injuries
Another approach is through genetic mutations that affect
vessel walls in CSVD. As discussed in the previous section,
mutations in the NOTCH3 gene that encodes transmembrane
receptors may contribute to a rare monogenic CSVD such as
CADASIL (Chabriat et al., 2009; Joutel, 2011). Previous studies
have described the CADASIL-causing R169C point mutation
in transgenic mice that carried an artificial chromosome
expressing rat NOTCH3 (Ayata, 2010; Joutel et al., 2010).
NOTCH3 is expressed predominantly in pericytes (Van
landewijck et al., 2018); therefore, increased activation of the
mutated NOTCH3 gene is linked with a reduced pericyte
function (i.e., due to platelet-derived growth factor receptor-
signaling β dysregulation) that contributed to the arteriovenous
malformations and white matter lesions as precursors of
CADASIL (Kofler et al., 2015; Montagne et al., 2018).

Animal Models’ Merit to Understand
CSVD in Humans
To date, studies on animal models that can replicate human
CSVD are still limited (Bailey et al., 2011a; Hainsworth et al.,
2012). The main reason behind this is the fact that most
experimental animal studies are limited to mice and rats.
Compared to rats and mice, humans have a longer lifespan, a
larger brain size, bigger vessel dimensions, and a higher gray
to white matter ratio. Although mice capillaries do resemble
those of humans, rodent arteries have little resemblance to
humans’ deep penetrating arteries in the subcortical region that
are frequently implicated in CSVD (Giwa et al., 2012). That
said, a recent study in mice with single penetrating arteriole
occlusions showed that a local collapse of microvascular function
contributes to tissue damage, which mimics the pathophysiology
induced by microinfarcts found in the human brain (Taylor
et al., 2015). Moreover, the mimicry of animal models in
human CSVD includes diffuse damage to any deep white matter
structures, including rarefaction, vacuolization, or other damage
to the myelin, or damage to the axonal tracts. Besides, several
models with specific features that resemble human CSVD are
summarized in Table 4.

Therefore, the use of an animal model to study the natural
history of CSVD can help us explore the pathomechanism
of CSVD up to the cellular and molecular levels. Besides,
animal models also provide a potential benefit of testing
the effects of developed drugs or other interventions on the
pathomechanism of CSVD. Finally, experimental animal models
may provide a way for us to examine the interactions of multiple
pathomechanisms of CSVD, for example, the interactions of
CSVD with its comorbidities such as obesity, diabetes mellitus,
and AD, which are clinically relevant. Further details on the
involvement of animal models in understanding the systems
biology of CSVD, potential biomarkers, and current and future
therapeutic approaches for CSVD are discussed in next section
of this chapter.

RELEVANT ASPECTS ON SYSTEMS
BIOLOGY

Cerebral small vessel disease has a crucial role in lacunar stroke
even in brain hemorrhages and is one of the leading causes of
cognitive decline and functional loss in elderly patients (Pantoni,
2010). Interactions between genetic, cellular/molecular, and
environmental factors (aging and vascular risk-hypertension)
influence the development and progression of CSVD (Cai et al.,
2015; Verhaaren et al., 2015). Genetic and cellular/molecular
factors play a key role in terms of unraveling the pathomechanism
of CSVD (Verhaaren et al., 2015). Hence, applications in systems
biology in terms of exploring and identifying genetic and
cellular/molecular architectural mechanisms with the advances
in technological approaches (i.e., computational, mathematical,
and network analyses) may provide a greater understanding of
CSVD and ultimately possibly lead to the development of novel
preventive and therapeutic measures (Ehret et al., 2011; Giese and
Rost, 2017). Figure 3 summarizes a general workflow of systems
biology in CSVD. This figure summarizes the overall approach,
highlighting some of the options available at each step.

As discussed, some but not all animal models exhibit
clinicopathological features that resemble human CSVD.
The exploration and identification of cellular and molecular
architectural mechanisms and genetic testing using animal
models have been proven to represent human CSVD
(Hainsworth and Markus, 2008). For example, several lines
of evidence associating CSVD with the increased permeability
of the BBB and endothelial dysfunction have been found
(Cuadrado-Godia et al., 2018). Apart from that, endothelial
dysfunction and reduced BBB integrity were found to be
associated with the severity of cerebral white matter lesions
following a significant decrease in EC integrity in diseased white
matter compared with that in normal white matter (Young et al.,
2008). Besides, the animal model also can exhibit any CSVD-like
vessel pathology that includes reduced BBB integrity and changes
in small vessel walls (Hainsworth and Markus, 2008).

Several categories of animal models that have been used
to understand CSVD include hypoperfusion/ischemic injury,
hypertension-based models, vessel damage, mutations and vessel
damage, and interventions (see Table 4). A majority of these
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TABLE 4 | Animal model, features, and CSVD correlates (Lee et al., 2007; Jiwa et al., 2010; Joutel et al., 2010; Schreiber et al., 2013; Silasi et al., 2015).

Animal models Features CSVD correlates

Stroke-Prone Spontaneously
Hypertensive Rats (SHRSP)

• To elucidate early histological changes in
CSVD

• Displayed local BBB breakdown that was determined with MRI
• Endothelial injuries lead to multiple sites with BBB leakage which cause damage

to the vessel wall and results in vessel ruptures and microbleeds

NOTCH3 transgenic mice • Mimic CADASIL
• Resembles age-related sporadic CSVD

• NOTCH3-R169C mice develop diffuse white matter lesion in corpus callosum,
internal capsule and striatal white matter bundles, no change in BBB function
was detected

BCCAO in rats • Mimic bilateral common carotid
occlusion

• Model for the study of vascular cognitive
impairment

• White matter lesions characterized by vacuolation of myelin, axonal damage, and
demyelination in corpus callosum, internal capsule, and caudate putamen

• BCCAO in rat mimics chronic hypoperfusion (i.e., chronic cerebral
hypoperfusion, CCH rats) of CSVD and arteriosclerosis

Thy1-GFP transgenic mice • Visualized the impact of
micro-occlusions on neuronal structure

• Occlusions in CSVD are produced through endovascular injection of fluorescent
microspheres

• Micro-occlusions in the hippocampus produce cell loss or neuronal atrophy
• Disruption of axons in white matter tract, striatum and thalamus

BBB, blood–brain barrier; BCCAO, bilateral common carotid arteries occlusion; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts; CCH,
chronic cerebral hypoperfusion; CSVD, cerebral small vessel disease; GFP, green fluorescent protein.

FIGURE 3 | Summary of a general workflow of systems biology for CSVD. This figure summarizes the overall approach, highlighting some of the options available at
each step.

models are used to study the target mechanism of BBB damage,
endothelial dysfunction, reduced cBF, and the involvement of
genetic counterparts; these appeared to be suitable animal models
for research in understanding CSVD (Kraft et al., 2017). Further
details on specific cellular and molecular mechanisms with
genetic contributions to CSVD will be discussed in this section.

Pathomechanism of BBB Damage in
Relation to CSVD
The physical and functional integrity and health of the brain
are basically maintained by the BBB, which is specialized to

prevent pathogens and circulating immune cells from entering
the vulnerable system of the brain and causing damage.
Generally, the BBB consists of monolayer ECs that are connected
by defensive tight junctions, hence preventing extracellular
molecules from passively entering the brain (Wolburg and
Lippoldt, 2002) (see Figure 4). Apart from that, the existing
interactions of blood components, neutrophils and monocytes,
in blood circulation with the luminal surfaces of ECs, are also
considered as part of the BBB and play an important role in
immune surveillance. Moreover, three transmembrane proteins
collectively form a tight junction between ECs: occludins,
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claudins, and cadherins. The interactions between these proteins
serve as a protective gate from the passive leakage of
extracellular molecules.

Damage to the integrity of the BBB can provide entry to
extracellular molecules, including immune cells and invasive
pathogens, thus interrupting brain function (Hawkins and Davis,
2005). Generally, damage of the BBB, that is, increased BBB
permeability, is due to the disassembly of tight junction proteins;
and the progressive BBB damage and increased permeability
may eventually cause EC basement membrane degradation
and ECM material accumulation, thus influencing vessel wall
stiffening. The subsequent increased infiltration of immune
cells and inflammation are also a result of increased BBB
permeability. On the other hand, the secretion of cytokines
and neopterin by activated monocytes/macrophages can cause
inflammation of ECs by disrupting their ECM, resulting in
the BBB breakdown. The BBB disruption can also be caused
by matrix metalloproteinase 2 (MPP2), which is an ECM
degradation enzyme known to degrade the tight junction proteins
in rodents (Nakaji et al., 2006). When the ECM of the BBB is
damaged, it will eventually lead to increased BBB permeability
and the penetration of immune cells, followed by inflammation.
Moreover, disruption of the BBB due to deposition of blood and
platelet components, that is, fibrinogen and microparticles, can
also worsen the BBB damage (see Figure 5).

Several studies have suggested that changes in walls of small
vessels in the brain (i.e., due to BBB disruption) may lead
to ischemic damage, causing WMHs, lacunae and microbleeds
associated with CSVD (Cai et al., 2015; Wardlaw et al., 2017;
Zhang et al., 2017). Hence, this further supports the fact that the
disturbance of BBB integrity can cause changes in walls of small
vessels in the brain (Kraft et al., 2017). Recently, various in silico
methods and models in the pathology of the BBB, that is, BBB
computational pathology using mathematical approaches, have
been used to study and predict BBB integrity up to the molecular
level, and its relationship with cerebral damage (Shityakov and
Förster, 2018). The majority of the computational approaches
incorporate molecular dynamics (MD), molecular docking
simulations, pharmacokinetics, and finite element methods, but
lack details on the pathomechanism of BBB damage (Shityakov
and Förster, 2014; Shityakov et al., 2015; Del Razo et al., 2016).

Although computational approaches provide limited details,
several types of in silico computational approaches are used
to study BBB-related pathology, hence lending support to the
involvement of the BBB in CSVD. The first approach is MD, a
method used at the molecular level of complexity, for example,
a model to study the BBB, mutated or misfolded proteins and
transporters, and small molecule permeation across the BBB.
The MD approach enables the investigation of impaired protein
structure and function and drug-like molecule cytotoxicity at the
BBB. Besides MD, finite element methods and pharmacokinetics
target the organ (i.e., the brain) as the level of complexity, opening
a new window into investigations on cerebral injury, that is, BBB
leakage and permeation (Shityakov and Förster, 2018).

In a similar development, efforts have been made to model
the circulatory system using a mathematical model (Šutalo et al.,
2014; Takahashi, 2014). Fractal geometry is a mathematical

model used frequently to study the complexity of patterns and
processes in a wide range of natural phenomena observed in
several fields, such as medicine (Di Ieva et al., 2014), geology
(Nikora and Sapozhnikov, 1993), and cosmology (Dickau, 2009).
The term “fractal” was first coined by Benoit B. Mandelbrot in
1975 and is derived from the Latin adjective “fractus,” meaning
“broken” or “fractured” (Di Ieva, 2016). Fractal concepts are
used to describe irregular natural structures such as blood
vessels (Weibel, 2005) and rivers (Nikora and Sapozhnikov,
1993). These structures appear self-similar under various degrees
of scale, exhibit scaling properties, and possess non-integer
(fractional) dimensions (Di Ieva et al., 2014; John et al., 2015).
For instance, the human circulatory system is composed of a
complex network of branching blood vessels in which vessels
of smaller caliber represent a repetition of larger blood vessels
on a smaller scale (Weibel, 2005). A recent study discovered
that the fractal approach could be used to model blood flow
through the cerebral vasculature (Šutalo et al., 2014). In effect, the
fractal approach might provide us a better understanding of the
disease of interest. Notably, the fractal approach has not yet been
explored extensively in CSVD, and warrants further research.

Endothelial Dysfunction and Nitric Oxide
Signaling in Relation to CSVD
Endothelial dysfunction can lead to CSVD by various
mechanisms that can cause hypoperfusion or reduced cBF. cBF
is regulated mainly by NO signaling, which has been identified
as a marker for endothelial dysfunction (Deplanque et al.,
2013). As discussed, endothelial dysfunction can increase BBB
permeability and subsequently lead to brain parenchyma lesions.
Endothelial dysfunction can alter the secretion of the releasing
factor from the ECs, which affects oligodendrocyte survival and
leads them to apoptosis. Signaling between dysfunctional ECs
and oligodendrocytes may alter their ability to survive up to
the damage caused by hypoperfusion in humans with CSVD.
Moreover, endothelial dysfunction can impair the movement
of OPCs upon blood vessels and thus lessen the repair process
(Rajani et al., 2018). In CSVD, the vessel lumen restriction is
thought to lead to a state of chronic hypoperfusion of the white
matter, eventually resulting in the degeneration of myelinated
fibers because of repeated selective oligodendrocyte death.

This ischemic mechanism due to endothelial dysfunction has
been demonstrated in experimental animal models, for example,
over-expression of the p53 gene could mediate oligodendrocyte
apoptosis, thus resulting in demyelination in two ways: by
enhancing endoplasmic reticulum–mitochondria interactions
and by triggering the activation of the E2F1 gene–mediated
apoptosis pathway (Pantoni, 2010; Ma et al., 2017). On the
other hand, endothelial dysfunction can also be mediated by
the activation of neutrophils, lymphocytes, monocytes, and
platelets that can act on ECs to either weaken or strengthen
the barrier. The aforementioned mediators exert their effects
on barrier function by altering the width of the intercellular
junctions, or through changes in junctional proteins and/or
the EC cytoskeleton. For example, activated neutrophil release
can impair endothelial barrier function, following the activation
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FIGURE 4 | Schematic representation of BBB with its components such as tight junctions (TJs), endothelial cells (ECs) that attach to the basement membrane (BM),
astrocytes foot process, pericytes, neurons that are separated from ECs by the extracellular matrix (ECM). TJs consist of occluding, claudin, and adhesion junctions
such as cadherin. ZO-1/2, zona occluding 1 or 2.

of reactive oxygen species (ROS), proteolytic enzymes, and
cytokines. Products of neutrophil activation can alter barrier
function by acting on the EC cytoskeleton, junctional proteins,
and the endothelial glycocalyx. ECs exposed to ROS exhibit
an increased permeability response that has been linked
to disruption of the inter-endothelial junction, actomyosin
contraction, gap formation, and an altered expression and
phosphorylation state of junctional adhesion molecules (van
Wetering et al., 2002; Monaghan-Benson and Burridge, 2009;
Rodrigues and Granger, 2015).

NO can be a positive or negative modulator that may
affect the endothelial barrier function. The protective role of
NO lies in its ability to inhibit leukocyte–EC adhesion. NO-
synthase inhibition increases the permeability of EC monolayers,
a response associated with the formation of stress fibers and
the disruption of adherens junctions (Kubes and Granger,
1992; Rodrigues and Granger, 2015). NO interacts with the
connexin of tight junctions and enzyme NO signaling in ECs,
and the alteration in this interaction can influence the vascular
disease condition (Looft-Wilson et al., 2012). Moreover, the
investigation revealed a significant reduction in NO and L-
citrulline concentrations and a rise in L-arginine, and the
precursor of these substances, in the patients’ jugular blood.
This can be the result of endothelial dysfunction and deficient
synthetase expression (Neri et al., 2006). NO can also modulate
Rho kinase activity in cerebral microvessels, such that the
inhibition of NO synthase activity increases the influence of

Rho kinase on the vascular tone (Didion et al., 2005). The
loss of NO during a disease can start a vicious cycle: increased
Rho kinase activity leading to a decrease in NO synthase-
derived NO, which may further increase Rho kinase activity
(De Silva and Miller, 2016).

Genetic Factors in CSVD
Progressive arteriopathy, white matter disease, subcortical
infarcts, and clinical manifestations in stroke and dementia are
several shared features between sporadic CSVD and monogenic
CSVD. Moreover, the heritability of CSVD ranges between 55
and 73%, which is significantly higher than that of carotid
atherosclerotic CSVD (Carmelli et al., 1998; Atwood et al.,
2004). Therefore, it is now clear that hereditary CSVD is
genetically heterogeneous and represents different disease entities
(Federico et al., 2012) (Table 5). The identification of underlying
genes involved in the disease stratification is now possible with
advances in DNA sequencing technology as well as genetic
linkage analyses. For example, studies on the involvement of
genes associated with cerebral white matter lesions give better
insights into the pathomechanism of CSVD (Woo et al., 2014;
Verhaaren et al., 2015; Lopez et al., 2015). In this section, we
briefly describe the genetics of the most frequent CSVD and
their pathomechanism.

Multiple factors and pathomechanisms that lead to vascular
and parenchymal injury in CSVD have been reported previously
through mechanistic studies on experimental animal models
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FIGURE 5 | Schematic representation of the mechanism of BBB damage and endothelial dysfunction. Increased activity of matrix metalloproteinase-2 (MPP2) from
ECM will cause tight junctions (TJs) to dissemble. TJ damage will eventually lead to basement membrane (BM) degradation and endothelial damage, and hence lead
to endothelial dysfunction. BBB damage will permit the infiltration of neutrophils, monocytes, and blood components into the ECM. Activated neutrophils induce the
activation of ROS, proteolytic enzymes, and cytokines, thus causing higher leukocyte–ECs adhesion and reduced cBF. Meanwhile, activated monocytes will be
induced by cytokine and neopterin to cause inflammation in the ECs. Increased shear and oxidative stress from the system also will cause the activation of blood
components and increased production of MPs, reduced TFPI, and increased fibrinogen accumulation, finally causing lumen narrowing to further reduce cBF. ROS,
reactive oxygen species; cBF, cerebral blood flow; MPs, microparticles; TFPI, tissue factor pathway inhibitor.

and even humans (Wardlaw et al., 2013c; Haffner et al.,
2016). With certain considerable overlapping pathological
features of sporadic and monogenic CSVD, however, some
features, such as BBB breakdown, has not been consistently
demonstrated in monogenic CSVD. However, through genetic
and mechanistic studies, the involvement of the ECM in
monogenic CSVD has currently emerged as a novel aspect
of the disease pathomechanism. Moreover, the ECM is now
thought to be a key player in multiple forms of CSVD
(Haffner et al., 2016).

Notch3 Signaling in CADASIL
Experimental animal models (i.e., mouse) have demonstrated
that the maturation of vascular smooth muscle cells (vSMCs)
and arterial differentiation depend on the activity of cell
signaling that involves the Notch family of cell signaling
receptors, especially Notch3 (Domenga et al., 2004). The
stereotype nature of CADASIL mutations supports the notion
of a toxic gain-of-function mechanism due to NOTCH3 gene
aberrations. Previous studies have shown that CADASIL with
mutant NOTCH3 aggregates accumulates in the ECM of small
arteries, arterioles, and capillaries (Joutel et al., 2000, 2001;
Monet-Lepretre et al., 2013).

Although the exact pathomechanism involving mutant
Notch3 aggregation still needs further investigation,
previous studies have proposed that the co-aggregation of
mutant Notch3 and other proteins suggest that additional
proteins are recruited into Notch3 deposits (Duering
et al., 2011; Kast et al., 2014). For example, once the
mutated Notch3 related to CADASIL is secreted and
participates in cell signaling, it multimerizes and initiates
the formation of large aggregates and deposits that include
matrix proteins, such as vitronectin, tissue inhibitor of
metalloproteinases-3, and latent transforming growth factor-β
(TGF-β) binding protein-1 (LTBP1); instead of undergoing
clearance from the ECM, these aggregates alter the normal
physiological function of blood vessels and their surroundings
(see Figure 6).

As mentioned in Section “Dynamic Pathological Processes
of CSVD,” the stabilization of the BBB involves not only ECs
but also pericytes and OPCs. Pericytes are known to play
a role in the maturation and maintenance of BBB integrity;
abnormal cross-talk between pericytes and ECs due to NOTCH3
gene mutations can also cause damage in the BBB (see
Figure 6). Animal studies have shown that pericytes also
play a significant role in CSVD, as emphasized in CADASIL
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TABLE 5 | Different entities of heterogenous hereditary CSVD (Joutel et al., 2010; Taguchi et al., 2013; Beaufort et al., 2014; Haffner et al., 2016).

Type Mendelian inheritance Gene (s) Pathological features Animal models Remarks

CADASIL Autosomal dominant NOTCH3 • Pure SVD
• NOTCH3 deposits (granular

osmiophilic material, GOM)
• Loss of vSMC
• Parenchymal arterioles and

capillaries walls thickening

TgNOTCH3R169C
• Commonly followed by stroke and dementia
• Other clinical manifestation such as psychiatric

disturbance and migraine with aura

CARASIL Autosomal recessive HTRA1 • Loss of vSMC
• Reduction of extracellular matrix

mural
• Splitting of internal elastic lamina
• Thickening of intimal layer and

luminal stenosis

HtrA1−/−
• Commonly followed by stroke and dementia

RVCL Autosomal dominant TREX1 • Defect of capillaries basement
membrane

• Luminal stenosis
• Vascular necrosis
• Adventitial fibrosis

– • Rarely involve stroke but occasionally followed
by dementia

• Other clinical manifestation includes retinopathy,
cognitive impairment, psychiatric disturbance
and migraine

Fabry’s
disease

X-linked GLA • Multifocal leukoencephalopathy
• Loss of small myelinated and

unmyelinated fibers

TgG3S/GLA−/−
• SVD with additional involvement of large arteries
• Commonly followed by stroke and occasionally

with dementia
• Other clinical manifestation includes cataract,

renal failure, and neuropathic pain

CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CARASIL, cerebral autosomal recessive arteriopathy with
subcortical infarcts and leukoencephalopathy; CSVD, cerebral small vessel disease; GLA, galactosidase-A; HTRA1, high-temperature requirement protein A1; RVCL,
retinal vasculopathy with cerebral leukodystrophy; SVD, small vessel disease; vSMC, vascular smooth muscle cell.

FIGURE 6 | Schematic representation of genetic contribution toward the mechanism of BBB damage and endothelial dysfunction, especially in hereditary CSVD.
Mutations of the NOTCH3 gene in pericytes result in a mutated Notch3 protein, with an altered cysteine residue at the ECM to be multimerized by recruiting matric
proteins, that is, vitronectin, granular osmiophilic material (GOM), and tissue inhibitor of metalloproteinases-3, and latent transforming growth factor β (TGF-β)-binding
protein-1 (LTBP1). The accumulated multimer will cause further damage to ECs and BM, and hence interfere with the cross-talk between pericytes and ECs.
Reduced cBF also interferes in the cross-talk between ECs and neuronal oligodendrocytes, thus inducing oligodendrocyte apoptosis. The accumulation of amyloid β

(Aβ) at the luminal wall due to apolipoprotein E (APOE) polymorphism will further induce BM degradation and EC dysfunction and luminal narrowing.
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(Armulik et al., 2005; Ihara and Yamamoto, 2016; Cuadrado-
Godia et al., 2018). Moreover, mutations in the NOTCH3
gene alter the number of cysteine residues in the extracellular
domain of the Notch3 protein, which eventually lead to the
extracellular accumulation of granular osmiophilic material.
NOTCH3 is also expressed in pericytes and mutations in this
gene revealed a loss of ECs and pericytes that disrupted the BBB
(Coupland et al., 2018).

TGF-β Signaling in CARASIL
The observations conducted on experimental animal
models and patients with cerebral autosomal recessive
arteriopathy with subcortical infarct and leukoencephalopathy
(CARASIL) up to the cellular level had suggested that
TGF-β signaling pathways were significantly involved in
the pathomechanism of monogenic CSVD. Due to its
vast expression, TGF-β has multiple biological functions
including a regulatory role in vascular development (ten
Dijke and Arthur, 2007). The TGF-β signaling pathway is
thought to have a link with high-temperature requirement
protein A1 (HtrA1), which is expressed in multiple TGF-
β-relevant tissues (Hara et al., 2009) and HtrA1 has been
suggested to inhibit TGF-β in various experimental models
(Oka et al., 2004; Launay et al., 2008; Zhang et al., 2012;
Graham et al., 2013).

Mutations of the HTRA1 gene may lead to fragility of
the vascular wall in CARASIL. The HTRA1 gene encodes an
evolutionarily conserved serine protease. Mutations in CARASIL
generally due to loss of HtrA1 activity that impaired substrate
processing, hence, serve as primary disease mechanism. HtrA1
is primarily located and functions in the ECM; hence, it helps to
degrade certain substrates located in extracellular compartments
(Beaufort et al., 2014). However, aberrations and mutations in
the HTRA1 gene can lead to abnormally aggregated elastin, the
main protein component of the elastic lamina, presumably being
associated with its fragility (Ito et al., 2018). For example, during
the secretion, the interaction of LTBP-1 with fibronectin (a matrix
protein) helps facilitate the latent TGF-β to be incorporated
into the ECM. Following this, the clearance of mature TGF-β
from the ECM is generally facilitated by the proteases HtrA1
through LTBP-1 cleavage. Therefore, HTRA1 gene mutations
can result in loss of HtrA1 activity, thus interfering in TGF-β
in CARASIL and subsequently leading to vSMC degeneration
(Nozaki et al., 2014).

The HtrA1 mutant in the mouse brain model has been
reported to markedly reduce protease activity. Protease activity
and HTRA1 gene mutations differ according to their locus, and
these differences might correlate with the severity of the vascular
changes and leukoencephalopathy (Nozaki et al., 2016). TGF-β
signaling was found to be associated with downregulated genes
in the basal ganglia of patients with CSVD, suggesting an absence
of TGF-β-induced detrimental effects on vSMCs in this area (Ritz
et al., 2017). In addition to the contribution of genetic mutations
in monogenic CSVD, several genetic variants are also related to
sporadic CSVD, that is, genetic mutations in amyloid CSVD and
the involvement of oxidative phosphorylation gene mutations in
CSVD related to lacunar infarcts.

Signaling Pathway in Amyloidogenic
CSVD
Apolipoprotein E (APOE)
Amyloid-β (Aβ) protein accumulation in cerebral capillaries has
been widely studied and shown to affect BBB integrity, which
leads to a loss of tight junction proteins and thus to increased
BBB permeability. The progressive deposition of Aβ in the walls
of cortical and leptomeningeal small arteries can lead to vessel
dysfunction and brain parenchymal injury, thus causing vascular
occlusion and rupture (see Figure 6). On the other hand, APOE
gene polymorphisms have been associated with amyloidogenic
CSVD and serve as the strongest genetic factor for the disease
including AD. Two main types of APOE genes are involved
in CVSD: APOE ε4 and APOE ε2, and their roles have been
summarized in Table 1.

These genes are involved particularly in the amyloidogenic
pathway, whereby polymorphisms of these genes in mice have
been shown to cause the loss of pericytes and EC cross-
talk, and are thus associated with BBB disruption (Schuur
et al., 2011). Moreover, the presence of two APOE ε4 alleles
was related with the presence of lacunae. Additionally, this
finding suggested that there is a crucial involvement of Aβ

clearance in the pathogenesis of lacunae. Moreover, it is
widely accepted that APOE is associated with aging; hence, it
serves as a risk factor that influences CSVD (Liu et al., 2010;
Schuur et al., 2011).

Single-Nucleotide Polymorphisms (SNPs) and
Oxidative Phosphorylation
SNPs in the gene for SORL1, a low-density lipoprotein receptor
class, has been shown to be associated with CSVD. Deficiency
of SORL1 gene expression leads to an increased Aβ level
and enhanced amyloid pathology in the brain (Rogaeva et al.,
2007). For example, a microbleed occurred in the immediate
perivascular region from amyloid angiopathy (Schuur et al., 2011;
McCarron and Smith, 2017; MacGregor Sharp et al., 2018). Thus,
there is an association between reduced SORL1 gene expression
and a microbleed, which is suggested by the role of Aβ in
neurodegeneration through the perivascular region (Weller et al.,
2008). The SORL1 gene may also be linked to its role in a
microbleed, which is one of the phenotypes of CSVD (Cohn-
Hokke et al., 2017; Maple-Grødem et al., 2018).

Focusing on aggregate measures of genetic variation rather
than individual SNPs, a previous study had identified several
variants within a larger set of oxidative phosphorylation
genes collectively associated with an increased risk of lacunar
stroke (Anderson et al., 2013). The oxidative phosphorylation
genes are encoded by mitochondrial and nuclear DNA.
Lacunar stroke showed associations with genetic risk scores
in oxidative phosphorylation as a whole, complex I, and
complex IV. These findings are complemented by another
study that found a genetic score of mitochondrial variants to
be associated with WMH volume in patients with ischemic
stroke (Anderson et al., 2011). Apart from that, aggregated
Aβ protein can reduce mitochondrial respiration in neurons
and induce ROS production, which lead to the dysfunction
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of mitochondria (Canevari et al., 1999; Casley et al., 2002).
A previous study also shows that the overproduction of
mitochondrial ROS in vascular diseases caused the dysfunction
of mitochondria, hence contributing to the progression of CSVD
induced by hypercholesterolemia (Angelova and Abramov,
2018). Collectively, these findings suggest that genetic variations
in oxidative phosphorylation influence small vessel pathobiology,
although the exact mechanisms remain to be determined.

Other Genetic Variants Related to CSVD
As discussed, CSVD exhibits perturbed end-artery function
and has an increased risk for stroke and age-related cognitive
decline. The increment in BBB permeability plays a crucial
role in the disease onset and progression. However, there
is also some involvement of genetic material, whereby their
aberration may interfere with BBB integrity and disease
stratification. For example, BBB integrity is maintained via
proteins in the matrisome, which involves the interaction
between multiple genes including the forkhead transcription
factor (FOXC1) gene, and damage of the BBB due to
aberrations and mutations of the FOXC1 gene may permit
the entry of pathogens or immune cells and disrupt brain
function, thus leading to the onset and progression of CSVD
(Chauhan et al., 2016).

Moreover, the alteration of the FOXC1 gene has been
associated with the presence of extensive WMHs, whereby the
inhibition of the FOXC1 gene may disturb the signaling of
platelet-derived growth factor, causing impaired neural crest
migration and the recruitment of mural cells, which are
essential for vascular stability. In addition, there is also a link
between FOXC1-interacting transcription factor (PITX2) and
CSVD, and both patients with PITX2 gene mutations and
murine Pitx2−/− mutants displayed brain vascular phenotypes.
Together, these results extend the genetic etiology of stroke
and demonstrate an increasing developmental basis for human
cerebrovascular disease (French et al., 2014; Chauhan et al., 2016;
Tan et al., 2017).

THE OPPORTUNITY OF EARLY DISEASE
BIOMARKERS

The National Institutes of Health Definitions Working Group
defined a biomarker as a characteristic that is objectively
measured and evaluated as an indicator of normal biological
processes, pathogenic processes, or pharmacological responses
to intervention (Biomarkers Definition Working Group,
2001). The animal models of CSVD can be used to expedite
the optimization of imaging markers for clinical use and
their pathology develops in a shorter time frame than
in humans, enabling a high throughput of biomarker
testing. Genetic mutations in transgenic mice can produce
different CSVD-like pathophysiological features in isolation.
Biomarkers for neurodegenerative disorders are essential to
facilitate disease diagnosis, ideally at early stages, monitor
disease progression, and assess responses to existing and
future treatments.

Biomarker 1: Neuroimaging-Based
Biomarkers
Radiological features (see Table 2) are the primary clinical
biomarkers of CSVD that can be visualized routinely on
computed tomography and MRI. Small vessels cannot be
visualized through in vivo and their pathological evidence is
very limited. Therefore, neuroimaging is accepted as a necessary
method in diagnostic markers and research of CSVD (Banerjee
et al., 2016; Chen et al., 2018). Several imaging modalities have
been developed and implemented in animal models to image
molecular and cellular processes in vivo. Imaging modalities
might be categorized into two groups: those providing mainly
structural information, such as computed tomography, MRI, or
ultrasound; and those aiming mainly at functional or molecular
information, like positron emission tomography (PET), single
photon emission computed tomography (SPECT), or optical
imaging (Waerzeggers et al., 2010).

Compared with PET and MRI, optical imaging techniques
are most cost-effective and time-efficient, require less resources
and space, and have excellent temporal resolution. Nevertheless,
the disadvantages of these techniques are the limited spatial
resolution and depth penetration, hence are only suitable for
small animal research because of the lack of optimal quantitative
or tomographic information. PET and SPECT as a nuclear
imaging technique have a high sensitivity, with which a specific
tracer accumulation with very low levels can be detected, but
have an inherently limited spatial resolution. MRI is the most
widely used technique that has a spectacular spatial resolution
unlimited by detector geometry, as with nuclear imaging, or by
tissue scattering properties, as by optical imaging; however, its
temporal resolution is limited, and molecular probe detection
is several orders of magnitude less sensitive than nuclear
imaging techniques.

A multitude of animal models have been established to
mimic human disorders, ranging from interventional models
(such as xenograft, neurotoxic, or mechanical lesion models) to
knockout and transgenic (mono-, bi-, or trigenic through cross-
breeding) animals. With the development of these animal models,
non-invasive techniques to assess functional, biochemical, and
anatomical disease-related changes have become indispensable,
and a variety of small animal models have been developed
for the imaging scanners with high sensitivity, specification,
and resolution. Furthermore, the findings in mouse models
obtained by small animal PET/SPECT and MRI scanners can be
compared directly to the human situation with clinical scanners
and represent true translational research from bench-to-bedside
and back to the bench again.

On the other hand, cerebral perfusion, cerebrovascular
reactivity, BBB permeability, and white matter microarchitecture
are accessible through MRI; these pathologies are altered in
CSVD. Cerebrovascular reactivity may occur at early stages of
CSVD and is correlated with future development of WMHs,
while reduced cBF may predict the future risk of dementia.
Newer approaches, such as diffusion tensor imaging (DTI) (e.g.,
graph theory–based analysis of network of DTI connectivity
between cortical nodes and analysis of histogram of mean
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diffusivity of cerebral white matter), had received more attention
for the assessment of CSVD (Smith and Beaudin, 2017).
DTI is used widely in aging and neurodegenerative studies
and can also be used as a potential surrogate biomarker
in disease onset and progression, especially in an animal
model. The utility of DTI as a tool to interpret the order
in which white matter disease and neurodegeneration occur
is challenging due to the difficulty in interpreting DTI
quantitative parameters, conflicting results between studies, and
the possibility of combined effects from multiple causes such
as ischemic mechanisms, cerebrovascular disease, and reactive
gliosis (Huang et al., 2007).

Diffusion tensor imaging studies in mouse models that exhibit
specific types of white matter abnormalities may become a
guide for information on the root cause of signal changes. One
study in the shiverer (shi) mouse model of dys-myelination
and demyelination using cuprizone treatment suggests that
reductions in the myelination of the corpus callosum increase
radial diffusivity (i.e., increase demyelination) (Song et al.,
2005). In more subtle white matter pathology induced by
hypoperfusion, mice exhibited a lower fractional anisotropy in
the corpus callosum that correlated with measures of reduced
myelin integrity (Holland et al., 2011). In some rodent models
of axonal degeneration and injury, reduced axial diffusivity has
been observed in affected white matter regions (Song et al.,
2002; Zhang et al., 2009). Mouse models can be used to better
understand the relationship between DTI parameters and disease.
The careful breeding and housing of transgenic mouse models of
CSVD may reduce group variability by controlling the external
factors, such as exercise and diet, that will be affected in
human studies. Histological analysis can be used to identify
the physical tissue changes driving diffusion measurements and
to draw correlations between DTI indices and the presence
of known pathologies in CSVD. The expedient progression
of pathology in models allows rapid longitudinal studies of
DTI measurements in early and late stages of the disease
(Vincze et al., 2008).

In summary, the new and advanced quantitative
neuroimaging techniques are not ready for routine radiological
practice, but are already being employed as monitoring
biomarkers in the newest generation of trials for CSVD
(Smith and Beaudin, 2017).

Biomarker 2: Amyloid Pathology
CAA is a common amyloidal form of CSVD, and its incidence
is mostly related to advanced age (Biffi and Greenberg, 2011).
Based on the specific location of amyloid deposition and
allelic difference, two pathological subtypes of CAA have been
recognized: CAA type 1, characterized by amyloid in cortical
capillaries; and CAA type 2, in which amyloid deposits are
restricted to leptomeningeal and cortical arteries, but not
capillaries (Table 1) (Thal et al., 2002). Predominantly, CSVD
is characterized by endothelial damage, BBB breakdown, and
subsequent small vessel wall degeneration, even though CAA is
characterized mainly by the deposition of Aβ in the basement
membranes of capillaries and smaller arteries (Charidimou et al.,
2012; Wardlaw et al., 2013c).

A study on SHRSP rats, as a valid model of non-amyloid
CSVD, found the mutual occurrence of non-amyloid CSVD
and CAA, as is commonly found in the aging brain (Held
et al., 2017). Spontaneous CAA development in a non-transgenic,
non-amyloid CSVD model suggests that there should be some
mechanisms connecting the two small vessel disease entities. In
the aging brain, non-amyloid CSVD and CAA can be considered
as part of the same vascular disease spectrum. Therefore,
these SVD entities could be interrelated through Aβ transport
disturbances and ECM protein alterations. The overlap among
non-amyloid CSVD and CAA could result in similar treatment
concepts perceptively.

In addition, recent evidence suggested that through
the use of a novel cerebrospinal fluid biomarker of BBB-
related soluble platelet-derived growth factor receptor-β
and capillary mural cell pericytes, BBB damage can serve
as an early biomarker for human cognitive decline that is
independent of Aβ, and it has been supported by a study
on regional BBB permeability using dynamic contrast-
enhanced MRI (Montagne et al., 2015; van de Haar et al.,
2016; Nation et al., 2019).

Biomarker 3: Genetic Mutations
Genetics might play a crucial role in elucidating the
cellular and molecular mechanisms of CSVD, and thus
the pathophysiology of its hereditary forms. CADASIL,
CARASIL, and several other forms of CSVD have been
discussed with regard to the genetic factors and their
pathways. Therefore, cellular, molecular, and biochemical
changes underlying CSVD can easily be assessed using
animal models of these rare single-gene disorders. Increasing
the number and variety of transgenic, induced mutants
and naturally occurring animal models of genetic disease
are vital to identifying new genes that are the root cause
of the disease; then, allow better understanding of the
cellular and molecular mechanisms of genetic diseases and
elucidating the genes involved in such diseases with complex
inheritance patterns.

Besides that, CADASIL is a neurological syndrome
characterized by CSVD, stroke, and vascular cognitive
impairment and dementia caused by mutations in the NOTCH3
gene (Joutel et al., 1996). A previous study showed that NOTCH3
signaling is linked to vSMC coverage in retinal vessels and
demonstrated that restoring NOTCH3 signaling via genetic
rescue and using a NOTCH3 agonist antibody (A13) prevents
the CSVD phenotype in both mouse models of CADASIL and
NOTCH3 knockout mice (Machuca-Parra et al., 2017). To
date, four mutant mouse models express common CADASIL
mutations: R90C, R169C, C428S, and R142C have been
developed and studied in detail (Joutel et al., 1997). These
models differ in their transgenic strategy and expression levels,
endogenous NOTCH3 expression, and the predicted effects
of mutations on Notch function. Overall, from the mutant
mouse models, data suggest that one or all these mechanisms
may contribute to or modulate the phenotype, possibly
explaining some of the clinical heterogeneity in CADASIL
(Ayata, 2010).
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Biomarker 4: Systemic and Circulating
Markers
Systemic Markers of Endothelial Dysfunction
The elevated level of endothelial dysfunction biomarkers in
the blood of patients with CSVD had provided evidence of
the involvement of EC failure in the pathomechanism of
CSVD. Endothelial dysfunction may have multiple pathological
pathways; however, most research focuses only on one pathway
to study the circulating biomarker; therefore, it is important to
consider multiple biomarkers of different pathways related to
endothelial dysfunction so as to provide a greater opportunity
to understand the disease mechanism and to eventually develop
prevention and therapeutic approaches.

The first and major systemic biomarkers for endothelial
dysfunction are inflammation markers. Inflammatory
biomarkers of endothelial dysfunction, such as C-reactive
protein (CRP), interleukin-6 (IL-6), intracellular adhesion
molecule-1 (ICAM1), and E-selectin, have been widely studied
and associated with CSVD in human and animal models
(Cuadrado-Godia et al., 2018; Gu et al., 2019). The progression of
WMHs in CSVD has been associated with higher expressions of
ICAM1, CRP, and MMP9, thus supporting the role of endothelial
dysfunction in CSVD (Markus et al., 2005; Satizabal et al., 2012;
Kim et al., 2014; Gu et al., 2019). In addition, studies have
also found associations between IL-6, E-selectin, and vascular
cell adhesion molecule levels and the presence of microbleeds,
lacunar infarcts, and WMHs (Rouhl et al., 2012; Gu et al., 2019).
Therefore, enough evidence has shown that increased levels of
different circulating inflammatory biomarkers were associated
with the presence of different forms of CSVD, and levels of these
biomarkers can be measured routinely in clinical and laboratory
settings using plasma serum.

The second type are serum neurofilament (NfL) markers.
Measuring the NfL level has been reported to be a direct approach
of measuring the extent of neuronal damage (Uiterwijk et al.,
2016). Since NfL is a crucial scaffolding protein in the neuronal
cytoskeleton, the NfL released upon neuronal damage into the
ECM, CSF, and blood can be a suggestive measure of endothelial
dysfunction (Cuadrado-Godia et al., 2018); a previous study had
reported that a high level of NfL is associated with the presence of
a recent small subcortical infarct (Gattringer et al., 2017).

The next type of biomarkers are serum albumin (SA) and
albuminuria markers. The leakage of albumin during BBB
dysfunction is associated with increased BBB permeability,
especially in the aging brain. Previous studies found that
increased SA levels and the CSF/SA ratio are associated with
the presence of WMHs in CSVD and vascular dementia, which
serve as surrogate markers for BBB breakdown (Skoog et al.,
1998; Simpson et al., 2007; Cuadrado-Godia et al., 2018). On the
other hand, albuminuria has also been suggested as a marker
for endothelial dysfunction (Stehouwer and Smulders, 2006),
whereby multiple studies had supported that peripheral systemic
microvascular disease marker, that is, albuminuria, is beneficial
for the assessment of cerebral microvascular lesions and it had
been associated with neuroimaging marker in CSVD (Cuadrado-
Godia et al., 2018; Georgakis et al., 2018).

Another type of widely studied biomarkers of endothelial
dysfunction are coagulation and hyperhomocysteinemia
markers. One of the most crucial coagulation factors in
circulation system is fibrinogen, which has been widely associated
with endothelial dysfunction, followed by BBB damage, and is a
beneficial marker for the disease (Bridges et al., 2014). Fibrinogen
is a large plasma glycoprotein and its breakdown products are
removed from cerebral tissue by the local plasminogen system
or plasminogen activator. However, an increased plasma level
of the tissue factor pathway inhibitor was associated with the
presence of lacunar infarcts (Knottnerus et al., 2012). On the
other hand, several studies had shown that higher levels of
homocysteine in plasma serum were also associated with the
presence of WMHs and SBIs (Vermeer et al., 2002; Sachdev et al.,
2004; Kloppenborg et al., 2011).

Circulating Markers: Microparticles (MPs)
MPs are non-nucleated, small, and membrane-enclosed
extracellular microvesicles (Dignat-George and Boulanger, 2011;
Bebawy et al., 2013; Berezin, 2015). Their size ranges from 0.1 to
1 µm in diameter; they are particularly formed from membrane
phospholipid exocytic blebs that are released from the cell surface
by the proteolytic breakdown of the cytoskeleton due to cellular
activation, injury, or apoptosis (Owens and Mackman, 2011;
Nomura and Shimizu, 2015; Chiva-Blanch et al., 2016). The
compositions of MPs are heterogeneous; they can be produced by
many different cell types and characterized into subpopulations
by the presence of cytoplasmic components and various surface
antigens, which are characteristic of the state of the cell from
which they originate and of the type of stimulus (Hussein et al.,
2003; Lacroix et al., 2010; Burger and Touyz, 2012). Based on
their cluster of differentiation, the MP subpopulation includes
endothelial cell–derived MPs (EMPs): CD144, CD62E, or CD3;
platelet-derived MPs (PDMPs): CD41a, CD42b, CD62P; red
blood cell–derived MPs (RMPs): CD235a; and leukocyte-derived
MPs (LMPs): CD45, CD4, CD8, and CD14 (Martinez et al., 2011;
Andriantsitohaina et al., 2012).

MPs can serve as a procoagulant because they bear
functionally bioactive phospholipids and cyto-adhesion
molecules, such as phosphatidylserine and procoagulant
protein tissue factor, that play major roles as cellular activators of
the clotting cascade (Hussein et al., 2003; Owens and Mackman,
2011). Moreover, the formation of MPs might contribute to the
disorganization of the proper function of endothelium layers.
For example, Martinez et al. (2011) have shown that endothelial
dysfunction caused by MPs lowered the production of NO and
thus induced vascular inflammation that potentially contributed
to the prothrombotic state within the arterial wall and propagated
atherosclerosis, a hallmark of endothelial dysfunction. Besides,
this dysfunction is also demonstrated by the shedding of EMPs
that express platelet EC adhesion molecule-1 (i.e., CD31) that
has been implicated to feature in ischemic stroke subtypes
(Grammas et al., 2011).

Apart from endothelial dysfunction, Schreiber et al. (2013)
argued about another common pathomechanism of CSVD that
is related to the disorganization of arterial segmental walls
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and luminal narrowing. These arose due to accumulations of
MPs alongside cholesterol crystals that caused arteriolosclerosis,
which may result in hypoperfusion that accompanied infarcts
and WMHs (Ogata et al., 2011; Schreiber et al., 2013). To
date, limited studies are available to implicate the role of
MPs in thrombosis (Owens and Mackman, 2011) and their
relationships with CSVD. However, there is evidence that MP
levels are increased in patients with cardiovascular diseases
and risk factors, including acute coronary syndromes, diabetes,
hypertension, hypertriglyceridemia, and the spectrum of CSVD
(Puddu et al., 2010; Cheng and Dong, 2012; Kanhai et al., 2014;
Vilar-Bergua et al., 2016).

Finally, a major problem relates to the fact that CSVD has
multiple features and measuring the MPs of blood samples
does not necessarily correspond to what happens to all
CSVD features; different MP subpopulations may have different
microthrombogenic effects on the progression of CSVD, but it
is clearly stated that the MP level increased gradually prior to
CSVD. In conclusion, considerable evidence suggests that MPs
may play an important role in CSVD, although many molecular
details still need to be clarified. The use of comprehensive panels
of circulating MP biomarkers exploring the functioning of the
different biological pathways may be useful to study CSVD.

Role of Experimental Animal Models to
Validate Biomarkers for CSVD
In animal models, plasma and cerebrospinal fluid biomarkers
can assist in the development and implementation of similar
approaches in clinical populations. These biomarkers may
also be helpful in decisions for an advance treatment to
human testing. Longitudinal studies in animal models
can determine the initial presentation and progression of
biomarkers that will be used to assess the disease-modifying
efficacy of drugs. The refinement of biomarker approaches
in preclinical systems will not only aid in drug development
but may also facilitate diagnosis and disease monitoring
(Sabbagh et al., 2013).

Furthermore, relationships in animal models can be
investigated between peripheral biomarkers and readily
available neuropathology; these can be translated into human
studies where biomarkers are accessible, but neuropathology
is often not. MicroRNAs (miRNAs) have also been implicated
in disease pathogenesis and recommended as a putative
biomarker (i.e., in patients with AD) (Wang et al., 2008, 2012).
In non-transgenic mice fed a high-fat diet, reduced expression
of multiple miRNAs was observed in the serum (Meissner
et al., 2017). Substantial translational work is required before
miRNAs can be used in the clinic; however, the approach is
advancing rapidly.

In addition, since hypertension is one of the main risk
factors for the development of CSVD, is a major contributor
to stroke, and the most common cause of vascular dementia,
chronic hypertensive rat models have been shown to bear
similarities to most key features of CSVD. According to
findings by a previous study, the mouse model of angiotensin
II (AngII)-induced hypertension was an appropriate animal

model for early onset CSVD and therefore, vascular cognitive
impairment, pathologies commonly preceding vascular dementia
(Meissner et al., 2017).

THERAPEUTIC APPROACHES IN CSVD

The Challenges
To date, a unifying pathomechanism of CSVD remains elusive,
and hence contributes to the current lack of effective therapeutic
strategies in preventing and treating CSVD (De Silva and Miller,
2016). Indeed, it is rather difficult to find clinical trials that focus
specifically on different subtypes of CSVD as most available trials
involve a mixture of small and large vessel diseases. Clinical trials
testing for the efficacy of treatments are further challenged with
the inability to directly visualize small vessels of interest using the
standard neuroimaging techniques in the current routine clinical
practice. Consequently, a trial might be mistakenly regarded as
failed as the neuroimaging features of CSVD reflect irreversible
pathological consequences of small vessel disease on the brain
parenchyma, rather than the vascular changes itself (Zwanenburg
and van Osch, 2017). Besides, the lack of animal models that
replicate all aspects of clinical CSVD in humans add barriers
in the pursuit of elucidating effective treatment and preventive
interventions (Hainsworth and Markus, 2008).

The Current Perspectives
Thus far, targeting the risk factors of diseases such as
hypertension and hypercholesterolemia remains the focus of
therapeutic approaches in CSVD despite its controversial long-
term outcomes (Shi and Wardlaw, 2016). Here, we outline
several therapeutic approaches commonly used in CSVD: the
anti-hypertensive, anti-hyperlipidemic, and anti-platelet agents.

Anti-hypertensive Agents
In line with human studies, SHRSP rats demonstrate
similar histopathological changes such as arteriosclerosis
and lipohyalinosis of small vessels (Lammie, 2000; Grinberg and
Thal, 2010; Schreiber et al., 2013; Ogata et al., 2014). Therefore,
it is plausible that anti-hypertensive treatment might be able
to protect the brain from further damage by attenuating the
vicious cycle of increasing blood pressure and progressive
arterial damage. Evidently, anti-hypertensive treatment in the
SHRSP rat model has been found to halt the development of
fibroid necrosis in cerebral arterioles (Richer et al., 1997) and
preserve endothelial function (Krenek et al., 2001), in addition
to its blood pressure–lowering effects (Richer et al., 1997;
Krenek et al., 2001).

In clinical studies, available data suggest conflicting results
in terms of the efficacy of anti-hypertensive treatment in
reducing the rate of WMH progression in patients with
stroke – ranging from a significant reduction to no effects
(Dufouil et al., 2005; Weber et al., 2012; Bath and Wardlaw,
2015; De Silva and Miller, 2016). Nevertheless, a recent meta-
analysis had concluded that anti-hypertensive treatments delay
the progression of WMHs in CSVD, while no effects were
found on brain atrophy (van Middelaar et al., 2018). Besides,
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anti-hypertensive treatment had been shown to significantly
decrease the risk of lacunar stroke in elderly patients with
isolated systolic hypertension (Perry et al., 2000). However,
trials investigating the role of anti-hypertensive treatment as
a secondary prevention of stroke, which included patients
with lacunar stroke, yielded contradictory findings (White
et al., 2015). Data pertaining to the optimal timing of anti-
hypertensive treatment in CSVD and its effects on other
neuroimaging markers of CSVD, such as microbleeds, lacunes,
acute small subcortical infarcts, and enlarged perivascular
space, are scarce and should be sought in further research
(van Middelaar et al., 2018).

Anti-hyperlipidemic Agents
Statin, an HMG-CoA reductase inhibitor, is prescribed
principally as an anti-hyperlipidemic agent in CSVD. Research
evidence suggests that statin treatment might be beneficial
in terms of preventing stroke recurrence in patients with
small vessel stroke (Amarenco et al., 2009). Linear to this
finding, pleiotropic effects of statins have been observed in
several experimental animal models of CSVD. A marked
reduction of brain expression of inflammatory markers and
increased endothelial NO-synthase expression in carotid arteries
were noted upon treatment with rosuvastatin in SHRSP rats
(Gelosa et al., 2010).

In another study involving a similar stroke-prone
model, rosuvastatin treatment was found to attenuate renal
inflammatory processes and to delay the onset of brain
damage (Sironi et al., 2005). In hyperhomocysteinemic rats,
simvastatin treatment was found to inhibit homocysteine-
induced CRP generation in vSMCs, hence contributing to
reduced vascular inflammatory responses (Pang et al., 2016).
Recent findings have also revealed that simvastatin treatment
produced more pronounce effects than atorvastatin treatment
in ameliorating oxidative stress in hyperhomocysteinemic rats
(Nikolic et al., 2017).

Clinical evidence suggested that pre-stroke statin
administration reduces WMH progression, improves executive
function (Xiong et al., 2014), and promotes better functional
outcomes upon discharge in patients with ischemic stroke
(Martínez-Sánchez et al., 2009). Consistent with these
findings, a recent study reported that a low-dose rosuvastatin
treatment delayed WMH progression in elderly patients
with hypertension (Ji et al., 2018). Nonetheless, despite the
numerous beneficial effects exhibited by statin, aggressive anti-
hyperlipidemic treatment in patients with stroke requires specific
consideration in view of the increased risk of hemorrhagic stroke
(Goldstein et al., 2008).

Anti-platelet Agents
The use of anti-platelet agents remains one of the strategies
in secondary stroke prevention after lacunar stroke (Nakajima
et al., 2014). In general, an anti-platelet agent maintains the
patency of blood vessels by inhibiting platelet aggregation
and thrombus formation. In SHRSP rats, both clopidogrel
and cilostazol had shown superior effects as compared with
aspirin in terms of spontaneous infarct volume reduction

(Omote et al., 2012). However, only the cilostazol-treated group
had improved cognitive and motor functions. Concurrently,
cilostazol increased both insulin-like growth factor type 1
receptor (IGF-1R) positive ratio and IGF-1Rβ expression in
the hippocampus (Omote et al., 2012). Importantly, IGF-1
had been previously shown to increase neurogenesis in the
same brain region (Åberg et al., 2000). In a similar rodent
model, both terutroban and aspirin were found to attenuate
the expression of neuroinflammatory markers and preserve
vascular reactivity in the carotid arteries. The endothelial
protective effects were more pronounced in the group treated
with terutroban (Gelosa et al., 2010). In the CCH rat model,
dipyridamole exerted neuroprotective effects by reversing or
slowing the progression of several pathophysiological changes
found commonly in the rat model (Lana et al., 2014,
2017). Mirroring these effects, dipyridamole had been found
to restore spatial working memory in the same rat model
(Melani et al., 2010).

A pooled analysis of randomized trials had supported the use
of single anti-platelet agents as a secondary prevention modality
following lacunar stroke (Kwok et al., 2015). Nonetheless,
the prolonged use of dual anti-platelet agents incites a
therapeutic dilemma in view of the increased risk of cerebral
hemorrhage. Specifically, a randomized controlled trial, the
Secondary Prevention of Small Subcortical stroke Study (SPS3)
had found that dual anti-platelet treatment with aspirin
and clopidogrel in patients with lacunar stroke significantly
increased the risk of major hemorrhage and mortality, while
no beneficial effect was found in terms of reducing the risk
of recurrent stroke (The SPS3 Investigators, 2012). Similarly,
in the Management of Atherothrombosis with Clopidogrel in
High risk patients (MATCH) trial, which involved patients with
recent ischemic stroke or transient ischemic attack, the aspirin
and clopidogrel combination had been shown to increase the
risk of major hemorrhage as compared to clopidogrel alone
(Diener et al., 2004).

Future Direction of Therapeutic
Approaches in CSVD
There has been a recent proposition to view CSVD as a
dynamic whole-brain disease to guide on new direction of
therapeutic approaches in CSVD (Shi and Wardlaw, 2016).
Nevertheless, any new therapeutic strategy must address its
potential in treating the root cause of the disease, reversing both
clinical and pathological signs of the disease, and halting disease
progression. Perhaps a better picture of the pathomechanism
and therapeutic approaches in CSVD could be sought in animal
models by interpreting the neuroimaging findings together
with neurobehavioral manifestations and physiological changes
noted at the molecular level. In addition, the administration
of a combination of drugs or drugs that have multiple modes
of action (Bath and Wardlaw, 2015) together with a non-
pharmacological approach might be necessary to modulate
different pathways involved in the disease process. Besides, the
financial impact, route of administration of drugs, and adverse
reactions following long-term treatment should be critically
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appraised in future studies in view of the chronic nature of
CSVD (Bath and Wardlaw, 2015). Here, we highlight several lines
of plausible emerging strategies worth considering for CSVD
therapeutic approaches.

Combating Oxidative Stress
Recently, compelling evidence from experimental models
suggests that oxidative stress might be one of the key players
involved in the development of arteriopathy in CSVD (De
Silva and Miller, 2016) and cerebrovascular changes observed
in neurodegenerative diseases (Carvalho and Moreira, 2018).
Coincidentally, several drugs that were conventionally used
as a therapeutic approach in CSVD exhibit antioxidant
properties (Nikolic et al., 2017). A growing body of literature has
investigated the role of antioxidants as a therapeutic modality
in the experimental animal model of CSVD (Chen et al.,
2001; Bagi et al., 2003; Sasaki et al., 2011; Ueno et al., 2015;
Guan et al., 2018).

Several authors had found that natural antioxidants, such
as vitamin E, ascorbic acid, L-carnitine, astaxanthin, and
nigella sativa supplementation, reduce oxidative stress in SHRSP
and CCH rat models, as depicted by increased activities of
superoxide dismutase, catalase, and glutathione in the brain
(Guan et al., 2018), plasma total antioxidant status (Chen et al.,
2001), and vascular superoxide dismutase (Chen et al., 2001).
The amelioration of oxidative stress was also evidenced by
reduced vascular nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (Chen et al., 2001), serum 8-isoprostane (Bagi
et al., 2003), urinary 8-hydroxy-2’-deoxyguanosine (Sasaki et al.,
2011), lipid peroxidation of oligodendrocytes (Ueno et al., 2015),
plasma malondialdehyde level (Murad et al., 2014; Guan et al.,
2018), and malondialdehyde level in the brain (Guan et al., 2018).

Together with the oxidative stress–lowering effect, vitamin E
or its compounds as supplements have been found to prevent
neuronal death (Tagami et al., 1999; Annaházi et al., 2007;
Yamagata et al., 2010), preserve the structure of the hippocampus
(Murad et al., 2014), decrease cerebral thrombotic tendency
(Noguchi et al., 2001), improve vascular function (Chen et al.,
2001), prevent the progression of hypertension (Chen et al., 2001;
Noguchi et al., 2001), and improve cognition (Murad et al., 2014)
in SHRSP and CCH rat models.

On the other hand, a combination of α-tocopherol and
lovastatin treatment in SHRSP had led to similar findings in
terms of reduced oxidative stress, preservation of hippocampal
structure, and improved cognition (Guimarães et al., 2015). It is
therefore possible that the observed beneficial effects were partly
contributed by the capability of vitamin E or its compounds
in reducing free radicals and ROS that were generated in
these rat models. Recently, a randomized double-blind placebo-
controlled trial demonstrated that 2 years of mixed tocotrienol
supplementation successfully halted the progression of white
matter lesions in the subjects who presented with cardiovascular
risk factors (Gopalan et al., 2014). In view of its tolerability and
availability as a natural antioxidant, it was proposed that it could
be used as a long-term supplement in individuals with ischemic
white matter damage (Gopalan et al., 2014). Notably, research
evidence had shown that a very high dose of α-tocopherol

supplementation increased blood pressure and adversely altered
the hippocampal structure in SHRSP rats (Miyamoto et al., 2009).
Therefore, further temptations to use high doses of vitamin E
or its compounds in the clinical setting should be resisted until
further clarification.

Concurrent with the attenuated oxidative stress level,
vitamin C, astaxanthin, and thymoquinone supplements
retard the progression of hypertension in SHRSP and
hyperhomocysteinemic rat models (Chen et al., 2001; Bagi
et al., 2003; Sasaki et al., 2011; Guan et al., 2018). Extra
beneficial effects in terms of the inhibition of cerebral vascular
thrombosis were noted in the astaxanthin-supplemented
SHRSP group (Sasaki et al., 2011). It was postulated that
both effects observed in the astaxanthin-supplemented group
were related to the increased bio-availability of NO secondary
to the reduction of the ROS inhibitory action on the NO
(Sasaki et al., 2011). Meanwhile, L-carnitine supplements in
CCH rats significantly reduced the pathological hallmarks of
ischemic white matter disease by enhancing the myelin sheath
thickness and oligodendrocyte marker expression (Ueno et al.,
2015). Thymoquinone supplements had been shown to reduce
neuroinflammation in the SHRSP model, as evidenced by
the decreased miRNA expression of IL-1β, IL-6, monocyte
chemoattractant protein-1, and cyclooxygenase-2 (COX-2) in
the brain (Guan et al., 2018).

A few studies had demonstrated that superoxide dismutase
mimetic (e.g., tempol), an antioxidant enzyme, alleviates
oxidative stress in the SHRSP, as measured by the increased
plasma total antioxidant status and reduced vascular superoxide
anions (Park et al., 2002). These changes were accompanied
by the attenuation of vascular remodeling (Park et al., 2002).
Importantly, a recent study in advanced-stage SHRSP had
discovered that tempol failed to reduce blood pressure effectively
and, in fact, aggravated the preexisting renal injury (Sugama
et al., 2014). Notably, the destructive effects observed in the
kidney were not seen in hydralazine-treated group, which had
demonstrated a significantly lower blood pressure than the
untreated group (Sugama et al., 2014).

Considering the role of oxidative stress in the
pathomechanism of CSVD, combating oxidative stress might be
a promising therapeutic approach. Lessons from vascular disease
and/or stroke trials indicated that antioxidant treatment might
fail to show benefits in these settings in view of the limitation
of the study design and failure of the relevant antioxidant to
adequately reverse oxidative stress, which might be particularly
true in advanced stages of the disease (Pong, 2003; Drummond
et al., 2011). In future studies, adverse outcomes following
long-term treatment should be monitored closely since ROS
plays an important physiological role in maintaining cerebral
vascular function (De Silva and Miller, 2016).

Modulation of Cyclic Adenosine Monophosphate
(CAMP) System
Cilostazol is a specific phosphodiesterase III inhibitor that has
been shown to prevent platelet aggregation, reduce the oxidative
stress level, and exert vasodilatory effects by increasing the
intracellular level of CAMP and endothelial NO-synthase activity
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(Omote et al., 2012). Cilostazol treatment in the SHRSP and
CCH rat models have been found to reduce oligodendrocyte
cell death (Lee et al., 2006, 2007; Watanabe et al., 2006;
Miyamoto et al., 2010), spontaneous infarct volume (Omote et al.,
2012), BBB permeability (Edrissi et al., 2016), and microglial
activation, which is a major source of inflammatory cytokines
(Watanabe et al., 2006; Edrissi et al., 2016). In line with
these findings, several studies noted that cilostazol treatment
lowered the production of tumor necrosis factor-α production,
a marker of the proapoptotic protein, and suppressed the
accumulation of 4-hydroxy-2-nonenal-modified protein, which
is a marker of oxidative neuronal damage that appeared post
ischemic/reperfusion injury (Watanabe et al., 2006). Meanwhile,
prolonged cilostazol treatment in SHRSP rats resulted in
significantly attenuated vascular wall thickening, perivascular
fibrosis, microglial activation, and the degree of white matter
lesions (Fujita et al., 2008).

The reduction of oligodendrocyte death and regeneration
of white matter that were observed in the cilostazol-treated
group diminished upon the inhibition of protein A/K, which
modulates the phosphodiesterase inhibition (Miyamoto et al.,
2010). This suggests that the inhibition of phosphodiesterase III
has a potential benefit in terms of increasing oligodendrogenesis
and remyelination of the damaged white matter area (Miyamoto
et al., 2010). Several observed beneficial effects were associated
with improved spatial learning memory (Miyamoto et al., 2010)
and motor function (Edrissi et al., 2016) in the cilostazol-treated
group. A few studies proposed that the neuroprotective effects of
these drugs were attributed to the enhanced cAMP-responsive
element-binding protein phosphorylation signaling pathway
(Watanabe et al., 2006; Lee et al., 2007) and subsequent activation
of Bcl-2 and COX-2 (Watanabe et al., 2006) in the cilostazol-
treated group. Several authors suggested that the observed
improvements in terms of the cognitive function might be partly
accounted for by the increased vascular endothelial growth factor
receptor 2 expression in the peri-infarct area (Omote et al.,
2014) and increased IGF-1Rβ-positive cells in the hippocampus,
which might be beneficial in terms of enhancing neuroplasticity,
neurotransmission, and neurogenesis (Omote et al., 2012).

Indeed, the pleiotropic effects of cilostazol had attracted
several researchers to investigate its practicality in the clinical
setting of CSVD. In a multicenter, randomized, double-
blind, placebo-controlled trial, cilostazol treatment in patients
with acute lacunar infarction had resulted in a favorable
decrease in the pulsatility index in comparison to the placebo-
treated group (Han et al., 2013). Subgroup analysis from
the same study revealed that cilostazol decreased cerebral
arterial pulsatility in patients with mild WMH changes (Han
et al., 2014). Meanwhile, in a pilot study involving patients
with recent small subcortical infarcts, it was suggested that
early treatment with cilostazol might reduce the plasma
inflammatory biomarkers, which is probably associated with
poor neurological outcomes (Saji et al., 2018). In line with
these findings, cilostazol treatment of patients with acute
stroke with small vessel occlusion had resulted in a shortened
length of hospital stay and better neurological outcomes
(Nakase et al., 2013).

Neurotrophins
The role of cerebrolysin as a neuroprotective and neurotrophic
compound has been investigated in various experimental animal
models and clinical studies of stroke and neurodegenerative
disease (Rockenstein et al., 2003; Gauthier et al., 2015; Liu
et al., 2017; Zhang et al., 2017). However, the value of
cerebrolysin as a candidate for the treatment of CSVD remains
inadequately explored. In a recent development, cerebrolysin
treatment in a CCH rat model resulted in the increased
expression of plasticity-related synaptic proteins concurrent with
significant improvements in terms of the cognitive function
(Liu et al., 2017). Notably, a review of randomized controlled
trials had concluded that cerebrolysin might exert a positive
effect on the cognitive function of patients with mild to
moderate vascular dementia (Chen et al., 2013). This implicates
that cerebrolysin might be a worthy candidate for further
research in CSVD.

Other Potential Non-pharmacological
Therapeutic Approaches
Other potential therapeutic approaches, such as smoking
cessation, reduced salt intake, fasting, and increased physical
activity, might be of benefit in the modification of CSVD risk
factors, which are common to most non-communicable cardio-
cerebrovascular diseases. In the CCH rat model, physical exercise
had been shown to confer protection against BBB impairment
(Lee et al., 2017), reduce the oxidative stress level (Cechetti et al.,
2012), promote neurogenesis, and increase the hippocampal
mature brain-derived neurotrophic factor level (Choi et al.,
2016). Concurrent cognitive function improvement was noted
in these studies (Cechetti et al., 2012; Choi et al., 2016; Lee
et al., 2017). Early intervention with physical exercise after
the BCCAO procedure in the CCH rat model significantly
reduced cerebral microvascular inflammation, as evidenced by
the decreased cerebral NADPH oxidase gene expression and
endothelial–leukocyte interactions (Leardini-tristão et al., 2016).
In support of these findings, a recent review had concluded that
exercise increases the bioavailability of neurotrophins, protects
blood vessels from damage, and reduces vascular disease risk
factors in patients with subcortical ischemia. Apart from these,
it was noted that exercise improves the cognitive function in this
subset of patients (Dao et al., 2018).

Besides, intermittent fasting pretreatment prior to BCCAO in
the CCH rat model has been shown to alleviate oxidative stress
in the hippocampus, as evidenced by decreased malondialdehyde
concentrations, increased glutathione concentrations, higher
gene expression of antioxidative enzymes, and enhanced
superoxide dismutase activity as compared to the non-fasting
group (Hu et al., 2017). In fact, it has also been found to
mitigate neuroinflammation in the hippocampus, which was
demonstrated by the presence of lower microglia density and
the expression of inflammatory proteins. These changes were
accompanied by protective effects on the cognitive function
(Hu et al., 2017).

In addition, the role of dietary salt restriction in CSVD should
be further investigated in view of the evidence that high dietary
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salt intake in SHRSP rats exacerbated hypertension and increased
the mortality rate (Chen et al., 1997). The need for further
research in this field is supported by a recent clinical finding
that had shown that patients with stroke with long-term higher
dietary salt intake have a higher possibility of developing CVSD
(Makin et al., 2017).

All in all, it is critical to carefully evaluate the risk and
benefits of each treatment based on each patient. The apparent
disparity in terms of the findings might be a reflection
of the dynamicity and complexity of the disease in which
different pathomechanisms are involved in different disease
subtypes. Indeed, more studies are required to find a novel
approach in CSVD treatment as a step toward establishing
clinical practice guidelines of CSVD management. Therefore,
several experimental animal models of CSVD should be used
to discern the treatment effects on different pathological
features of the disease. Large-scale randomized control trials
that accurately identify the subtypes and stages of CSVD
are required to assess the effectiveness of these treatments
in preventing CSVD development in high-risk subject as
well as in halting disease progression. Further studies should
also be conducted to elucidate the impact of systematically
incorporating non-pharmacological therapeutic strategies in the
current management of CSVD. Nonetheless, it should be kept in
mind that a safe, tolerable, and non-invasive treatment would be
critical to increase the compliance rate in patients, which is one
of the keys to successful treatment.

CONCLUSION

Cerebral small vessel disease is a relatively heterogenous disease
process and an important precursor to cognitive decline,
stroke, and age-related functional decline. Despite the increasing
number of research studies on CSVD, the pathomechanism
in terms of its vascular pathology and brain injury remain
elusive with various contentions on management and prevention.

However, current technological advances in elucidating the
disease pathomechanism may increase our understanding of the
natural history of CSVD up to the molecular level. The main
hurdle in exploring the natural history of CSVD is the fact that
there is a coexistence of multiple forms, such as WMHs, lacunar
infarcts, and microbleeds. Therefore, more attention and targeted
efforts are needed to better disentangle the clinical consequences
of CSVD. Meanwhile, advanced experimental and clinical trials
are crucial to better elucidate the diagnostic criteria of CSVD
and provide better therapeutic and preventive measures to halt
and reduce the burden of disability, AD, or dementia caused by
CSVD; the establishment of correct animal models to study the
specific pathogenesis and mechanism of multiple forms of CSVD
is highly beneficial.
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