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Abstract. The fiber cells of the eye lens possess a 
unique cytoskeletal system known as the "beaded- 
chain filaments" (BFs). BFs consist of filensin and pha- 
kinin, two recently characterized intermediate filament 
(IF) proteins. To examine the organization and the as- 
sembly of these heteropolymeric IFs, we have per- 
formed a series of in vitro polymerization studies and 
transfection experiments. Filaments assembled from 
purified filensin and phakinin exhibit the characteristic 
19-21-nm periodicity seen in many types of IFs upon 
low angle rotary shadowing. However, quantitative 
mass-per-length (MPL) measurements indicate that 
filensin/phakinin filaments comprise two distinct and 
dissociable components: a core filament and a periph- 
eral filament moiety. Consistent with a nonuniform or- 
ganization, visualization of unfixed and unstained spec- 
imens by scanning transmission electron microscopy 
(STEM) reveals the existence of a central filament 
which is decorated by regularly spaced 12-15-nm-diam 
beads. Our data suggest that the filamentous core is 
composed of phakinin, which exhibits a tendency to 

self-assemble into filament bundles, whereas the beads 
contain filensin/phakinin hetero-oligomers. Filensin 
and phakinin copolymerize and form filamentous struc- 
tures when expressed transiently in cultured cells. Ex- 
periments in IF-free SWl3 cells reveal that coassembly 
of the lens-specific proteins in vivo does not require a 
preexisting IF system. In epithelial MCF-7 cells de novo 
forming filaments appear to grow from distinct foci and 
organize as thick, fibrous laminae which line the plasma 
membrane and the nuclear envelope. However, fila- 
ment assembly in CHO and SV40-transformed lens- 
epithelial cells (both of which are fibroblast-like) yields 
radial networks which codistribute with the endoge- 
nous vimentin IFs. These observations document that 
the filaments formed by lens-specific IF proteins are 
structurally distinct from ordinary cytoplasmic IFs. Fur- 
thermore, the results suggest that the spatial arrange- 
ment of filensin/phakinin filaments in vivo is subject to 
regulation by host-specific factors. These factors may 
involve cytoskeletal networks (e.g., vimentin IFs) and/ 
or specific sites associated with the cellular membranes. 

I 
NTERMEDIATE filaments (IFs) 1, together with microtu- 
bules and actin microfilaments, make up the cytoskel- 
eton of most eukaryotic cells. Their building blocks 

belong to a superfamily of fibrous proteins which have the 
inherent tendency to polymerize into 10 nm, ropelike 
structures. IFs are dynamic entities able to exchange sub- 
units throughout their length. They assemble by lateral 
and longitudinal growth of small oligomers termed pro- 
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tofilaments. Subfilamentous intermediates of IFs have 
been identified in a variety of in vitro studies, but the exact 
arrangement of subunits in the polymer has not been pre- 
cisely determined (Heins and Aebi, 1994). Biochemical 
studies and sequence comparisons have established that 
all IF proteins consist of three structural domains: a cen- 
tral, largely m-helical, "rod" domain and two nonhelical 
end-regions ("head" and "tail" at the NH2- and COOH- 
termini, respectively). The t~-helical domain is subdivided 
into four segments, termed coil la, coil lb, coil 2a, and coil 
2b, and has a defined length of either 310 or 352 amino 
acid residues. Whereas the rod domain contains conserved 
sequence principles, the end-domains of different IF pro- 
teins vary markedly both in length and in sequence. Based 
on intracellular location, IFs can be distinguished into two 
broad categories: cytoplasmic IFs and nuclear lamins. The 
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current understanding is that the nuclear lamins, which 
represent the ancestors of cytoplasmic IFs, are involved in 
vital functions, whereas cytoplasmic IFs play more subtle, 
tissue- or cell-specific roles. (For a topical review see 
Fuchs and Weber, 1994.) 

The eye lens represents a simple model system in which 
structural and functional analyses of IFs can be combined. 
The cellular and subcellular organization of the lens has 
been explored in numerous previous studies (for a com- 
prehensive review see Maisel et al., 1981). This organ 
contains a monolayer of polarized epithelial cells (lens epi- 
thelium) which cover its anterior surface. The lens "paren- 
chyma" consists of highly elongated cells, the so-called 
lens fiber cells (LFCs). The cytoplasm of the LFCs is filled 
with crystallins, a class of water-soluble proteins believed 
to minimize scattering of the light that passes through the 
eye. The LFCs are organized in successive, concentric lay- 
ers (like an onion) and are tightly connected by a variety 
of intercellular junctions. Although lacking a cell nucleus, 
the terminally differentiated LFCs maintain a well-orga- 
nized spectrin-actin membrane skeleton and possess two 
different types of IF networks. One network is distributed 
throughout the cytoplasm and consists of vimentin IFs; the 
other IF system is located primarily at the cell cortex and 
comprises heteropolymeric structures composed of filensin 
(formerly called CP94, CP95, or CPll5)  and phakinin 
(formerly called CP49 or CP47). These structures are 
known as beaded-chain filaments (BFs). Unlike vimentin, 
which is widely expressed in many cell types, filensin and 
phakinin are uniquely expressed in the eye lens (for a re- 
cent review see Georgatos et al., 1994). 

Vimentin IFs do not appear to play a major role in lens 
function. Knock out of the single vimentin gene in the 
mouse does not affect lens morphogenesis nor does it 
change the overall architecture of the LFCs (Colluci- 
Guyon et al., 1994). From this finding it can be inferred 
that vimentin IFs are not necessary for normal lens devel- 
opment. However, the reduced synthesis of filensin in a 
strain of mutant mice (Eye lens obsolescence mouse) has 
been correlated with severe developmental defects such as 
the inability of the LFCs to elongate (Masaki et al., 1991). 

From a structural viewpoint, the lens-specific IF pro- 
teins, filensin and phakinin, represent highly specialized 
polypeptides, distinct from the other members of the IF 
family. Filensin shows rather "regional" homology to 
other IF proteins (mainly in the area of coil la and coil 2b) 
and has a "truncated" rod domain (29-30 amino acid resi- 
dues in the segment between coil 2a/2b are missing; see 
Gounari et al., 1993; Remington, 1993). Phakinin has a 
normal size rod domain, shows extensive sequence similar- 
ity to type I keratins, but completely lacks a tail domain 
(Merdes et al., 1993). Purified filensin self-assembles into 
short 10-nm-thick fibrils, whereas purified phakinin has 
been reported to form large aggregates (Merdes et al., 
1991, 1993). Although these homopolymeric structures 
bear no resemblance to ordinary IFs, mixing of purified 
filensin and phakinin in a 1:3 molar ratio yields normal 
looking IFs (Merdes et al., 1993). 

To investigate the molecular interactions between filensin 
and phakinin in detail, we performed a systematic in vitro 
and in vivo study. Data described below shed light on the 
structural relationships between lens-specific IFs and ordi- 

nary IFs and provide clues for the coassembly of filensin 
and phakinin in vivo. 

Materials and Methods 

Construction of Bacterial and Eukaryotic 
Expression Plasmids 
A previously isolated 2.5 kb bovine filensin cDNA was ligated into the 
EcoRI polylinker site of the pTT-7 bacterial expression vector (Studier et 
al., 1990) and expressed in E. coli (BL21). The filensin synthesized from 
this construct has an NH2-terminal addition corresponding to the amino 
acid sequence MARIPARGGA. 

A bovine phakinin cDNA (Merdes et al., 1993) was used to prepare 
suitable constructs encoding full-length phakinin for expression in bacte- 
ria. We note here that the previously reported sequence of phakinin (Mer- 
des et al., 1993) contained two sequencing errors which alter the frame in 
the 5' region of the cDNA. The corrected sequence has been deposited in 
the EMBL data bank (file X75160. EMNEW).To generate the phakinin 
bacterial expression construct, an NdeI site was engineered by amplifica- 
tion with the upstream oligonucleotide GGGAATTCCATATGAGCAC- 
CAGGCGCGTG in the translation initiation codon of the phakinin 
cDNA. The resulting fragment was inserted between the NdeI-HindIII 
sites of the pT7-7 vector. 

Eukaryotic expression constructs were generated by subcloning the 
coding sequences from the corresponding bacterial expression constructs 
into the PSVK3 vector (Pharmacia, Uppsala, Sweden). Thus, the full- 
length filensin cDNA was inserted in the PSVK3 as an EcoRI fragment. 
This construct does not contain the NH2-terminal additional 10 amino ac- 
ids present in the bacterial expression construct. An myc tag (Evan et al., 
1985) was added to the phakinin eukaryotic expression vector as an NcoI- 
NdeI insertion, upstream and in frame with the phakinin translation initia- 
tion codon. Recombinant DNA manipulations were performed essentially 
as described in Sambrook et al. (1989). 

Bacterial Expression and Purification of Proteins 
Logarithmically growing cultures (500 ml, ODr00 = 1) were induced with 
0.2 mM isopropyl-13-D-thiogalactopyranoside (IPTG; Biofinex, Praroman, 
Switzerland). After another 3 h at 37°C, the bacteria were harvested by 
low-speed centrifugation, the cell pellet resuspended in 1/10 of the origi- 
nal volume in 150 mM NaCl, 10 mM Tris/HCl, pH 7.4, 1 mM PMSF, 2 Ixg/ 
ml leupeptin, 2 i~g/ml pepstatin, 2 I~g/ml antipapain and 2 ixg/ml aprotinin 
(lysis buffer), and lysed by sonication at 0°C. The lysates were sedimented 
at 12,000 g for 15 min at 4°C and the pellet was washed with 1% Triton 
X-100 in lysis buffer. The Triton-insoluble material was washed with 1 M 
urea and 1% Triton X-100 in lysis buffer. The washed pellet was solubi- 
lized in 8 M urea, 10 mM Tris/HCl, pH 7.5, 1 mM EDTA, 1 mM DTT, 2 
Ixg/ml leupeptin, 2 ~g/ml pepstatin, 2 ~g/ml antipapain and 2 i~g/ml aproti- 
nin (urea-Tris extraction buffer), and centrifuged at 12,000 g for 45 min at 
18°C to remove insoluble material. The clarified urea extract was chro- 
matographed on DEAE-cellulose (DE53, Whatman, Maidstone, GB) us- 
ing a 1-150 mM NaC1 gradient in urea-Tris extraction buffer. Fractions 
enriched for the protein of interest were pooled and further chromato- 
graphed on a hydroxylapatite column (BioRad Labs, Richmond, CA). 
The column was eluted with a gradient of 10-100 Na3PO 4 in 7 M urea, 10 
mM Na3PO 4 pH 7.5, 1 mM DTT, 1 mM PMSF (urea-phosphate buffer). 

Phakinin was purified either from bacterial lysates (prepared as above), 
or from fresh bovine lenses obtained from a local slaughterhouse. The 
lenses were washed three times with ice-cold homogenization buffer (155 
mM NaC1, 20 mM Tris/HC1, pH 7.5, 2 mM MgCI2, 0.1 mM EGTA, 1 mM 
DTT, 1 mM PMSF, 2 ixg/ml leupeptin and 2 ~g/ml pepstatin) and homog- 
enized in a Waring blender at 4°C. The homogenate was first cleared from 
debris by spinning at 1,000 rpm for 5 min at 4°C in tabletop centrifuge. Af- 
ter centrifugation for 30 min at 12,000 g at 4°C, the pellet was resuspended 
in 600 mM KCI, 50 mM Tris/HC1, pH 7.5, 2 mM MgC12, 0.1 mM EGTA, 
1 mM PMSF and recentrifuged at 12,000 g for 30 min at 4°C. The insoluble 
material was extracted first with 0.5% Triton X-100 in homogenization 
buffer and then with low salt buffer (10 mM Tris/HC1, pH 7.5, 1 mM 
PMSF, 1 mM DTT). The pellet was extracted with 6 M urea, 10 mM Tris/ 
HCI, pH 7.5, 1 mM EGTA, 1 mM DTT and 1 mM PMSF (6 M urea 
buffer) and centrifuged at 12,000 g for 60 min at 18°C. The clarified super- 
natant was loaded onto a DEAE-cellulose column. Bound material was 
eluted with a gradient of 0-100 mM KCI in 6 M urea buffer. Phakinin- 
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enriched fractions were pooled, loaded onto a Superdex-200 gel filtration 
column (Pharmacia, Uppsala, Sweden) and the column eluted with 6 M 
urea buffer. Fractions containing purified phakinin were identified by 
SDS-PAGE in 12.5% polyacrylamide gels. 

In Vitro Assembly Experiments 
In vitro assembly was performed at protein concentrations of 0.24).4 mg/ 
ml, at room temperature. The purified proteins were kept in 6-8 M urea, 
10 mM Tris/HCl, pH 7.5, 2 mM EDTA, t m M  DTF, 2 txg/ml aprotinin, 2 
p~g/ml antipapain, 2 p.g/ml pepstatin, 2 p,g/ml leupeptin and 0.5 mM PMSF 
(urea buffer). To self-assemble phakinin, purified protein was dialyzed 
from 6 M urea to 160 mM KC1, 20 mM Tris/HC1, pH 7.5, 0.1 mM EGTA, 
1 mM MgCI~, 1 mM DTT and 0.5 mM PMSF (isotonic buffer), on ice, for 
2-3 h. To self-assemble filensin, the protein was first dialyzed from 8 M 
urea to 4 M urea for 2 h at room temperature, followed by dialysis against 
isotonic buffer, overnight at 4°C. Polymerized filensin was pelleted at 
400,000 g for 40 rain at 18°C, solubilized in 6 M urea and dialyzed against 
isotonic buffer, for 3 h, on ice (recycling). To coassemble filensin with 
phakinin, the proteins were codialyzed from high urea to decreasing urea 
concentrations (6-8 M--+4 M---~2 M---~0 M) in isotonic buffer, for 3 h at 
room temperature. 

Electron Microscopy 
Samples were prepared for electron microscopy and either negatively 
stained or glycerol sprayed and low-angle rotary shadowed. To negatively 
stain in vitro reconstituted polymers, 10-~1 aliquots of each specimen were 
applied to collodium/carbon-coated copper grids. After washing with dis- 
tilled water, the material was stained with 2% uranyl acetate and air- 
dried. The grids were then examined in a Phillips 400 or 301 electron mi- 
croscope. For rotary shadowing, a 20-~1 aliquot of each sample was mixed 
with glycerol to a final concentration of 30% and sprayed onto pieces of 
freshly cleaved mica. The mica pieces were placed on the table of a high- 
vacuum evaporation-machine (Balzers BAE 080) for drying and rotary- 
shadowing with platinum/carbon (using an electron beam source) at an el- 
evation angle of ~3 ° (Fowler and Aebi, 1983). The mass-per-length 
(MPL) of phakinin/filensin heteropolymers was determined by quantita- 
tive scanning transmission electron microscopy (STEM) of unstained/ 
freeze-dried specimens using a Vacuum Generator (East Grinstead, Great 
Britain) HB-5 STEM operated at 80 kV, following the procedure de- 
scribed by Engel et al. (1985). 

Light Microscopy 
Indirect immunofluorescence microscopy was performed as described in 
Merdes et al. (1991). Specimen preparation for confocal microscopy was 
essentially the same except that before mounting, ~20 i~m "feet" were 
made on the coverslips. Double immunolabeting was done using various 
polyclonal anti-filensin antibodies (Gounari et al. 1993), the mAb 9EI0 
against the myc tag (a gift from S. Fuller, EMBL, Heidelberg, FRG), the 
mAb 7A3 recognizing vimentin (Papamarkaki et al., 1991), and an anti- 
keratin 8 mAb (kindly provided by M. Osborn, Max Planck Institute for 
Biophysical Chemistry, G6ttingen, FRG). 

Transfection of Cultured Cells 
CHO (Chinese hamster ovary) cells were obtained from the Amer. Type 
Culture Collection (Rockville, MD). MCF-7 human mammary carcinoma 
cells and SV40-transformed lens epithelial cells were obtained from W.W. 
Franke (German Cancer Research Center, Division of Cell Biology, 
Heidelberg, FRG). Clones of SW13 human adrenal carinoma cells were 
provided by R. Evans (Health Science Center, Denver, CO). Transfec- 
tions were carried out according to the calcium phosphate precipitation 
method, essentially as described by Wingler et al. (1979). In short, 105 cells 
were plated onto 6-cm tissue culture plates containing sterile coverslips. 
The cells were refed on the following day and 4-8 h later 0.5 ml of freshly 
prepared precipitate containing 10 tzg DNA was applied. The precipitate 
was washed off after 16-20 h and the cells were allowed another 24-h incu- 
bation before processing for immunofluorescence microscopy. 

Other Methods 
SDS-PAGE was performed according to Laemmli (1970). Protein concen- 
trations were measured using a kit (BioRad Labs). 

Results 

Expression and Purification of Recombinant Proteins 

A previously isolated bovine filensin cDNA (Gounari et 
al., 1993) and a bovine phakinin cDNA (Merdes et al., 
1993) were cloned into the bacterial expression vector 
pT7-7. Recombinant plasmids were used to transform E. 
coil (BL21) cells and the overexpressed proteins extracted 
from inclusion bodies by 8 M urea and isolated from the 
urea extracts by chromatographic methods (for details see 
Materials and Methods). Bovine phakinin was purified 
from 6 M urea extracts of lens tissue as specified in Materi- 
als and Methods. SDS-PAGE profiles of the purified pro- 
teins are shown in Fig 1. 

Self-Assembly of Filensin and Phakinin 

Under isotonic conditions, bacterial filensin formed short 
fibrils (Fig. 2 e) which were similar to the fibrils assembled 
from native lens filensin (for relevant information see 
Merdes et al., 1991, 1993). However, the behavior of lens 
and bacterial phakinin was somewhat different than previ- 
ously reported. More specifically, previous experiments 
have shown that lens phakinin self-assembles into meta- 
stable filamentous structures, 7-8 nm in diameter, which 
rapidly aggregate (Merdes et al., 1993). Nevertheless, 
since the previously used preparations were slightly con- 
taminated with a 40-kD phakinin degradation product 
(Merdes et al., 1993), we reexamined the assembly process 
using material purified further by gel filtration (see Mate- 

Figure 1. Purif icat ion of  filensin and phakinin.  The  figure shows 
S D S - P A G E  s ta ined with Coomass ie  blue.  (a) Lane  1, urea  ex- 
tract  o f  bovine lens-cytoskele ton complexes;  lane 2, phakinin  en-  
r iched fract ion after  DEAE-ce l l u lo se  ch romatography  ( the band  
at 21 kD probably  represen t s  residual  crystallins); lane 3, pur i f ied 
bovine lens phakinin  after  gel f i l trat ion on  Superdex  200. (b) 
Lane  1, urea  extract  o f  bacterial  inclusion bodies  containing re- 
combinan t  phakinin;  lane 2, phakin in-enr iched  fract ion af ter  frac- 
t ionat ion  on  DEAE-ce l lu lose ;  lane 3, purif ied bacterial  phakinin  
after a second  round  of  ch romatography  on  DEAE-ce l lu lose .  (c) 
Lane  1, urea  extract  of  bacterial  inclusion bodies  containing re- 
combinan t  filensin; lane 2, f i lensin-enr iched fract ion after  chro-  
ma tography  on DEAE-ce l lu lose ;  lane 3, purif ied bacterial  filen- 
sin after ch romatography  on hydroxylapat i te .  Lanes  on  the  left in 
a, b, and c represen t  molecular  weight  markers  with the  indicated 
values (in kD).  
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Figure 2. In vitro self-assembly of phakinin and filensin. Purified bovine lens phakinin and recombinant  filensin were processed as de- 
scribed in Materials and Methods. Negatively stained samples of phakinin, taken at 10 (a), 20 (b), 40 (c), and 80 min (d) after the start of 
dialysis against isotonic salt buffer are shown in this figure. Arrows and arrowheads indicate subfibers at points where the phakinin bun- 
dles unravel. Inset in d shows a "bubble"  in which the phakinin bundle  unravels into protofi lamentous strands (small arrows), e is a neg- 
atively stained sample of filensin taken at 90 min after the start of dialysis. Bars represent  100 nm. 
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rials and Methods) and following a time course approach. 
As shown in Fig. 2 a, gel-filtered lens phakinin dialyzed for 
very short periods of time (10 min) against isotonic buffer 
did not form distinct structures. However, at later time 
points (20 min), we could observe the formation of various 
fibrillar elements which probably represented protofibrils 
and higher order oligomers (Fig. 2 b). These structures 
constituted transient intermediates, and, upon further di- 
alysis (40 min), were gradually transformed into filament 
bundles with an apparent diameter of 50 nm. The phakinin 
bundles were stable structures and did not aggregate upon 
further dialysis (80 min). They consisted of helically inter- 
twined filaments which unraveled at points (Fig. 2 d, inset). 
The formation of helical bundles was salt dependent and 
was not observed when phakinin was reconstituted into 
low ionic strength media (data not shown). From such ob- 
servations it would appear that lens phakinin, which is 
completely tailless, self-assembles into loose, micrometer- 
long bundles which are much thicker than IFs. Such 
"thick" filamentous structures are known to form from a 
variety of tail-truncated or tail-mutagenized IF proteins 
(for relevant information see Kauffmann et al., 1985; 
Kouklis et al., 1993; Nakamura et al., 1993; Heins et al., 
1993). 

In contrast to lens phakinin, bacterial phakinin did not 
form filament bundles under isotonic conditions, but 
rather globular particles with diameters of ~100 nm. Al- 
though these structures "unfolded" at low salt yielding 
thick fibrils, they were unable to elongate as much as na- 
tive lens phakinin filaments (data not shown). The atypical 
behavior of bacterially produced phakinin was not due to 
proteolysis or irreversible denaturation, because the E. 
coli expressed protein had the expected molecular weight 
and was fully competent of copolymerizing with filensin 
(see below). From this data we infer that self-assembly of 
phakinin is heavily influenced by posttranslational modifi- 
cations which do not take place in a prokaryotic environ- 
ment. Consistent with this interpretation, BF proteins 
purified from chick lens have been found to be phosphory- 
lated (Ireland and Maisel, 1984). 

Ultrastructure and Distribution of  Mass in Filensin/ 
Phakinin Copolymers 

We have reported previously that lens filensin and phaki- 
nin copolymerize in vitro, yielding normal-looking IFs 
(Merdes et al., 1993). To find out whether the same holds 
for recombinant proteins expressed in E. coli, we codia- 
lyzed various filensin and phakinin preparations against 
isotonic buffer and examined the structures formed by 
electron microscopy. As shown in Fig. 3, a and b, lens or 
bacterial phakinin copolymerized with recombinant filen- 
sin into smooth, 10-nm filaments. Slight fixation with glutar- 
aldehyde before staining with uranyl acetate revealed that 
filensin/phakinin filaments possessed some beadlike struc- 
tures on their surface (Fig. 3 d). To find out whether these 
beads were an intrinsic feature of the copolymer which 
was "stripped" by uranyl salts or an artefact due to alde- 
hyde fixation, we proceeded analyzing unfixed specimens 
by rotary shadowing and scanning transmission electron 
microscopy (STEM). 

Rotary shadowing (Fig. 3 c) revealed that in vitro assem- 

bled filensin/phakinin filaments exhibit an axial beading 
with a periodicity of ~19-21 nm, as most other types of IFs 
(Henderson et al., 1982; Milam and Erickson, 1982; Heins 
et al., 1993). This characteristic axial periodicity, visible in 
metal-shadowed but not in negatively-stained prepara- 
tions, has been previously suggested to represent either 
the helical pitch of the filaments and/or the periodicity of 
the protofibrillar coiling, or the approximately half-stag- 
gered lateral arrangement of the rod domains of adjacent 
IF dimers which may be further accentuated by the pres- 
ence of the end-domains. The filensin/phakinin hetero- 
polymers visualized after rotary shadowing often revealed 
a spheroidal structure attached at one of their ends (Fig. 3 
c). Similar observations on filaments that look "tapered" 
or "annular" have been reported previously (Milam and 
Erickson, 1982; Henderson et al., 1982; Sauk et al., 1983). 

To obtain additional information, we visualized unfixed 
and unstained specimens by STEM and measured their 
mass-per-length (MPL) distribution (Engel, 1978). These 
measurements were done under different conditions. In 
one setting, filaments assembled from a 3:1 mixture of 
phakinin and filensin (total protein concentration 250 p,g/ 
ml) were diluted 1:2.5 with assembly buffer. Representa- 
tive histograms are displayed in Fig. 4, c and d and are in- 
dicative of several MPL species for each of the two fila- 
ment preparations. As illustrated in this figure, we have 
tried to fit the histograms by multiple Gaussian curves, 
each of them representing a single MPL species. In more 
concentrated samples we detected two major MPL peaks 
at 22 ± 4 and 31 ± 4, and a minor peak at 43 ± 4 kD/nm. 
However, in less concentrated samples there was only one 
predominant peak at 19 ± 4 kD/nm. These variations in 
MPL are within the usual range of variation in ordinary IF 
preparations (Engel et al., 1985; Troncoso et al., 1989). 
STEM images of unstained filaments diluted 1:2.5 re- 
vealed that the copolymers had a strikingly beaded ap- 
pearance (Fig. 4 a). The beads possessed diameters in the 
range of 12-15 nm and were distributed in a regular man- 
ner along the surface of the filaments with a periodicity of 
~19 nm. Some beads with the same dimensions as the 
beads present on the filaments were also seen in the back- 
ground (Fig. 4 a, arrowheads). However, repetition of the 
in vitro assembly experiments and careful inspection of 
numerous filaments by STEM indicated that the beading 
of filensin/phakinin polymers was not always as uniform 
and as regular as one would expect from stable particles 
fully integrated into the filament backbone. Thus, it would 
seem that these structures were peripheral and loosely as- 
sociated with the filament backbone. Confirming this 
point, when the preparations were diluted 1:5 with assem- 
bly buffer, the filaments appeared no longer beaded and 
had a definite tendency to unravel into subfilaments (Fig. 
4 b). The partial unraveling of the filaments was similar to 
that observed with negatively stained or rotary shadowed 
preparations of phosphate-treated keratin filaments (Aebi 
et al., 1983) or with NF-L filaments which often unravel 
into octameric protofibrils (Aebi et al., 1988). To rule out 
the possibility that the beads arose from proteolysis of 
filensin or phakinin in the course of the coassembly, we 
subjected samples at the beginning and the end of these 
experiments to SDS-PAGE. No degradation was observed 
during the assembly experiments (data not shown). 
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Figure 3. Ultrastructural appearance of filaments assembled from lens or bacterially expressed phakinin and bacterially expressed 
filensin. (a) Bovine lens phakinin coassembled with recombinant filensin and visualized after negative staining. (b) Recombinant phaki- 
nin coassembled with recombinant filensin and visualized after negative staining. (c) Bovine lens phakinin coassembled with recombi- 
nant filensin and visualized after glycerol spraying/low-angle rotary metal shadowing. (d) Bovine lens phakinin coassembled with re- 
combinant filensin and visualized by negative staining after slight fixation with 0.1% glutaraldehyde. In all of the experiments, the 
proteins were mixed at a 3:1 molar ratio (phakinin to filensin) and the total protein concentration was 200 ixg/ml. For details on the as- 
sembly protocol and specimen preparation for EM see Materials and Methods. Bars correspond to 100 nm. 

To learn more  about the nature of these beads, we de- 
termined their mass by STEM. Over 1,000 measurements 
done in filament preparations diluted 2.5- and 5-fold (see 
above) yielded one major peak at ~130 kD and three mi- 
nor peaks at 267, 419, and 617 kD, respectively. These val- 
ues were very consistent with the mass of a filensin/phaki- 
nin heterodimer (Mr = 131 kD) and multimers thereof. 
Based on the distribution of mass along the native i l a -  
ments, the mass of the beads, and the ultrastructure of  the 
heteropolymeric filaments we constructed a tentative model 
representing the substructure of the lens-speciiic IFs (see 
Discussion and Fig. 7). 

Filensin and Phakinin Coassemble De Novo in 
Nonlenticular Cells 

To examine the coassembly of phakinin and filensin in an 
in vivo environment,  we performed transfection experi- 
ments, using the c D N A  of i lensin and an myc-tagged pha- 
kinin cDNA.  Tagging of phakinin was necessary because 
our anti-phakinin antibodies could not detect small amounts 
of phakinin synthesized in transfected cells. Since LFCs 
(i.e., the cells which normally express i lensin  and phaki- 
nin) are not maintained in culture, plasmids coding for 
wild-type filensin or myc/phakinin were transfected indi- 
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Figure 4. Visualization of un- 
stained/freeze-dried filensin/ 
phakinin filaments by scan- 
ning transmission electron 
microscopy (STEM) and de- 
termination of mass per 
length (MPL) or mass per 
particle values. (a) Appear- 
ance of filaments at 100 ~g/ 
ml in a sample containing a 1:3 
molar ratio of filensin and 
phakinin. Note the beaded 
appearance of the filaments 
and the beadlike particles ly- 
ing in the background (ar- 
rowheads). (b) Appearance 
of filaments at 50 i~g/ml in a 
sample containing a 3:1 mo- 
lar ratio of filensin and pha- 
kinin. Note the absence of 
beads on the filaments and 
their unraveling into subfila- 
ments. (c) MPL values of fil- 
aments found in a specimen 
similar to that shown in a (N 
= 180). (d) MPL values of fil- 
aments found in a specimen 
similar to that shown in b (N 
= 77). (e) Mass values of 
beadlike particles found in 
the background of specimens 
shown in a or b (N = 1128). 
The samples were processed 
and analyzed as described in 
Materials and Methods, us- 
ing an average electron dose 
of 347 _+ 39 e/nm 2 to record 
the STEM dark-field images. 
Bars equal 100 nm. 

vidually or  in combinat ion ,  into four different  cell lines: 
(a) Chinese hamster  ovary ( C H O )  cells, (b) SV40-trans- 
formed lens epi thel ial  cells (which are f ibroblast- l ike and 
do not  express filensin or  phakinin) ,  (c) human mammary  
carcinoma (MCF-7)  cells, and (d) human adrenal  carci- 
noma (SW13) cells. SV-40 t ransformed lens epi thel ial  cells 
and C H O  cells express vimentin,  whereas  MCF-7 cells are 
known to contain kerat ins 8, 18, and 19. The  clones of 
SW13 cells used here were free of any of the known types 
of cytoplasmic IFs (Sarria et al., 1991). Al l  cells were trans- 
fected with pSVK3-der ived  plasmids (see Mater ia ls  and 
Methods)  and examined 42 h la ter  by indirect  immunoflu-  
orescence microscopy.  

Wild- type  filensin or  phakinin  expressed singly in C H O  
cells formed aggregates (Fig. 5, a-d). Often,  the filensin 
aggregates accumulated near  the nuclear  envelope and 
dis tor ted the nucleus (Fig. 5, c and d). This juxtanuclear  lo- 
calization was never  seen upon transfect ion with phakinin-  
encoding constructs. In general ,  the viment in  f i lament  sys- 
tem of C H O  cells was not  affected by the presence of 
filensin or  phakinin  aggregates.  However ,  in most  cases, 
large aggregates containing filensin also conta ined vimen- 
tin, as judged by double  immunosta ining (data  not  shown). 
Coexpress ion of  phakinin  and filensin in C H O  cells re- 
sulted in the formation of heteropolymeric  filaments which 
largely colocalized with viment in  IFs (Fig. 5, e-h).  Exact ly 
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Figure 5. Immunofluorescence staining of transiently transfected CHO and SW13 cells. CHO cells transiently transfected with either 
myc-tagged phakinin (a) or filensin (b, c, and d) expressing plasmids were labeled with the mAb 9El0 against the myc epitope (a), or a 
polyclonal anti-filensin antibody (b and c). d shows DAPI  staining of the same field shown in c to reveal the deformation of the nucleus 
by filensin aggregates. C H O  cells cotransfected with both plasmids are shown in e, f, g, and h. The cells were doubly stained with anti- 
filensin (e) and anti-myc (f) antibodies or with anti-filensin (g) and anti-vimentin (h) antibodies. Notice the colocalization of filensin and 
phakinin and the codistribution of filensin/phakinin and vimentin filaments. SW13 ceils cotransfected with filensin and phakinin doubly 
stained with anti-filensin and anti-myc antibodies are shown in i and j, respectively. Bars represent 2 Ixm. 
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the same results were obtained when filensin and phakinin 
were expressed in SV40-transformed lens epithelial cells 
(data not shown). Of note here is the fact that filamentous 
networks were observed in ~30% of the cells. Cells which 
apparently overexpressed filensin or phakinin had a mixed 
phenotype and contained filaments as well as large sphe- 
roidal aggregates. From these experiments we conclude 
that filensin and phakinin do not form ordered structures 
when expressed individually, but do coassemble when ex- 
pressed together. Although we cannot exclude the possi- 
bility that the spheroidal aggregates we observed consisted 
of fibrillar elements, it would appear more likely that self- 
assembly of filensin and phakinin is inhibited by cellular 
factors which safeguard IF formation in vivo. A parallel 
for this has been reported in the case of the NF-L protein 
(Lee et al., 1993; Ching and Liem, 1993). 

To find out whether coassembly of filensin and phakinin 
requires a preexisting IF network, we also transfected IF- 
free, SWl3 cells. Single transfections yielded a variety of 
filensin or phakinin aggregates similar to those described 
above (data not shown). However, cotransfection with 
constructs coding for the two lens-specific IF proteins 
yielded filamentous elements primarily distributed in the 
cytoplasm and occasionally associated with the cell cortex 
(Fig. 5, i and j). These filaments were tortuous and anasto- 
mosed, but did not appear to be significantly aggregated. 
Notwithstanding the slightly aberrant features of the het- 
eropolymeric assemblies, we conclude that filensin and 
phakinin coassemble de novo in IF-deficient cells. 

Single transfections of MCF-7 cells with filensin or with 
phakinin-encoding constructs produced results similar to 
those described for CHO cells (data not shown). However, 
when we cotransfected these cells with filensin and phaki- 
nin-encoding plasmids, the resultant phenotype was mark- 
edly different from that seen in CHO and SWl3 cells. In 
many cases, the newly formed filaments seemed to emerge 
from distinct loci localized near the plasma membrane or 
the nuclear envelope (Fig. 6, a-e). Filaments emanating 
from such focal centers often radiated towards the cyto- 
plasm (Fig. 6, a-d). However, as more filaments accumu- 
lated, parallel arrays of fibers were seen to fold back upon 
the plasma membrane and the nuclear envelope, forming 
thick, fibrous laminae. This was particularly evident when 
specimens were visualized by confocal microscopy (Fig. 6, 
g-j). The submembraneous localization of filensin/phaki- 
nin filaments in MCF-7 cells was reminiscent of the distri- 
bution of filensin/phakinin filaments underneath the plasma 
membrane of the LFCs (Merdes et al., 1991, 1993). The de 
novo formed filaments did not colocalize with the endoge- 
nous keratin filaments of MCF-7 cells (Fig. 6, e and jr'). 
Taken together, these observations suggest the existence 
of factors that can nucleate or anchor de novo assembled 
filensin/phakinin filaments in MCF-7 cells. 

Discussion 

Repertoire of Structures Formed by Lens-specific 
IF Proteins 

We have previously suggested that filensin and phakinin 
constitute obligate heteropolymers (Merdes et al., 1993). 
Nonetheless, in view of the more detailed studies reported 

here, it would now seem more appropriate to consider 
these proteins as facultative heteropolymers. This is be- 
cause under in vitro conditions, filensin and phakinin self- 
assemble to a significant extent into non-IF, but yet or- 
dered, structures. 

Previously published observations (Merdes et al., 1993) 
have established that filensin and phakinin are integral 
components of the lens-specific BFs. However, whereas 
native BFs have a beaded appearance, in vitro reconsti- 
tuted copolymers of filensin and phakinin visualized with 
negative staining do not reveal any obvious beading. To 
explain this paradox, we have argued that the beads of na- 
tive BFs may represent either extrinsic components (such 
as crystallins), or some structural regularities of the fila- 
ment proper which are not preserved during in vitro as- 
sembly and staining with heavy metals (Merdes et al., 
1993). In view of the striking images obtained by STEM 
analysis of unfixed/unstained specimens, and also consid- 
ering that even negatively stained filaments have a beaded 
appearance when they are slightly fixed before exposure 
to uranyl acetate, we now find the second alternative plau- 
sible. In support of this interpretation, IFs with a beaded 
appearance have been observed previously in studies with 
purified keratins (Sauk et al., 1984), whereas beaded IFs 
have been identified in the squid giant axon (Eagles et al., 
1990). However, it should be noted that the beads de- 
tected in filensin/phakinin filaments are labile structures 
and their perservation seems to depend on physico-chemi- 
cal parameters that need to be further investigated. This 
said, the possibility that under in vivo conditions IF-associ- 
ating proteins bind to periodically repeated sites of 
filensin/phakinin filaments and further enhance their in- 
trinsic beading is also likely. Recent studies have shown 
that a-crystallins, which are very abundant in the LFCs, 
bind to various IF proteins and decorate the surface of IFs 
(FitzGerald and Graham, 1991; Nicholl and Quinlan, 
1994). 

A Provisional Model for the Packing of Filensin and 
Phakinin Subunits in BFs 

Any model for BF structure should take into account 
three facts: (a) that in vitro assembled filensin/phakinin fil- 
aments exhibit a mass-per-length variation from 19 __ 4 
kD/nm to 43 +_ 4 kD/nm (this study); (b) that these het- 
eropolymeric filaments consist of a core filament moiety 
periodically decorated with beadlike structures (this study); 
and (c) that in vitro assembled filaments as well as native 
BFs in the LFCs contain approximately three (molar) 
parts of phakinin and one part of filensin (Merdes et al., 
1993). Considering these points, we have constructed a 
molecular model which incorporates all the available in- 
formation and describes the packing of subunits in the 
BFs. This model is schematically depicted in Fig. 7. 

We postulate that BFs consist of two, topologically and 
compositionally distinct filament moieties: (a) an inner fil- 
ament built of eight phakinin homodimers (16 polypeptide 
chains per filament cross-section which correspond to four 
protofilaments or two protofibrils); and (b) a peripherally 
disposed filament consisting of eight filensin/phakinin het- 
erodimers (eight filensin and eight phakinin chains per fil- 
ament cross-section which correspond to four protofila- 
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Figure 6. Immunofluorescence staining of transiently transfected MCF-7 cells. Cells cotransfected with plasmids encoding filensin and 
myc-tagged phakinin were visualized by conventional (a-f) or laser scanning confocal (g-j) fluorescence microscopy. Samples were dou- 
bly stained with anti-filensin (a, c, g, and i) and anti-myc (b, d, h, and j) antibodies, e and fshow double staining for filensin and keratin 
8, respectively. Bars correspond to 2 i~m. 
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Figure 7. A tentative model for the molecular architecture of heteropolymeric, lens-specific IFs. The filament is depicted as a ropelike 
structure and is postulated to be built of a core filament moiety composed of four phakinin protofilaments (red) and a peripheral fila- 
ment moiety consisting of four filensin/phakinin protofilaments (yellow). The COOH-terminal tail domains of filensin are depicted as 
convoluted lines (green) projecting from the filament core and produce a periodicity of 19-21 nm. Filensin polypeptide chains are shown 
in green and phakinin chains in red. CF and N F a r e  the COOH-terminal tail and the NH2-terminal head domains of filensin, respectively, 
while Npn is the NH2-terminal head domain of phakinin. In an axial projection of a beaded filament, the structure is postulated to con- 
tain an inner core (red) composed of phakinin and an outer shell composed of filensin and phakinin (green and red). The beadlike struc- 
tures depicted in the background of filensin/phakinin filament preparation (see Fig. 4, a and b) correspond to multiples of filensin/pha- 
kinin dimers which detach from the inner core upon dilution of the sample. 

mentous strands). Our  reasoning is the following: (1) 
examination of unstained filaments by STEM has docu- 
mented that filensin/phakinin filaments are beaded. The 
beadlike structures can be dissociated (or partially de- 
stroyed) by diluting the sample, leaving behind a core fila- 
ment which frequently unravels into 2-4 fibrillar strands 
and has a mass of 19 -+ 4 kD/nm. We suspect that this core 
filament consists of  phakinin only because isolated phaki- 
nin, unlike filensin, exhibits a tendency to self-assemble 
into long filamentous structures which comprise loosely 
connected protofilamentous strands (Fig. 2). These predic- 
tions fit very well the mass measurements and the model 
shown in Fig. 7. Indeed, assuming a molecular mass of 45 
kD for phakinin, a repeat length of 38-42 nm (i.e., 2 × 19- 
21 nm as determined by STEM and rotary shadowing) and 
an MPL of ~20  kD/nm, we can calculate that the core fila- 
ment comprises approximately 16.8 polypeptide chains per 
cross-section, i.e., two protofibrillar or four protofilamen- 
tous strands (Number  of polypeptide chains per cross-sec- 

tion = Repeat  length (r) x MPL/molecular weight [Mr]). 
(2) It is reasonable to assume that the beads on the fila- 
ments shown in Fig. 4 a represent hetero-oligomers of 
filensin and phakinin. Indeed, STEM measurements show 
that the beads which have dissociated from the core fila- 
ment have masses of 130, 267, 419, and 617 kD, i.e., the 
mass of a filensin/phakinin heterodimer (131 kD) and mul- 
timers thereof. We think that the beadlike morphology of 
the peripherally disposed filensin/phakinin oligomers should 
be attributed to the long COOH-terminal  domain of  
filensin which, similar to the COOH-terminal  tails of  the 
lamins, may have a compact, globular structure. Since the 
beads exhibit a periodicity of 19-21 nm, i.e., approximately 
half the length of the IF rod domain, this would fit an ar- 
rangement in which two antiparallel, approximately half- 
staggered filensin/phakinin heterodimers associate to form 
a "hybrid" protofilament leaving the COOH-terminal  do- 
main of filensin to project out of the filament shaft. (3) 
The 43 - 4 kD/nm filament species (heavy MPL peak) 
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identified by STEM most likely represents the fully assem- 
bled filament in which each phakinin homodimer in the 
core filament is connected to a filensin/phakinin het- 
erodimer. Indeed, a beaded filament containing four pha- 
kinin protofilaments (4 x 4 x 45 kD = 720 kD) and four 
filensin/phakinin protofilaments [4 x (2 x 86 kD + 2 x 45 
kD) = 1,048 kD] would be expected to have a mass of 
1,768 kD and contain phakinin and filensin in a ratio of 
3:1. With a repeat length of 38-42 nm (2 x 19-21 nm), this 
yields a range of MPL values of 42.1-46.5 kD/nm which is 
in good agreement to the 43 ___ 4 kD/nm value obtained ex- 
perimentally. Similarly, the 32 __+ 4 kD/nm filament species 
("intermediate" MPL peak) may correspond to a core fila- 
ment from which two filensin/phakinin protofilaments 
have detached and two have remained attached, whereas 
the 19-22-kD/nm filament species ("light" peak) may cor- 
respond to the core filament from which all four filensin/ 
phakinin protofilaments have detached. (4) Since the bun- 
dle of the four phakinin protofilaments in the core fila- 
ment seems to unravel when the peripherally disposed 
filensin/phakinin protofilaments are dissociated, it is rea- 
sonable to postulate that the latter provide cohesion to the 
structure of the core filament. The "fasciation" of the core 
filament by peripheral filensin/phakinin protofilaments 
may also attenuate the tendency of phakinin to grow later- 
ally into thick bundles. 

Overall, the model presented in Fig. 7 shows similarity 
to the molecular architecture of neurofilaments. Accord- 
ingly, neurofilaments are thought to contain an NF-L core 
and a peripheral shell consisting of NF-L/NF-M and NF-L/ 
NF-H heterotetramers. However, instead of having a glob- 
ular COOH-terminal tail as with filensin, NF-M and NF-H 
have extended COOH-terminal tail domains (sidearms) 
(Hisanaga et al., 1988). Obviously, more information is 
needed to confirm this tentative model. In the future, bio- 
chemical experiments and high resolution morphological 
studies will address in a more rigorous way the nearest- 
neighbor relationships between filensin and phakinin sub- 
units in the BF and the mutual arrangement of these build- 
ing blocks within the core as well as the fully assembled 
filaments. 

Lens-specific IF Proteins Coassemble De Novo in 
Nonlenticular Cells 

Based on the transfection experiments described here, it is 
clear that wild-type filensin and phakinin coassemble into 
filamentous structures when expressed together in nonlen- 
ticular cells. Thus, the lens microenvironment does not ap- 
pear to be essential for de novo filament formation. Fur- 
thermore, as indicated by transfection of IF-deficient 
SW13 cells and vimentin-free MCF-7 cells, de novo assem- 
bly of heteropolymeric filaments does not require a preex- 
isting IF system. However, since transient expression of 
filensin and phakinin yields a mixture of phenotypes, we 
should conclude that the stoichiometry of the two lens- 
specific polypeptides in each individual cell is a critical de- 
terminant of filament assembly. 

Although the cellular environment does not seem to af- 
fect the ability of lens-specific IF proteins to copolymerize, 
it clearly affects the distribution of de novo formed fila- 
ments. Thus, studies with vimentin-containing CHO cells 

suggest that filensin/phakinin filaments may interact with 
vimentin IFs in vivo. Previous in vitro experiments have 
shown that filensin (but not phakinin) specifically binds to 
vimentin but does not copolymerize with it (Merdes et al., 
1991; Merdes, 1993). Therefore, one is forced to conclude 
that filensin and vimentin interact at the level of higher or- 
der structures rather than forming hetero-oligomers (i.e., 
dimers, tetramers, or octamers). Future experiments will 
address this issue in more detail. 

At first glance, the colocalization of filensin/phakinin fil- 
aments and vimentin IFs in CHO cells appears to be at 
variance with the spatial arrangement of vimentin and BFs 
in the LFCs. In lens cells, vimentin filaments and BFs are 
spatially segregated and seem to associate at a limited 
number of sites along the cell cortex (Merdes et al., 1991, 
1993). One idea that may explain this difference could be 
that the cellular distribution of BFs is regulated by two op- 
posing factors: (a) by their chemical affinity for membrane 
components (for relevant information see Brunkener and 
Georgatos, 1992), and (b) by their interactions with vi- 
mentin IFs or other cytoskeletal elements. The balance be- 
tween these two interactions may vary depending on cellu- 
lar context. 

The images obtained by analyzing doubly transfected 
MCF-7 cells provide hints that de novo assembly of het- 
eropolymeric filaments is initiated from a limited number 
of foci which reside near or at the plasma membrane and 
the nuclear envelope. Although at this point one does not 
know whether the filaments physically interact with the 
membranes, assembly does not seem to occur from ran- 
dom cytoplasmic sites as in the case of vimentin (Sarria et 
al., 1990). Our results are reminiscent of previous findings 
where nascent keratin filaments have been reported to as- 
semble in a vectorial fashion when the endogenous IF sys- 
tem was obliterated by incorporation of deleterious, mu- 
tant subunits (Albers and Fuchs, 1987). This said, we 
would like to stress that this point needs further study and 
does not imply a general mechanism vectorial assembly; 
instead, the data suggest the existence of alternative path- 
ways of de novo assembly in higher eukaryotic cells (for a 
review see Georgatos, 1993; Georgatos and Maison, 1996). 

This work is dedicated to Stavros and Adamantia Politis. G. Goulielmos 
was supported by a Human Capital and Mobility fellowship granted by 

the European Union. S. Remington was supported by a postdoctoral fel- 

lowship from the National Science Foundation (USA). 

This work was funded in part by a research grant from the Swiss Na- 
tional Science Foundation (31-39691.93) to U. Aebi, the Department of 

Education of the Kanton Basel-Stadt and the M.E. Miiller Foundation of 

Switzerland. 

Received for publication 9 October 1995 and in revised form 13 Novem- 

ber 1995. 

References 

Aebi, U., W.E. Fowler, P. Rew, and T.-T. Sun. 1983. The fibrillar substructure 
of keratin filaments unraveled. J. Cell Biol. 97:1131-1143. 

Aebi, U., M. Haner, J. Troncoso, R. Eichner, and A. Engel. 1988. Unifying 
principles in intermediate filament (IF) structure and assembly. Proto- 
plasma. 145:73-81. 

Albers, K., and E. Fuchs. 1987. The expression of mutant epidermal keratin 
cDNAs transfected in simple epithelial and squamous cell carcinoma cells. J. 
Cell Biol. 105:791-806. 

Brunkener, M., and S.D. Georgatos. 1992. Membrane-binding properties of 
filensin, a cytoskeletal protein of the lens fiber cells. Z Cell Sci. 103:709-718. 

Ching, G.Y., and R.K.H. Liem. 1993. Assembly of type IV neuronal intermedi- 

The Journal of Cell Biology, Volume ! 32, 1996 654 



ate filaments in nonneuronal cells in the absence of preexisting cytoplasmic 
intermediate filaments. J. Cell Biol. 122:1323-1336. 

Colucci-Guyon, E., M.-M. Portier, L Dunia, D. Paulin, S. Pournin, and C. Babi- 
net. 1994. Mice lacking vimentin develop and reproduce without an obvious 
phenotype. Cell. 79:679-694. 

Eagles, P., H. Pant, and H. Gainer. 1990. Neurofilaments. In Cellular and Mo- 
lecular Biology of Intermediate Filaments. R.D. Goldman et al., editors. Ple- 
num Publishing Corp., New York. pp. 37-94. 

Engel, A. 1978. Molecular weight determination by STEM. Ultramicroscopy. 3: 
273-281. 

Engel, A ,  R. Eichner, and U. Aebi. 1985. Polymorphism of reconstituted hu- 
man epidermal keratin filaments: determination of their mass-per-length 
and width by scanning transmission electron microscopy (STEM). J. Ultra- 
struct. Res. 90:323-335. 

Evan, G.I., G.K. Lewis, G. Ramsay, and J.M. Bishop. 1985. Isolation of mono- 
clonal antibodies specific for human c-myc proto-oncogene product. Mol. 
Cell Biol. 5:3610-3616. 

FitzGerald, P.G., and D. Graham. 1991. Ultrastructural localization of a 
A-crystallin to the bovine lens fiber cell cytoskeleton. Curt. Eye Res. 10:417- 
436. 

Fowler, W., and U. Aebi. 1983. Preparation of single molecules and supramo- 
lecular complexes for high-resolution metal shadowing. J. Ultrastuct. Res. 83: 
319-334. 

Fuchs, E., and K. Weber. 1994. Intermediate filaments: structure, dynamics, 
function, and disease. Annu. Rev. Biochem. 63:345-382. 

Georgatos, S.D. 1993. Dynamics of intermediate filaments: recent progress and 
unanswered questions. FEBS Lett. 318:101-107. 

Georgatos, S.D., and C. Maison. 1996. Integration of intermediate filaments 
into cellular organelles. Int. Rev. Cytol. 164:91-138. 

Georgatos, S.D., F. Gounari, and S. Remington. 1994. The beaded intermediate 
filaments and their potential functions in eye lens. BioEssays. 16:413M18. 

Gounari, F., A. Merdes, R. Quinlan, J. Hess, P.G. FitzGerald, C.A. Ouzounis, 
and S.D. Georgatos. 1993. Bovine filensin possesses primary and secondary 
structure similarity to intermediate filament proteins. J. Cell Biol. 121:847- 
853. 

Heins, S., and U. Aebi. 1994. Making heads and tails of intermediate filament 
assembly, dynamics and networks. Curt. Opin. Cell Biol. 6:25-33. 

Heins, S., P.C. Wong, S. Muller, K. Godie, D.W. Cleveland, and U. Aebi. 1993. 
The rod domain of NF-L determines neurofilament architecture, whereas 
the end domains specify filament assembly and network formation. J. Cell 
Biol. 123:1517-1533. 

Henderson, D., N. Geisler, and K. Weber. 1982. A periodic ultrastructure in in- 
termediate filaments. J. Mol. Biol. 155:173-176. 

Hisanaga, S., and N. Hirokawa. 1988. Structure of the peripheral domains of 
neurofilaments revealed by low angle rotary shadowing. J. Mol. Biol. 202: 
297-305. 

Ireland, M., and H. Maisel. 1984. Phosphorylation of chick lens proteins. Curt. 
Eye Res. 3:961-968. 

Kaufmann, E., K. Weber, and N. Geisler. 1985. Intermediate filament forming 
ability of desmin and vimentin derivatives lacking either the amino-terminal 
67 or the carboxy-termina127 residues. J. Mol. Biol. 185:733-742. 

Kouklis, P.D., M. Hatzfeld, M. Brunkener, K. Weber, and S.D. Georgatos. 
1993. In vitro assembly properties of vimentin mutagenized at the 13-site tail 
motif. J. Cell Sci. 106:919-928. 

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the 
head of bacteriophage T4. Nature (Lond.). 227:680~85. 

Lee, M.K., Z. Xu, P.C. Wong, and D.W. Cleveland. 1993. Neurofilaments are 
obligate heteropolymers in vivo. Z Cell BioL 122:1337-1350. 

Maisel, H., C.V. Hardling, J.R. Alcala, J. Kuszak, and R. Brandley. 1981. The 
morphology of the lens. In Molecular and Cellular Biology of the Eye Lens. 
H. Bloemendal, editor. John Wiley and Sons, New York. pp. 4944.  

Masaki, S., K. Tamai, R. Shoji, and T. Watanabe. 1991. Defect of a fiber cell- 
specific 94-kDa protein in the lens of inherited microphthalmic mutant 
mouse Elo. Biochem. Biophys. Res. Commun. 179:1175-1180. 

Merdes, A. 1993. Filensin und Phakinin: Neue Intermediarfilamentproteine in 
der Augenlinse. Ph.D. Thesis. University of Heidelberg, Heidelberg, FRG. 

Merdes, A., F. Gounari, and S.D. Georgatos. 1993. The 47-kD lens-specific pro- 
tein phakinin is a tailless intermediate filament protein and an assembly 
partner of filensin. J. Cell Biol. 123:1507-1516. 

Merdes, A., M. Brunkener, H. Horstmann, and S.D. Georgatos. 1991. Filensin: 
a new vimentin-binding, polymerization-competent, and membrane associ- 
ated protein of the lens fiber cell. J. Cell Biol. 115:397410. 

Milam, L., and H.P. Erickson. 1982. Visualization of a 21-rim periodicity in 
shadowed keratin filaments and neurofilaments. J. Cell Biol. 94:592-596. 

Nakamura, Y., M. Takeda, S. Aimoto, S. Hariguchi, S. Kitajima, and T. Nish- 
imura. 1993. Acceleration of bovine neurofilament L assembly by depriva- 
tion of acidic tail domain. Eur. Z Biochem. 212:565-571. 

Nicholl, I.D., and R. Quinlan. 1994. Chaperone activity of a-crystallins modu- 
lates intermediate filament assembly. E M B O  (Eur. Mot. BioL Organ.) J. 13: 
945-953. 

Papamarcaki, T., P. Kouklis, T.E. Kreis, and S.D. Georgatos. 1991. The "Lamin 
B-fold." J. Biol. Chem. 226:21247-21251. 

Remington, S.G. 1993. Chicken filensin: a lens fiber cell protein that exhibits se- 
quence similarity to intermediate filament proteins..L Cell Sci. 103:709-718. 

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning. Cold 
Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

Sarria, A.J., S.K. Nordeen, and R.M. Evans. 1991. Regulated expression of vi- 
mentin cDNA in cells in the presence and absence of a preexisting vimentin 
filament network. J. Cell Biol. 111:553-565. 

Sauk, J.J., M. Krumweide, D. Cocking-Johnson, and J.G. White. 1990. Recon- 
stitution of cytokeratin filaments in vitro: further evidence for the role of 
nonhelical peptides in filament assembly. J. Cell Biol. 99:1590-1597. 

Studier, F.W., A.H. Rosenberg, J.J. Dunn, and J.W. Dubendorfl. 1990. Use of 
T4 RNA polymerase to direct expression of cloned genes. Methods Enzy- 
mol. 185:60~9. 

Troncoso, J.C., M. Hhner, J.L. March, R. Reichelt, and U. Aebi. 1989. Structure 
and assembly of specific NF subunit combinations. In Springer Series in Bio- 
physics: Cytoskeletal and Extracellular Proteins. U. Aebi and A. Engel, edi- 
tors. Springer-Verlag, Heidelberg. pp. 33-38. 

Wingler, M., R. Sweet, G.K. Sim, B. Wold, A. Pellicer, E. Lacy, T. Maniatis, S. 
Silverstein, and R. Axel. 1979. T 9 Transformation of mammalian cells with 
genes from prokaryotes and eukaryotes. Cell. 16:777 785. 

Goulielmos et al. Structure o f  Lens Intermediate Filaments 655 


